ethtool.c 54.1 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
4
  Copyright(c) 1999 - 2008 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/* ethtool support for e1000 */

#include <linux/netdevice.h>
#include <linux/ethtool.h>
#include <linux/pci.h>
#include <linux/delay.h>

#include "e1000.h"

38 39
enum {NETDEV_STATS, E1000_STATS};

40 41
struct e1000_stats {
	char stat_string[ETH_GSTRING_LEN];
42
	int type;
43 44 45 46
	int sizeof_stat;
	int stat_offset;
};

47 48 49 50 51 52 53
#define E1000_STAT(m)		E1000_STATS, \
				sizeof(((struct e1000_adapter *)0)->m), \
		      		offsetof(struct e1000_adapter, m)
#define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
				sizeof(((struct net_device *)0)->m), \
				offsetof(struct net_device, m)

54 55 56
static const struct e1000_stats e1000_gstrings_stats[] = {
	{ "rx_packets", E1000_STAT(stats.gprc) },
	{ "tx_packets", E1000_STAT(stats.gptc) },
57 58
	{ "rx_bytes", E1000_STAT(stats.gorc) },
	{ "tx_bytes", E1000_STAT(stats.gotc) },
59 60 61 62
	{ "rx_broadcast", E1000_STAT(stats.bprc) },
	{ "tx_broadcast", E1000_STAT(stats.bptc) },
	{ "rx_multicast", E1000_STAT(stats.mprc) },
	{ "tx_multicast", E1000_STAT(stats.mptc) },
63 64 65
	{ "rx_errors", E1000_NETDEV_STAT(stats.rx_errors) },
	{ "tx_errors", E1000_NETDEV_STAT(stats.tx_errors) },
	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
66 67
	{ "multicast", E1000_STAT(stats.mprc) },
	{ "collisions", E1000_STAT(stats.colc) },
68 69
	{ "rx_length_errors", E1000_NETDEV_STAT(stats.rx_length_errors) },
	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
70
	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
71
	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
72 73 74 75
	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
76 77
	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
	{ "tx_window_errors", E1000_STAT(stats.latecol) },
	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
	{ "tx_restart_queue", E1000_STAT(restart_queue) },
	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
94
	{ "rx_long_byte_count", E1000_STAT(stats.gorc) },
95 96 97 98 99 100 101 102 103 104 105
	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
	{ "rx_header_split", E1000_STAT(rx_hdr_split) },
	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
	{ "tx_smbus", E1000_STAT(stats.mgptc) },
	{ "rx_smbus", E1000_STAT(stats.mgprc) },
	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
	{ "rx_dma_failed", E1000_STAT(rx_dma_failed) },
	{ "tx_dma_failed", E1000_STAT(tx_dma_failed) },
};

106
#define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
107 108 109 110 111 112
#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
	"Register test  (offline)", "Eeprom test    (offline)",
	"Interrupt test (offline)", "Loopback test  (offline)",
	"Link test   (on/offline)"
};
113
#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
114 115 116 117 118 119

static int e1000_get_settings(struct net_device *netdev,
			      struct ethtool_cmd *ecmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
120
	u32 status;
121

122
	if (hw->phy.media_type == e1000_media_type_copper) {
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

		ecmd->supported = (SUPPORTED_10baseT_Half |
				   SUPPORTED_10baseT_Full |
				   SUPPORTED_100baseT_Half |
				   SUPPORTED_100baseT_Full |
				   SUPPORTED_1000baseT_Full |
				   SUPPORTED_Autoneg |
				   SUPPORTED_TP);
		if (hw->phy.type == e1000_phy_ife)
			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
		ecmd->advertising = ADVERTISED_TP;

		if (hw->mac.autoneg == 1) {
			ecmd->advertising |= ADVERTISED_Autoneg;
			/* the e1000 autoneg seems to match ethtool nicely */
			ecmd->advertising |= hw->phy.autoneg_advertised;
		}

		ecmd->port = PORT_TP;
		ecmd->phy_address = hw->phy.addr;
		ecmd->transceiver = XCVR_INTERNAL;

