ethtool.c 54.9 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
4
  Copyright(c) 1999 - 2008 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/* ethtool support for e1000 */

#include <linux/netdevice.h>
#include <linux/ethtool.h>
#include <linux/pci.h>
#include <linux/delay.h>

#include "e1000.h"

38 39
enum {NETDEV_STATS, E1000_STATS};

40 41
struct e1000_stats {
	char stat_string[ETH_GSTRING_LEN];
42
	int type;
43 44 45 46
	int sizeof_stat;
	int stat_offset;
};

47 48 49 50 51 52 53
#define E1000_STAT(m)		E1000_STATS, \
				sizeof(((struct e1000_adapter *)0)->m), \
		      		offsetof(struct e1000_adapter, m)
#define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
				sizeof(((struct net_device *)0)->m), \
				offsetof(struct net_device, m)

54 55 56
static const struct e1000_stats e1000_gstrings_stats[] = {
	{ "rx_packets", E1000_STAT(stats.gprc) },
	{ "tx_packets", E1000_STAT(stats.gptc) },
57 58
	{ "rx_bytes", E1000_STAT(stats.gorc) },
	{ "tx_bytes", E1000_STAT(stats.gotc) },
59 60 61 62
	{ "rx_broadcast", E1000_STAT(stats.bprc) },
	{ "tx_broadcast", E1000_STAT(stats.bptc) },
	{ "rx_multicast", E1000_STAT(stats.mprc) },
	{ "tx_multicast", E1000_STAT(stats.mptc) },
63 64 65
	{ "rx_errors", E1000_NETDEV_STAT(stats.rx_errors) },
	{ "tx_errors", E1000_NETDEV_STAT(stats.tx_errors) },
	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
66 67
	{ "multicast", E1000_STAT(stats.mprc) },
	{ "collisions", E1000_STAT(stats.colc) },
68 69
	{ "rx_length_errors", E1000_NETDEV_STAT(stats.rx_length_errors) },
	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
70
	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
71
	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
72 73 74 75
	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
76 77
	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
	{ "tx_window_errors", E1000_STAT(stats.latecol) },
	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
	{ "tx_restart_queue", E1000_STAT(restart_queue) },
	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
94
	{ "rx_long_byte_count", E1000_STAT(stats.gorc) },
95 96 97 98 99 100 101 102 103 104 105
	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
	{ "rx_header_split", E1000_STAT(rx_hdr_split) },
	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
	{ "tx_smbus", E1000_STAT(stats.mgptc) },
	{ "rx_smbus", E1000_STAT(stats.mgprc) },
	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
	{ "rx_dma_failed", E1000_STAT(rx_dma_failed) },
	{ "tx_dma_failed", E1000_STAT(tx_dma_failed) },
};

106
#define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
107 108 109 110 111 112
#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
	"Register test  (offline)", "Eeprom test    (offline)",
	"Interrupt test (offline)", "Loopback test  (offline)",
	"Link test   (on/offline)"
};
113
#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
114 115 116 117 118 119

static int e1000_get_settings(struct net_device *netdev,
			      struct ethtool_cmd *ecmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
120
	u32 status;
121

122
	if (hw->phy.media_type == e1000_media_type_copper) {
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

		ecmd->supported = (SUPPORTED_10baseT_Half |
				   SUPPORTED_10baseT_Full |
				   SUPPORTED_100baseT_Half |
				   SUPPORTED_100baseT_Full |
				   SUPPORTED_1000baseT_Full |
				   SUPPORTED_Autoneg |
				   SUPPORTED_TP);
		if (hw->phy.type == e1000_phy_ife)
			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
		ecmd->advertising = ADVERTISED_TP;

		if (hw->mac.autoneg == 1) {
			ecmd->advertising |= ADVERTISED_Autoneg;
			/* the e1000 autoneg seems to match ethtool nicely */
			ecmd->advertising |= hw->phy.autoneg_advertised;
		}

		ecmd->port = PORT_TP;
		ecmd->phy_address = hw->phy.addr;
		ecmd->transceiver = XCVR_INTERNAL;

	} else {
		ecmd->supported   = (SUPPORTED_1000baseT_Full |
				     SUPPORTED_FIBRE |
				     SUPPORTED_Autoneg);

		ecmd->advertising = (ADVERTISED_1000baseT_Full |
				     ADVERTISED_FIBRE |
				     ADVERTISED_Autoneg);

		ecmd->port = PORT_FIBRE;
		ecmd->transceiver = XCVR_EXTERNAL;
	}

158 159 160 161 162 163 164 165
	status = er32(STATUS);
	if (status & E1000_STATUS_LU) {
		if (status & E1000_STATUS_SPEED_1000)
			ecmd->speed = 1000;
		else if (status & E1000_STATUS_SPEED_100)
			ecmd->speed = 100;
		else
			ecmd->speed = 10;
166

167
		if (status & E1000_STATUS_FD)
168 169 170 171 172 173 174 175
			ecmd->duplex = DUPLEX_FULL;
		else
			ecmd->duplex = DUPLEX_HALF;
	} else {
		ecmd->speed = -1;
		ecmd->duplex = -1;
	}

176
	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
177
			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
178 179 180 181 182 183 184 185 186

	/* MDI-X => 2; MDI =>1; Invalid =>0 */
	if ((hw->phy.media_type == e1000_media_type_copper) &&
	    !hw->mac.get_link_status)
		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
		                                      ETH_TP_MDI;
	else
		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;

187 188 189
	return 0;
}

190 191 192
static u32 e1000_get_link(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
B
Bruce Allan 已提交
193 194 195 196 197 198 199 200 201 202 203
	struct e1000_mac_info *mac = &adapter->hw.mac;

	/*
	 * If the link is not reported up to netdev, interrupts are disabled,
	 * and so the physical link state may have changed since we last
	 * looked. Set get_link_status to make sure that the true link
	 * state is interrogated, rather than pulling a cached and possibly
	 * stale link state from the driver.
	 */
	if (!netif_carrier_ok(netdev))
		mac->get_link_status = 1;
204 205

	return e1000_has_link(adapter);
206 207
}

208 209 210 211 212 213 214
static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
{
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

	/* Fiber NICs only allow 1000 gbps Full duplex */
215
	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
216
		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
217
		e_err("Unsupported Speed/Duplex configuration\n");
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
		return -EINVAL;
	}

	switch (spddplx) {
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
240
		e_err("Unsupported Speed/Duplex configuration\n");
241 242 243 244 245 246 247 248 249 250 251
		return -EINVAL;
	}
	return 0;
}

static int e1000_set_settings(struct net_device *netdev,
			      struct ethtool_cmd *ecmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

252 253 254 255
	/*
	 * When SoL/IDER sessions are active, autoneg/speed/duplex
	 * cannot be changed
	 */
256
	if (e1000_check_reset_block(hw)) {
257 258
		e_err("Cannot change link characteristics when SoL/IDER is "
		      "active.\n");
259 260 261 262 263 264 265 266
		return -EINVAL;
	}