	} else {
		ecmd->supported   = (SUPPORTED_1000baseT_Full |
				     SUPPORTED_FIBRE |
				     SUPPORTED_Autoneg);

		ecmd->advertising = (ADVERTISED_1000baseT_Full |
				     ADVERTISED_FIBRE |
				     ADVERTISED_Autoneg);

		ecmd->port = PORT_FIBRE;
		ecmd->transceiver = XCVR_EXTERNAL;
	}

158 159 160 161 162 163 164 165
	status = er32(STATUS);
	if (status & E1000_STATUS_LU) {
		if (status & E1000_STATUS_SPEED_1000)
			ecmd->speed = 1000;
		else if (status & E1000_STATUS_SPEED_100)
			ecmd->speed = 100;
		else
			ecmd->speed = 10;
166

167
		if (status & E1000_STATUS_FD)
168 169 170 171 172 173 174 175
			ecmd->duplex = DUPLEX_FULL;
		else
			ecmd->duplex = DUPLEX_HALF;
	} else {
		ecmd->speed = -1;
		ecmd->duplex = -1;
	}

176
	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
177
			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
178 179 180 181 182 183 184 185 186

	/* MDI-X => 2; MDI =>1; Invalid =>0 */
	if ((hw->phy.media_type == e1000_media_type_copper) &&
	    !hw->mac.get_link_status)
		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
		                                      ETH_TP_MDI;
	else
		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;

187 188 189
	return 0;
}

190 191 192
static u32 e1000_get_link(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
193 194

	return e1000_has_link(adapter);
195 196
}

197 198 199 200 201 202 203
static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
{
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

	/* Fiber NICs only allow 1000 gbps Full duplex */
204
	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
205
		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
206
		e_err("Unsupported Speed/Duplex configuration\n");
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
		return -EINVAL;
	}

	switch (spddplx) {
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
229
		e_err("Unsupported Speed/Duplex configuration\n");
230 231 232 233 234 235 236 237 238 239 240
		return -EINVAL;
	}
	return 0;
}

static int e1000_set_settings(struct net_device *netdev,
			      struct ethtool_cmd *ecmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

241 242 243 244
	/*
	 * When SoL/IDER sessions are active, autoneg/speed/duplex
	 * cannot be changed
	 */
245
	if (e1000_check_reset_block(hw)) {
246 247
		e_err("Cannot change link characteristics when SoL/IDER is "
		      "active.\n");
248 249 250 251 252 253 254 255
		return -EINVAL;
	}

	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
		msleep(1);

	if (ecmd->autoneg == AUTONEG_ENABLE) {
		hw->mac.autoneg = 1;
256
		if (hw->phy.media_type == e1000_media_type_fiber)
257 258 259 260 261 262 263 264
			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
						     ADVERTISED_FIBRE |
						     ADVERTISED_Autoneg;
		else
			hw->phy.autoneg_advertised = ecmd->advertising |
						     ADVERTISED_TP |
						     ADVERTISED_Autoneg;
		ecmd->advertising = hw->phy.autoneg_advertised;
265
		if (adapter->fc_autoneg)
266
			hw->fc.requested_mode = e1000_fc_default;
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
	} else {
		if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
			clear_bit(__E1000_RESETTING, &adapter->state);
			return -EINVAL;
		}
	}

	/* reset the link */

	if (netif_running(adapter->netdev)) {
		e1000e_down(adapter);
		e1000e_up(adapter);
	} else {
		e1000e_reset(adapter);
	}

	clear_bit(__E1000_RESETTING, &adapter->state);
	return 0;
}

static void e1000_get_pauseparam(struct net_device *netdev,
				 struct ethtool_pauseparam *pause)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	pause->autoneg =
		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);