	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
		msleep(1);

	if (ecmd->autoneg == AUTONEG_ENABLE) {
		hw->mac.autoneg = 1;
267
		if (hw->phy.media_type == e1000_media_type_fiber)
268 269 270 271 272 273 274 275
			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
						     ADVERTISED_FIBRE |
						     ADVERTISED_Autoneg;
		else
			hw->phy.autoneg_advertised = ecmd->advertising |
						     ADVERTISED_TP |
						     ADVERTISED_Autoneg;
		ecmd->advertising = hw->phy.autoneg_advertised;
276
		if (adapter->fc_autoneg)
277
			hw->fc.requested_mode = e1000_fc_default;
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	} else {
		if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
			clear_bit(__E1000_RESETTING, &adapter->state);
			return -EINVAL;
		}
	}

	/* reset the link */

	if (netif_running(adapter->netdev)) {
		e1000e_down(adapter);
		e1000e_up(adapter);
	} else {
		e1000e_reset(adapter);
	}

	clear_bit(__E1000_RESETTING, &adapter->state);
	return 0;
}

static void e1000_get_pauseparam(struct net_device *netdev,
				 struct ethtool_pauseparam *pause)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	pause->autoneg =
		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);

307
	if (hw->fc.current_mode == e1000_fc_rx_pause) {
308
		pause->rx_pause = 1;
309
	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
310
		pause->tx_pause = 1;
311
	} else if (hw->fc.current_mode == e1000_fc_full) {
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
		pause->rx_pause = 1;
		pause->tx_pause = 1;
	}
}

static int e1000_set_pauseparam(struct net_device *netdev,
				struct ethtool_pauseparam *pause)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int retval = 0;

	adapter->fc_autoneg = pause->autoneg;

	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
		msleep(1);

	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
330
		hw->fc.requested_mode = e1000_fc_default;
331 332 333 334 335 336 337
		if (netif_running(adapter->netdev)) {
			e1000e_down(adapter);
			e1000e_up(adapter);
		} else {
			e1000e_reset(adapter);
		}
	} else {
338 339 340 341 342 343 344 345 346 347 348
		if (pause->rx_pause && pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_full;
		else if (pause->rx_pause && !pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_rx_pause;
		else if (!pause->rx_pause && pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_tx_pause;
		else if (!pause->rx_pause && !pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_none;

		hw->fc.current_mode = hw->fc.requested_mode;

349 350 351 352 353 354 355 356 357
		if (hw->phy.media_type == e1000_media_type_fiber) {
			retval = hw->mac.ops.setup_link(hw);
			/* implicit goto out */
		} else {
			retval = e1000e_force_mac_fc(hw);
			if (retval)
				goto out;
			e1000e_set_fc_watermarks(hw);
		}
358 359
	}

360
out:
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
	clear_bit(__E1000_RESETTING, &adapter->state);
	return retval;
}

static u32 e1000_get_rx_csum(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	return (adapter->flags & FLAG_RX_CSUM_ENABLED);
}

static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (data)
		adapter->flags |= FLAG_RX_CSUM_ENABLED;
	else
		adapter->flags &= ~FLAG_RX_CSUM_ENABLED;

	if (netif_running(netdev))
		e1000e_reinit_locked(adapter);
	else
		e1000e_reset(adapter);
	return 0;
}

static u32 e1000_get_tx_csum(struct net_device *netdev)
{
	return ((netdev->features & NETIF_F_HW_CSUM) != 0);
}

static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
{
	if (data)
		netdev->features |= NETIF_F_HW_CSUM;
	else
		netdev->features &= ~NETIF_F_HW_CSUM;

	return 0;
}

static int e1000_set_tso(struct net_device *netdev, u32 data)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (data) {
		netdev->features |= NETIF_F_TSO;
		netdev->features |= NETIF_F_TSO6;
	} else {
		netdev->features &= ~NETIF_F_TSO;
		netdev->features &= ~NETIF_F_TSO6;
	}

414
	e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
	adapter->flags |= FLAG_TSO_FORCE;
	return 0;
}

static u32 e1000_get_msglevel(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	return adapter->msg_enable;
}

static void e1000_set_msglevel(struct net_device *netdev, u32 data)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	adapter->msg_enable = data;
}

static int e1000_get_regs_len(struct net_device *netdev)
{
#define E1000_REGS_LEN 32 /* overestimate */
	return E1000_REGS_LEN * sizeof(u32);
}

static void e1000_get_regs(struct net_device *netdev,
			   struct ethtool_regs *regs, void *p)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 *regs_buff = p;
	u16 phy_data;
	u8 revision_id;

	memset(p, 0, E1000_REGS_LEN * sizeof(u32));

	pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);

	regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;

	regs_buff[0]  = er32(CTRL);
	regs_buff[1]  = er32(STATUS);

	regs_buff[2]  = er32(RCTL);
	regs_buff[3]  = er32(RDLEN);
	regs_buff[4]  = er32(RDH);
	regs_buff[5]  = er32(RDT);
	regs_buff[6]  = er32(RDTR);

	regs_buff[7]  = er32(TCTL);
	regs_buff[8]  = er32(TDLEN);
	regs_buff[9]  = er32(TDH);
	regs_buff[10] = er32(TDT);
	regs_buff[11] = er32(TIDV);

	regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
468 469 470 471

	/* ethtool doesn't use anything past this point, so all this
	 * code is likely legacy junk for apps that may or may not
	 * exist */
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	if (hw->phy.type == e1000_phy_m88) {
		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
		regs_buff[13] = (u32)phy_data; /* cable length */
		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
		regs_buff[18] = regs_buff[13]; /* cable polarity */
		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
		regs_buff[20] = regs_buff[17]; /* polarity correction */
		/* phy receive errors */
		regs_buff[22] = adapter->phy_stats.receive_errors;
		regs_buff[23] = regs_buff[13]; /* mdix mode */
	}
487
	regs_buff[21] = 0; /* was idle_errors */
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
	e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
}

static int e1000_get_eeprom_len(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	return adapter->hw.nvm.word_size * 2;
}

static int e1000_get_eeprom(struct net_device *netdev,
			    struct ethtool_eeprom *eeprom, u8 *bytes)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u16 *eeprom_buff;
	int first_word;
	int last_word;
	int ret_val = 0;
	u16 i;

	if (eeprom->len == 0)
		return -EINVAL;

	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);

	first_word = eeprom->offset >> 1;
	last_word = (eeprom->offset + eeprom->len - 1) >> 1;

	eeprom_buff = kmalloc(sizeof(u16) *
			(last_word - first_word + 1), GFP_KERNEL);
	if (!eeprom_buff)
		return -ENOMEM;

	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
		ret_val = e1000_read_nvm(hw, first_word,
					 last_word - first_word + 1,
					 eeprom_buff);
	} else {
		for (i = 0; i < last_word - first_word + 1; i++) {
			ret_val = e1000_read_nvm(hw, first_word + i, 1,
						      &eeprom_buff[i]);
531
			if (ret_val)
532 533 534 535
				break;
		}
	}

536 537 538 539 540 541 542 543
	if (ret_val) {
		/* a read error occurred, throw away the result */
		memset(eeprom_buff, 0xff, sizeof(eeprom_buff));
	} else {
		/* Device's eeprom is always little-endian, word addressable */
		for (i = 0; i < last_word - first_word + 1; i++)
			le16_to_cpus(&eeprom_buff[i]);
	}
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569

	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
	kfree(eeprom_buff);

	return ret_val;
}

static int e1000_set_eeprom(struct net_device *netdev,
			    struct ethtool_eeprom *eeprom, u8 *bytes)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u16 *eeprom_buff;
	void *ptr;
	int max_len;
	int first_word;
	int last_word;
	int ret_val = 0;
	u16 i;

	if (eeprom->len == 0)
		return -EOPNOTSUPP;

	if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
		return -EFAULT;

570 571 572
	if (adapter->flags & FLAG_READ_ONLY_NVM)
		return -EINVAL;

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
	max_len = hw->nvm.word_size * 2;

	first_word = eeprom->offset >> 1;
	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
	if (!eeprom_buff)
		return -ENOMEM;

	ptr = (void *)eeprom_buff;

	if (eeprom->offset & 1) {
		/* need read/modify/write of first changed EEPROM word */
		/* only the second byte of the word is being modified */
		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
		ptr++;
	}
	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
		/* need read/modify/write of last changed EEPROM word */
		/* only the first byte of the word is being modified */
		ret_val = e1000_read_nvm(hw, last_word, 1,
				  &eeprom_buff[last_word - first_word]);

595 596 597
	if (ret_val)
		goto out;

598 599 600 601 602 603 604 605 606 607 608 609
	/* Device's eeprom is always little-endian, word addressable */
	for (i = 0; i < last_word - first_word + 1; i++)
		le16_to_cpus(&eeprom_buff[i]);

	memcpy(ptr, bytes, eeprom->len);

	for (i = 0; i < last_word - first_word + 1; i++)
		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);

	ret_val = e1000_write_nvm(hw, first_word,
				  last_word - first_word + 1, eeprom_buff);

610 611 612
	if (ret_val)
		goto out;

613 614
	/*
	 * Update the checksum over the first part of the EEPROM if needed
615
	 * and flush shadow RAM for applicable controllers
616
	 */
617
	if ((first_word <= NVM_CHECKSUM_REG) ||
618 619 620
	    (hw->mac.type == e1000_82583) ||
	    (hw->mac.type == e1000_82574) ||
	    (hw->mac.type == e1000_82573))
621
		ret_val = e1000e_update_nvm_checksum(hw);
622

623
out:
624 625 626 627 628 629 630 631 632 633 634 635 636
	kfree(eeprom_buff);
	return ret_val;
}

static void e1000_get_drvinfo(struct net_device *netdev,
			      struct ethtool_drvinfo *drvinfo)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	char firmware_version[32];

	strncpy(drvinfo->driver,  e1000e_driver_name, 32);
	strncpy(drvinfo->version, e1000e_driver_version, 32);

637 638 639 640
	/*
	 * EEPROM image version # is reported as firmware version # for
	 * PCI-E controllers
	 */
641
	sprintf(firmware_version, "%d.%d-%d",
642 643 644
		(adapter->eeprom_vers & 0xF000) >> 12,
		(adapter->eeprom_vers & 0x0FF0) >> 4,
		(adapter->eeprom_vers & 0x000F));
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692

	strncpy(drvinfo->fw_version, firmware_version, 32);
	strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
	drvinfo->regdump_len = e1000_get_regs_len(netdev);
	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
}

static void e1000_get_ringparam(struct net_device *netdev,
				struct ethtool_ringparam *ring)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_ring *rx_ring = adapter->rx_ring;

	ring->rx_max_pending = E1000_MAX_RXD;
	ring->tx_max_pending = E1000_MAX_TXD;
	ring->rx_mini_max_pending = 0;
	ring->rx_jumbo_max_pending = 0;
	ring->rx_pending = rx_ring->count;
	ring->tx_pending = tx_ring->count;
	ring->rx_mini_pending = 0;
	ring->rx_jumbo_pending = 0;
}

static int e1000_set_ringparam(struct net_device *netdev,
			       struct ethtool_ringparam *ring)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring, *tx_old;
	struct e1000_ring *rx_ring, *rx_old;
	int err;

	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
		return -EINVAL;

	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
		msleep(1);

	if (netif_running(adapter->netdev))
		e1000e_down(adapter);

	tx_old = adapter->tx_ring;
	rx_old = adapter->rx_ring;

	err = -ENOMEM;
	tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
	if (!tx_ring)
		goto err_alloc_tx;
693 694 695 696 697 698
	/*
	 * use a memcpy to save any previously configured
	 * items like napi structs from having to be
	 * reinitialized
	 */
	memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
699 700 701 702

	rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
	if (!rx_ring)
		goto err_alloc_rx;
703
	memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724

	adapter->tx_ring = tx_ring;
	adapter->rx_ring = rx_ring;

	rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
	rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
	rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);

	tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
	tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
	tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);

	if (netif_running(adapter->netdev)) {
		/* Try to get new resources before deleting old */
		err = e1000e_setup_rx_resources(adapter);
		if (err)
			goto err_setup_rx;
		err = e1000e_setup_tx_resources(adapter);
		if (err)
			goto err_setup_tx;

725 726 727 728
		/*
		 * restore the old in order to free it,
		 * then add in the new
		 */
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
		adapter->rx_ring = rx_old;
		adapter->tx_ring = tx_old;
		e1000e_free_rx_resources(adapter);
		e1000e_free_tx_resources(adapter);
		kfree(tx_old);
		kfree(rx_old);
		adapter->rx_ring = rx_ring;
		adapter->tx_ring = tx_ring;
		err = e1000e_up(adapter);
		if (err)
			goto err_setup;
	}

	clear_bit(__E1000_RESETTING, &adapter->state);
	return 0;
err_setup_tx:
	e1000e_free_rx_resources(adapter);
err_setup_rx:
	adapter->rx_ring = rx_old;
	adapter->tx_ring = tx_old;
	kfree(rx_ring);
err_alloc_rx:
	kfree(tx_ring);
err_alloc_tx:
	e1000e_up(adapter);
err_setup:
	clear_bit(__E1000_RESETTING, &adapter->state);
	return err;
}

759 760
static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
			     int reg, int offset, u32 mask, u32 write)
761
{
762
	u32 pat, val;
763 764
	static const u32 test[] =
		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
765
	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
766
		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
767 768 769
				      (test[pat] & write));
		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
		if (val != (test[pat] & write & mask)) {
770 771 772
			e_err("pattern test reg %04X failed: got 0x%08X "
			      "expected 0x%08X\n", reg + offset, val,
			      (test[pat] & write & mask));
773
			*data = reg;
774
			return 1;
775 776
		}
	}
777
	return 0;
778 779
}

780 781 782
static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
			      int reg, u32 mask, u32 write)
{
783
	u32 val;
784
	__ew32(&adapter->hw, reg, write & mask);
785 786
	val = __er32(&adapter->hw, reg);
	if ((write & mask) != (val & mask)) {
787 788
		e_err("set/check reg %04X test failed: got 0x%08X "
		      "expected 0x%08X\n", reg, (val & mask), (write & mask));
789
		*data = reg;
790
		return 1;
791
	}
792
	return 0;
793
}
794 795 796 797
#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
	do {                                                                   \
		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
			return 1;                                              \
798
	} while (0)
799 800
#define REG_PATTERN_TEST(reg, mask, write)                                     \
	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
801

802 803 804 805
#define REG_SET_AND_CHECK(reg, mask, write)                                    \
	do {                                                                   \
		if (reg_set_and_check(adapter, data, reg, mask, write))        \
			return 1;                                              \
806 807
	} while (0)

808 809 810 811 812 813 814 815 816
static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_mac_info *mac = &adapter->hw.mac;
	u32 value;
	u32 before;
	u32 after;
	u32 i;
	u32 toggle;
817
	u32 mask;
818

819 820
	/*
	 * The status register is Read Only, so a write should fail.
821 822 823 824 825 826 827 828 829
	 * Some bits that get toggled are ignored.
	 */
	switch (mac->type) {
	/* there are several bits on newer hardware that are r/w */
	case e1000_82571:
	case e1000_82572:
	case e1000_80003es2lan:
		toggle = 0x7FFFF3FF;
		break;
830
        default:
831 832 833 834 835 836 837 838 839
		toggle = 0x7FFFF033;
		break;
	}

	before = er32(STATUS);
	value = (er32(STATUS) & toggle);
	ew32(STATUS, toggle);
	after = er32(STATUS) & toggle;
	if (value != after) {
840 841
		e_err("failed STATUS register test got: 0x%08X expected: "
		      "0x%08X\n", after, value);
842 843 844 845 846 847
		*data = 1;
		return 1;
	}
	/* restore previous status */
	ew32(STATUS, before);

848
	if (!(adapter->flags & FLAG_IS_ICH)) {
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
	}

	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
	REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
	REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
	REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
	REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
	REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
	REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);

	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);

868
	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
869 870 871
	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);

A
Auke Kok 已提交
872 873
	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
	REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
874
	if (!(adapter->flags & FLAG_IS_ICH))
A
Auke Kok 已提交
875 876 877
		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
	REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
878 879 880 881 882 883 884 885 886
	mask = 0x8003FFFF;
	switch (mac->type) {
	case e1000_ich10lan:
	case e1000_pchlan:
		mask |= (1 << 18);
		break;
	default:
		break;
	}
A
Auke Kok 已提交
887 888
	for (i = 0; i < mac->rar_entry_count; i++)
		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
889
		                       mask, 0xFFFFFFFF);
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908

	for (i = 0; i < mac->mta_reg_count; i++)
		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);

	*data = 0;
	return 0;
}

static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
{
	u16 temp;
	u16 checksum = 0;
	u16 i;

	*data = 0;
	/* Read and add up the contents of the EEPROM */
	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
			*data = 1;
909
			return *data;
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
		}
		checksum += temp;
	}

	/* If Checksum is not Correct return error else test passed */
	if ((checksum != (u16) NVM_SUM) && !(*data))
		*data = 2;

	return *data;
}

static irqreturn_t e1000_test_intr(int irq, void *data)
{
	struct net_device *netdev = (struct net_device *) data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	adapter->test_icr |= er32(ICR);

	return IRQ_HANDLED;
}

static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 mask;
	u32 shared_int = 1;
	u32 irq = adapter->pdev->irq;
	int i;
940 941
	int ret_val = 0;
	int int_mode = E1000E_INT_MODE_LEGACY;
942 943 944

	*data = 0;

945 946 947 948 949 950 951
	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
		int_mode = adapter->int_mode;
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
		e1000e_set_interrupt_capability(adapter);
	}
952
	/* Hook up test interrupt handler just for this test */
953
	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
954 955
			 netdev)) {
		shared_int = 0;
956
	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
957 958
		 netdev->name, netdev)) {
		*data = 1;
959 960
		ret_val = -1;
		goto out;
961
	}
962
	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
963 964 965 966 967 968 969 970 971 972

	/* Disable all the interrupts */
	ew32(IMC, 0xFFFFFFFF);
	msleep(10);

	/* Test each interrupt */
	for (i = 0; i < 10; i++) {
		/* Interrupt to test */
		mask = 1 << i;

973 974 975 976 977 978 979 980 981 982 983 984 985 986
		if (adapter->flags & FLAG_IS_ICH) {
			switch (mask) {
			case E1000_ICR_RXSEQ:
				continue;
			case 0x00000100:
				if (adapter->hw.mac.type == e1000_ich8lan ||
				    adapter->hw.mac.type == e1000_ich9lan)
					continue;
				break;
			default:
				break;
			}
		}

987
		if (!shared_int) {
988 989
			/*
			 * Disable the interrupt to be reported in
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
			 * the cause register and then force the same
			 * interrupt and see if one gets posted.  If
			 * an interrupt was posted to the bus, the
			 * test failed.
			 */
			adapter->test_icr = 0;
			ew32(IMC, mask);
			ew32(ICS, mask);
			msleep(10);

			if (adapter->test_icr & mask) {
				*data = 3;
				break;
			}
		}

1006 1007
		/*
		 * Enable the interrupt to be reported in
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
		 * the cause register and then force the same
		 * interrupt and see if one gets posted.  If
		 * an interrupt was not posted to the bus, the
		 * test failed.
		 */
		adapter->test_icr = 0;
		ew32(IMS, mask);
		ew32(ICS, mask);
		msleep(10);

		if (!(adapter->test_icr & mask)) {
			*data = 4;
			break;
		}

		if (!shared_int) {
1024 1025
			/*
			 * Disable the other interrupts to be reported in
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
			 * the cause register and then force the other
			 * interrupts and see if any get posted.  If
			 * an interrupt was posted to the bus, the
			 * test failed.
			 */
			adapter->test_icr = 0;
			ew32(IMC, ~mask & 0x00007FFF);
			ew32(ICS, ~mask & 0x00007FFF);
			msleep(10);

			if (adapter->test_icr) {
				*data = 5;
				break;
			}
		}
	}

	/* Disable all the interrupts */
	ew32(IMC, 0xFFFFFFFF);
	msleep(10);

	/* Unhook test interrupt handler */
	free_irq(irq, netdev);

1050 1051 1052 1053 1054 1055 1056 1057
out:
	if (int_mode == E1000E_INT_MODE_MSIX) {
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = int_mode;
		e1000e_set_interrupt_capability(adapter);
	}

	return ret_val;
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
}

static void e1000_free_desc_rings(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
	struct pci_dev *pdev = adapter->pdev;
	int i;

	if (tx_ring->desc && tx_ring->buffer_info) {
		for (i = 0; i < tx_ring->count; i++) {
			if (tx_ring->buffer_info[i].dma)
				pci_unmap_single(pdev,
					tx_ring->buffer_info[i].dma,
					tx_ring->buffer_info[i].length,
					PCI_DMA_TODEVICE);
			if (tx_ring->buffer_info[i].skb)
				dev_kfree_skb(tx_ring->buffer_info[i].skb);
		}
	}

	if (rx_ring->desc && rx_ring->buffer_info) {
		for (i = 0; i < rx_ring->count; i++) {
			if (rx_ring->buffer_info[i].dma)
				pci_unmap_single(pdev,
					rx_ring->buffer_info[i].dma,
					2048, PCI_DMA_FROMDEVICE);
			if (rx_ring->buffer_info[i].skb)
				dev_kfree_skb(rx_ring->buffer_info[i].skb);
		}
	}

	if (tx_ring->desc) {
		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
				  tx_ring->dma);
		tx_ring->desc = NULL;
	}
	if (rx_ring->desc) {
		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
				  rx_ring->dma);
		rx_ring->desc = NULL;
	}

	kfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;
	kfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;
}

static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;
	int i;
	int ret_val;

	/* Setup Tx descriptor ring and Tx buffers */

	if (!tx_ring->count)
		tx_ring->count = E1000_DEFAULT_TXD;

1122 1123 1124 1125
	tx_ring->buffer_info = kcalloc(tx_ring->count,
				       sizeof(struct e1000_buffer),
				       GFP_KERNEL);
	if (!(tx_ring->buffer_info)) {
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
		ret_val = 1;
		goto err_nomem;
	}

	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		ret_val = 2;
		goto err_nomem;
	}
	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

1141
	ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1142
	ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1143
	ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1144 1145
	ew32(TDH, 0);
	ew32(TDT, 0);
1146 1147 1148
	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

	for (i = 0; i < tx_ring->count; i++) {
		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
		struct sk_buff *skb;
		unsigned int skb_size = 1024;

		skb = alloc_skb(skb_size, GFP_KERNEL);
		if (!skb) {
			ret_val = 3;
			goto err_nomem;
		}
		skb_put(skb, skb_size);
		tx_ring->buffer_info[i].skb = skb;
		tx_ring->buffer_info[i].length = skb->len;
		tx_ring->buffer_info[i].dma =
			pci_map_single(pdev, skb->data, skb->len,
				       PCI_DMA_TODEVICE);
1166
		if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) {
1167 1168 1169
			ret_val = 4;
			goto err_nomem;
		}
1170
		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1171 1172 1173
		tx_desc->lower.data = cpu_to_le32(skb->len);
		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
						   E1000_TXD_CMD_IFCS |
1174
						   E1000_TXD_CMD_RS);
1175 1176 1177 1178 1179 1180 1181 1182
		tx_desc->upper.data = 0;
	}

	/* Setup Rx descriptor ring and Rx buffers */

	if (!rx_ring->count)
		rx_ring->count = E1000_DEFAULT_RXD;

1183 1184 1185 1186
	rx_ring->buffer_info = kcalloc(rx_ring->count,
				       sizeof(struct e1000_buffer),
				       GFP_KERNEL);
	if (!(rx_ring->buffer_info)) {
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
		ret_val = 5;
		goto err_nomem;
	}

	rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);
	if (!rx_ring->desc) {
		ret_val = 6;
		goto err_nomem;
	}
	rx_ring->next_to_use = 0;
	rx_ring->next_to_clean = 0;

	rctl = er32(RCTL);
	ew32(RCTL, rctl & ~E1000_RCTL_EN);
	ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
	ew32(RDBAH, ((u64) rx_ring->dma >> 32));
	ew32(RDLEN, rx_ring->size);
	ew32(RDH, 0);
	ew32(RDT, 0);
	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1209 1210
		E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
		E1000_RCTL_SBP | E1000_RCTL_SECRC |
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
	ew32(RCTL, rctl);

	for (i = 0; i < rx_ring->count; i++) {
		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
		struct sk_buff *skb;

		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
		if (!skb) {
			ret_val = 7;
			goto err_nomem;
		}
		skb_reserve(skb, NET_IP_ALIGN);
		rx_ring->buffer_info[i].skb = skb;
		rx_ring->buffer_info[i].dma =
			pci_map_single(pdev, skb->data, 2048,
				       PCI_DMA_FROMDEVICE);
1229
		if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) {
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
			ret_val = 8;
			goto err_nomem;
		}
		rx_desc->buffer_addr =
			cpu_to_le64(rx_ring->buffer_info[i].dma);
		memset(skb->data, 0x00, skb->len);
	}

	return 0;

err_nomem:
	e1000_free_desc_rings(adapter);
	return ret_val;
}

static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
{
	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
	e1e_wphy(&adapter->hw, 29, 0x001F);
	e1e_wphy(&adapter->hw, 30, 0x8FFC);
	e1e_wphy(&adapter->hw, 29, 0x001A);
	e1e_wphy(&adapter->hw, 30, 0x8FF0);
}

static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_reg = 0;
	u32 stat_reg = 0;
1259
	u16 phy_reg = 0;
1260

1261
	hw->mac.autoneg = 0;
1262

1263 1264 1265 1266
	/* Workaround: K1 must be disabled for stable 1Gbps operation */
	if (hw->mac.type == e1000_pchlan)
		e1000_configure_k1_ich8lan(hw, false);

1267
	if (hw->phy.type == e1000_phy_m88) {
1268 1269 1270 1271 1272 1273
		/* Auto-MDI/MDIX Off */
		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
		/* reset to update Auto-MDI/MDIX */
		e1e_wphy(hw, PHY_CONTROL, 0x9140);
		/* autoneg off */
		e1e_wphy(hw, PHY_CONTROL, 0x8140);
1274
	} else if (hw->phy.type == e1000_phy_gg82563)
1275 1276 1277 1278
		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);

	ctrl_reg = er32(CTRL);

1279 1280
	switch (hw->phy.type) {
	case e1000_phy_ife:
1281 1282 1283 1284 1285 1286 1287 1288 1289
		/* force 100, set loopback */
		e1e_wphy(hw, PHY_CONTROL, 0x6100);

		/* Now set up the MAC to the same speed/duplex as the PHY. */
		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1290
		break;
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	case e1000_phy_bm:
		/* Set Default MAC Interface speed to 1GB */
		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
		phy_reg &= ~0x0007;
		phy_reg |= 0x006;
		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
		/* Assert SW reset for above settings to take effect */
		e1000e_commit_phy(hw);
		mdelay(1);
		/* Force Full Duplex */
		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
		/* Set Link Up (in force link) */
		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
		/* Force Link */
		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
		/* Set Early Link Enable */
		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
		/* fall through */
1313
	default:
1314 1315
		/* force 1000, set loopback */
		e1e_wphy(hw, PHY_CONTROL, 0x4140);
1316
		mdelay(250);
1317 1318 1319 1320 1321 1322 1323 1324

		/* Now set up the MAC to the same speed/duplex as the PHY. */
		ctrl_reg = er32(CTRL);
		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
			     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1325

1326
		if (adapter->flags & FLAG_IS_ICH)
1327
			ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1328 1329
	}

1330 1331
	if (hw->phy.media_type == e1000_media_type_copper &&
	    hw->phy.type == e1000_phy_m88) {
1332 1333
		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
	} else {
1334 1335 1336 1337
		/*
		 * Set the ILOS bit on the fiber Nic if half duplex link is
		 * detected.
		 */
1338 1339 1340 1341 1342 1343 1344
		stat_reg = er32(STATUS);
		if ((stat_reg & E1000_STATUS_FD) == 0)
			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
	}

	ew32(CTRL, ctrl_reg);

1345 1346
	/*
	 * Disable the receiver on the PHY so when a cable is plugged in, the
1347 1348
	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
	 */
1349
	if (hw->phy.type == e1000_phy_m88)
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
		e1000_phy_disable_receiver(adapter);

	udelay(500);

	return 0;
}

static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl = er32(CTRL);
	int link = 0;

	/* special requirements for 82571/82572 fiber adapters */

1365 1366 1367 1368
	/*
	 * jump through hoops to make sure link is up because serdes
	 * link is hardwired up
	 */
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	ctrl |= E1000_CTRL_SLU;
	ew32(CTRL, ctrl);

	/* disable autoneg */
	ctrl = er32(TXCW);
	ctrl &= ~(1 << 31);
	ew32(TXCW, ctrl);

	link = (er32(STATUS) & E1000_STATUS_LU);

	if (!link) {
		/* set invert loss of signal */
		ctrl = er32(CTRL);
		ctrl |= E1000_CTRL_ILOS;
		ew32(CTRL, ctrl);
	}

1386 1387 1388 1389
	/*
	 * special write to serdes control register to enable SerDes analog
	 * loopback
	 */
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
#define E1000_SERDES_LB_ON 0x410
	ew32(SCTL, E1000_SERDES_LB_ON);
	msleep(10);

	return 0;
}

/* only call this for fiber/serdes connections to es2lan */
static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrlext = er32(CTRL_EXT);
	u32 ctrl = er32(CTRL);

1404 1405 1406 1407
	/*
	 * save CTRL_EXT to restore later, reuse an empty variable (unused
	 * on mac_type 80003es2lan)
	 */
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	adapter->tx_fifo_head = ctrlext;

	/* clear the serdes mode bits, putting the device into mac loopback */
	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
	ew32(CTRL_EXT, ctrlext);

	/* force speed to 1000/FD, link up */
	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
	ew32(CTRL, ctrl);

	/* set mac loopback */
	ctrl = er32(RCTL);
	ctrl |= E1000_RCTL_LBM_MAC;
	ew32(RCTL, ctrl);

	/* set testing mode parameters (no need to reset later) */
#define KMRNCTRLSTA_OPMODE (0x1F << 16)
#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
	ew32(KMRNCTRLSTA,
1429
	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1430 1431 1432 1433 1434 1435 1436 1437 1438

	return 0;
}

static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

1439 1440
	if (hw->phy.media_type == e1000_media_type_fiber ||
	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
		switch (hw->mac.type) {
		case e1000_80003es2lan:
			return e1000_set_es2lan_mac_loopback(adapter);
			break;
		case e1000_82571:
		case e1000_82572:
			return e1000_set_82571_fiber_loopback(adapter);
			break;
		default:
			rctl = er32(RCTL);
			rctl |= E1000_RCTL_LBM_TCVR;
			ew32(RCTL, rctl);
			return 0;
		}
1455
	} else if (hw->phy.media_type == e1000_media_type_copper) {
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
		return e1000_integrated_phy_loopback(adapter);
	}

	return 7;
}

static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;
	u16 phy_reg;

	rctl = er32(RCTL);
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
	ew32(RCTL, rctl);

	switch (hw->mac.type) {
	case e1000_80003es2lan:
1474 1475
		if (hw->phy.media_type == e1000_media_type_fiber ||
		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1476
			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1477
			ew32(CTRL_EXT, adapter->tx_fifo_head);
1478 1479 1480 1481 1482
			adapter->tx_fifo_head = 0;
		}
		/* fall through */
	case e1000_82571:
	case e1000_82572:
1483 1484
		if (hw->phy.media_type == e1000_media_type_fiber ||
		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
#define E1000_SERDES_LB_OFF 0x400
			ew32(SCTL, E1000_SERDES_LB_OFF);
			msleep(10);
			break;
		}
		/* Fall Through */
	default:
		hw->mac.autoneg = 1;
		if (hw->phy.type == e1000_phy_gg82563)
			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
		e1e_rphy(hw, PHY_CONTROL, &phy_reg);
		if (phy_reg & MII_CR_LOOPBACK) {
			phy_reg &= ~MII_CR_LOOPBACK;
			e1e_wphy(hw, PHY_CONTROL, phy_reg);
			e1000e_commit_phy(hw);
		}
		break;
	}
}

static void e1000_create_lbtest_frame(struct sk_buff *skb,
				      unsigned int frame_size)
{
	memset(skb->data, 0xFF, frame_size);
	frame_size &= ~1;
	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
}

static int e1000_check_lbtest_frame(struct sk_buff *skb,
				    unsigned int frame_size)
{
	frame_size &= ~1;
	if (*(skb->data + 3) == 0xFF)
		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
		   (*(skb->data + frame_size / 2 + 12) == 0xAF))
			return 0;
	return 13;
}

static int e1000_run_loopback_test(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_hw *hw = &adapter->hw;
	int i, j, k, l;
	int lc;
	int good_cnt;
	int ret_val = 0;
	unsigned long time;

	ew32(RDT, rx_ring->count - 1);

1540 1541
	/*
	 * Calculate the loop count based on the largest descriptor ring
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	 * The idea is to wrap the largest ring a number of times using 64
	 * send/receive pairs during each loop
	 */

	if (rx_ring->count <= tx_ring->count)
		lc = ((tx_ring->count / 64) * 2) + 1;
	else
		lc = ((rx_ring->count / 64) * 2) + 1;

	k = 0;
	l = 0;
	for (j = 0; j <= lc; j++) { /* loop count loop */
		for (i = 0; i < 64; i++) { /* send the packets */
1555 1556
			e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
						  1024);
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
			pci_dma_sync_single_for_device(pdev,
					tx_ring->buffer_info[k].dma,
					tx_ring->buffer_info[k].length,
					PCI_DMA_TODEVICE);
			k++;
			if (k == tx_ring->count)
				k = 0;
		}
		ew32(TDT, k);
		msleep(200);
		time = jiffies; /* set the start time for the receive */
		good_cnt = 0;
		do { /* receive the sent packets */
			pci_dma_sync_single_for_cpu(pdev,
					rx_ring->buffer_info[l].dma, 2048,
					PCI_DMA_FROMDEVICE);

			ret_val = e1000_check_lbtest_frame(
					rx_ring->buffer_info[l].skb, 1024);
			if (!ret_val)
				good_cnt++;
			l++;
			if (l == rx_ring->count)
				l = 0;
1581 1582
			/*
			 * time + 20 msecs (200 msecs on 2.4) is more than
1583 1584 1585 1586 1587 1588 1589 1590
			 * enough time to complete the receives, if it's
			 * exceeded, break and error off
			 */
		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
		if (good_cnt != 64) {
			ret_val = 13; /* ret_val is the same as mis-compare */
			break;
		}
1591
		if (jiffies >= (time + 20)) {
1592 1593 1594 1595 1596 1597 1598 1599 1600
			ret_val = 14; /* error code for time out error */
			break;
		}
	} /* end loop count loop */
	return ret_val;
}

static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
{
1601 1602 1603 1604
	/*
	 * PHY loopback cannot be performed if SoL/IDER
	 * sessions are active
	 */
1605
	if (e1000_check_reset_block(&adapter->hw)) {
1606
		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1607 1608 1609 1610 1611
		*data = 0;
		goto out;
	}

	*data = e1000_setup_desc_rings(adapter);
A
Adrian Bunk 已提交
1612
	if (*data)
1613 1614 1615
		goto out;

	*data = e1000_setup_loopback_test(adapter);
A
Adrian Bunk 已提交
1616
	if (*data)
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
		goto err_loopback;

	*data = e1000_run_loopback_test(adapter);
	e1000_loopback_cleanup(adapter);

err_loopback:
	e1000_free_desc_rings(adapter);
out:
	return *data;
}

static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
{
	struct e1000_hw *hw = &adapter->hw;

	*data = 0;
1633
	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1634
		int i = 0;
1635
		hw->mac.serdes_has_link = false;
1636

1637 1638 1639 1640
		/*
		 * On some blade server designs, link establishment
		 * could take as long as 2-3 minutes
		 */
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
		do {
			hw->mac.ops.check_for_link(hw);
			if (hw->mac.serdes_has_link)
				return *data;
			msleep(20);
		} while (i++ < 3750);

		*data = 1;
	} else {
		hw->mac.ops.check_for_link(hw);
		if (hw->mac.autoneg)
			msleep(4000);

		if (!(er32(STATUS) &
		      E1000_STATUS_LU))
			*data = 1;
	}
	return *data;
}

1661
static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1662
{
1663 1664 1665 1666 1667 1668 1669 1670
	switch (sset) {
	case ETH_SS_TEST:
		return E1000_TEST_LEN;
	case ETH_SS_STATS:
		return E1000_STATS_LEN;
	default:
		return -EOPNOTSUPP;
	}
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
}

static void e1000_diag_test(struct net_device *netdev,
			    struct ethtool_test *eth_test, u64 *data)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	u16 autoneg_advertised;
	u8 forced_speed_duplex;
	u8 autoneg;
	bool if_running = netif_running(netdev);

	set_bit(__E1000_TESTING, &adapter->state);
	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
		/* Offline tests */

		/* save speed, duplex, autoneg settings */
		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
		autoneg = adapter->hw.mac.autoneg;

1691
		e_info("offline testing starting\n");
1692

1693 1694 1695 1696
		/*
		 * Link test performed before hardware reset so autoneg doesn't
		 * interfere with test result
		 */
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
		if (e1000_link_test(adapter, &data[4]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		if (if_running)
			/* indicate we're in test mode */
			dev_close(netdev);
		else
			e1000e_reset(adapter);

		if (e1000_reg_test(adapter, &data[0]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		e1000e_reset(adapter);
		if (e1000_eeprom_test(adapter, &data[1]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		e1000e_reset(adapter);
		if (e1000_intr_test(adapter, &data[2]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		e1000e_reset(adapter);
		/* make sure the phy is powered up */
		e1000e_power_up_phy(adapter);
		if (e1000_loopback_test(adapter, &data[3]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		/* restore speed, duplex, autoneg settings */
		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
		adapter->hw.mac.autoneg = autoneg;

		/* force this routine to wait until autoneg complete/timeout */
1729
		adapter->hw.phy.autoneg_wait_to_complete = 1;
1730
		e1000e_reset(adapter);
1731
		adapter->hw.phy.autoneg_wait_to_complete = 0;
1732 1733 1734 1735 1736

		clear_bit(__E1000_TESTING, &adapter->state);
		if (if_running)
			dev_open(netdev);
	} else {
1737
		e_info("online testing starting\n");
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
		/* Online tests */
		if (e1000_link_test(adapter, &data[4]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		/* Online tests aren't run; pass by default */
		data[0] = 0;
		data[1] = 0;
		data[2] = 0;
		data[3] = 0;

		clear_bit(__E1000_TESTING, &adapter->state);
	}
	msleep_interruptible(4 * 1000);
}

static void e1000_get_wol(struct net_device *netdev,
			  struct ethtool_wolinfo *wol)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	wol->supported = 0;
	wol->wolopts = 0;

1761 1762
	if (!(adapter->flags & FLAG_HAS_WOL) ||
	    !device_can_wakeup(&adapter->pdev->dev))
1763 1764 1765
		return;

	wol->supported = WAKE_UCAST | WAKE_MCAST |
1766 1767
	                 WAKE_BCAST | WAKE_MAGIC |
	                 WAKE_PHY | WAKE_ARP;
1768 1769 1770 1771 1772 1773

	/* apply any specific unsupported masks here */
	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
		wol->supported &= ~WAKE_UCAST;

		if (adapter->wol & E1000_WUFC_EX)
1774 1775
			e_err("Interface does not support directed (unicast) "
			      "frame wake-up packets\n");
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
	}

	if (adapter->wol & E1000_WUFC_EX)
		wol->wolopts |= WAKE_UCAST;
	if (adapter->wol & E1000_WUFC_MC)
		wol->wolopts |= WAKE_MCAST;
	if (adapter->wol & E1000_WUFC_BC)
		wol->wolopts |= WAKE_BCAST;
	if (adapter->wol & E1000_WUFC_MAG)
		wol->wolopts |= WAKE_MAGIC;
1786 1787 1788 1789
	if (adapter->wol & E1000_WUFC_LNKC)
		wol->wolopts |= WAKE_PHY;
	if (adapter->wol & E1000_WUFC_ARP)
		wol->wolopts |= WAKE_ARP;
1790 1791 1792 1793 1794 1795 1796
}

static int e1000_set_wol(struct net_device *netdev,
			 struct ethtool_wolinfo *wol)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

1797
	if (!(adapter->flags & FLAG_HAS_WOL) ||
1798 1799 1800 1801
	    !device_can_wakeup(&adapter->pdev->dev) ||
	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
	                      WAKE_MAGIC | WAKE_PHY | WAKE_ARP)))
		return -EOPNOTSUPP;
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

	/* these settings will always override what we currently have */
	adapter->wol = 0;

	if (wol->wolopts & WAKE_UCAST)
		adapter->wol |= E1000_WUFC_EX;
	if (wol->wolopts & WAKE_MCAST)
		adapter->wol |= E1000_WUFC_MC;
	if (wol->wolopts & WAKE_BCAST)
		adapter->wol |= E1000_WUFC_BC;
	if (wol->wolopts & WAKE_MAGIC)
		adapter->wol |= E1000_WUFC_MAG;
1814 1815 1816 1817
	if (wol->wolopts & WAKE_PHY)
		adapter->wol |= E1000_WUFC_LNKC;
	if (wol->wolopts & WAKE_ARP)
		adapter->wol |= E1000_WUFC_ARP;
1818

1819 1820
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);

1821 1822 1823 1824 1825 1826 1827 1828 1829
	return 0;
}

/* toggle LED 4 times per second = 2 "blinks" per second */
#define E1000_ID_INTERVAL	(HZ/4)

/* bit defines for adapter->led_status */
#define E1000_LED_ON		0

1830
static void e1000e_led_blink_task(struct work_struct *work)
1831
{
1832 1833
	struct e1000_adapter *adapter = container_of(work,
	                                struct e1000_adapter, led_blink_task);
1834 1835 1836 1837 1838

	if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
		adapter->hw.mac.ops.led_off(&adapter->hw);
	else
		adapter->hw.mac.ops.led_on(&adapter->hw);
1839 1840 1841 1842 1843
}

static void e1000_led_blink_callback(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1844

1845
	schedule_work(&adapter->led_blink_task);
1846 1847 1848 1849 1850 1851
	mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
}

static int e1000_phys_id(struct net_device *netdev, u32 data)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
1852
	struct e1000_hw *hw = &adapter->hw;
1853

S
Stephen Hemminger 已提交
1854 1855
	if (!data)
		data = INT_MAX;
1856

1857
	if ((hw->phy.type == e1000_phy_ife) ||
1858
	    (hw->mac.type == e1000_pchlan) ||
1859
	    (hw->mac.type == e1000_82583) ||
1860
	    (hw->mac.type == e1000_82574)) {
1861
		INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
1862 1863 1864 1865 1866 1867 1868 1869 1870
		if (!adapter->blink_timer.function) {
			init_timer(&adapter->blink_timer);
			adapter->blink_timer.function =
				e1000_led_blink_callback;
			adapter->blink_timer.data = (unsigned long) adapter;
		}
		mod_timer(&adapter->blink_timer, jiffies);
		msleep_interruptible(data * 1000);
		del_timer_sync(&adapter->blink_timer);
1871 1872
		if (hw->phy.type == e1000_phy_ife)
			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1873
	} else {
1874
		e1000e_blink_led(hw);
1875 1876 1877
		msleep_interruptible(data * 1000);
	}

1878
	hw->mac.ops.led_off(hw);
1879
	clear_bit(E1000_LED_ON, &adapter->led_status);
1880
	hw->mac.ops.cleanup_led(hw);
1881 1882 1883 1884

	return 0;
}

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
static int e1000_get_coalesce(struct net_device *netdev,
			      struct ethtool_coalesce *ec)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (adapter->itr_setting <= 3)
		ec->rx_coalesce_usecs = adapter->itr_setting;
	else
		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;

	return 0;
}

static int e1000_set_coalesce(struct net_device *netdev,
			      struct ethtool_coalesce *ec)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
	    ((ec->rx_coalesce_usecs > 3) &&
	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
	    (ec->rx_coalesce_usecs == 2))
		return -EINVAL;

	if (ec->rx_coalesce_usecs <= 3) {
		adapter->itr = 20000;
		adapter->itr_setting = ec->rx_coalesce_usecs;
	} else {
		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
		adapter->itr_setting = adapter->itr & ~3;
	}

	if (adapter->itr_setting != 0)
		ew32(ITR, 1000000000 / (adapter->itr * 256));
	else
		ew32(ITR, 0);

	return 0;
}

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
static int e1000_nway_reset(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	if (netif_running(netdev))
		e1000e_reinit_locked(adapter);
	return 0;
}

static void e1000_get_ethtool_stats(struct net_device *netdev,
				    struct ethtool_stats *stats,
				    u64 *data)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	int i;
1940
	char *p = NULL;
1941 1942 1943

	e1000e_update_stats(adapter);
	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
		switch (e1000_gstrings_stats[i].type) {
		case NETDEV_STATS:
			p = (char *) netdev +
					e1000_gstrings_stats[i].stat_offset;
			break;
		case E1000_STATS:
			p = (char *) adapter +
					e1000_gstrings_stats[i].stat_offset;
			break;
		}

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
	}
}

static void e1000_get_strings(struct net_device *netdev, u32 stringset,
			      u8 *data)
{
	u8 *p = data;
	int i;

	switch (stringset) {
	case ETH_SS_TEST:
1968
		memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
		break;
	case ETH_SS_STATS:
		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
			memcpy(p, e1000_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
		break;
	}
}

static const struct ethtool_ops e1000_ethtool_ops = {
	.get_settings		= e1000_get_settings,
	.set_settings		= e1000_set_settings,
	.get_drvinfo		= e1000_get_drvinfo,
	.get_regs_len		= e1000_get_regs_len,
	.get_regs		= e1000_get_regs,
	.get_wol		= e1000_get_wol,
	.set_wol		= e1000_set_wol,
	.get_msglevel		= e1000_get_msglevel,
	.set_msglevel		= e1000_set_msglevel,
	.nway_reset		= e1000_nway_reset,
1991
	.get_link		= e1000_get_link,
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	.get_eeprom_len		= e1000_get_eeprom_len,
	.get_eeprom		= e1000_get_eeprom,
	.set_eeprom		= e1000_set_eeprom,
	.get_ringparam		= e1000_get_ringparam,
	.set_ringparam		= e1000_set_ringparam,
	.get_pauseparam		= e1000_get_pauseparam,
	.set_pauseparam		= e1000_set_pauseparam,
	.get_rx_csum		= e1000_get_rx_csum,
	.set_rx_csum		= e1000_set_rx_csum,
	.get_tx_csum		= e1000_get_tx_csum,
	.set_tx_csum		= e1000_set_tx_csum,
	.get_sg			= ethtool_op_get_sg,
	.set_sg			= ethtool_op_set_sg,
	.get_tso		= ethtool_op_get_tso,
	.set_tso		= e1000_set_tso,
	.self_test		= e1000_diag_test,
	.get_strings		= e1000_get_strings,
	.phys_id		= e1000_phys_id,
	.get_ethtool_stats	= e1000_get_ethtool_stats,
2011
	.get_sset_count		= e1000e_get_sset_count,
2012 2013
	.get_coalesce		= e1000_get_coalesce,
	.set_coalesce		= e1000_set_coalesce,
2014 2015
	.get_flags		= ethtool_op_get_flags,
	.set_flags		= ethtool_op_set_flags,
2016 2017 2018 2019 2020 2021
};

void e1000e_set_ethtool_ops(struct net_device *netdev)
{
	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
}