296
	if (hw->fc.current_mode == e1000_fc_rx_pause) {
297
		pause->rx_pause = 1;
298
	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
299
		pause->tx_pause = 1;
300
	} else if (hw->fc.current_mode == e1000_fc_full) {
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
		pause->rx_pause = 1;
		pause->tx_pause = 1;
	}
}

static int e1000_set_pauseparam(struct net_device *netdev,
				struct ethtool_pauseparam *pause)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int retval = 0;

	adapter->fc_autoneg = pause->autoneg;

	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
		msleep(1);

	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
319
		hw->fc.requested_mode = e1000_fc_default;
320 321 322 323 324 325 326
		if (netif_running(adapter->netdev)) {
			e1000e_down(adapter);
			e1000e_up(adapter);
		} else {
			e1000e_reset(adapter);
		}
	} else {
327 328 329 330 331 332 333 334 335 336 337
		if (pause->rx_pause && pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_full;
		else if (pause->rx_pause && !pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_rx_pause;
		else if (!pause->rx_pause && pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_tx_pause;
		else if (!pause->rx_pause && !pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_none;

		hw->fc.current_mode = hw->fc.requested_mode;

338 339 340 341 342 343 344 345 346
		if (hw->phy.media_type == e1000_media_type_fiber) {
			retval = hw->mac.ops.setup_link(hw);
			/* implicit goto out */
		} else {
			retval = e1000e_force_mac_fc(hw);
			if (retval)
				goto out;
			e1000e_set_fc_watermarks(hw);
		}
347 348
	}

349
out:
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	clear_bit(__E1000_RESETTING, &adapter->state);
	return retval;
}

static u32 e1000_get_rx_csum(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	return (adapter->flags & FLAG_RX_CSUM_ENABLED);
}

static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (data)
		adapter->flags |= FLAG_RX_CSUM_ENABLED;
	else
		adapter->flags &= ~FLAG_RX_CSUM_ENABLED;

	if (netif_running(netdev))
		e1000e_reinit_locked(adapter);
	else
		e1000e_reset(adapter);
	return 0;
}

static u32 e1000_get_tx_csum(struct net_device *netdev)
{
	return ((netdev->features & NETIF_F_HW_CSUM) != 0);
}

static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
{
	if (data)
		netdev->features |= NETIF_F_HW_CSUM;
	else
		netdev->features &= ~NETIF_F_HW_CSUM;

	return 0;
}

static int e1000_set_tso(struct net_device *netdev, u32 data)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (data) {
		netdev->features |= NETIF_F_TSO;
		netdev->features |= NETIF_F_TSO6;
	} else {
		netdev->features &= ~NETIF_F_TSO;
		netdev->features &= ~NETIF_F_TSO6;
	}

403
	e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
	adapter->flags |= FLAG_TSO_FORCE;
	return 0;
}

static u32 e1000_get_msglevel(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	return adapter->msg_enable;
}

static void e1000_set_msglevel(struct net_device *netdev, u32 data)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	adapter->msg_enable = data;
}

static int e1000_get_regs_len(struct net_device *netdev)
{
#define E1000_REGS_LEN 32 /* overestimate */
	return E1000_REGS_LEN * sizeof(u32);
}

static void e1000_get_regs(struct net_device *netdev,
			   struct ethtool_regs *regs, void *p)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 *regs_buff = p;
	u16 phy_data;
	u8 revision_id;

	memset(p, 0, E1000_REGS_LEN * sizeof(u32));

	pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);

	regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;

	regs_buff[0]  = er32(CTRL);
	regs_buff[1]  = er32(STATUS);

	regs_buff[2]  = er32(RCTL);
	regs_buff[3]  = er32(RDLEN);
	regs_buff[4]  = er32(RDH);
	regs_buff[5]  = er32(RDT);
	regs_buff[6]  = er32(RDTR);

	regs_buff[7]  = er32(TCTL);
	regs_buff[8]  = er32(TDLEN);
	regs_buff[9]  = er32(TDH);
	regs_buff[10] = er32(TDT);
	regs_buff[11] = er32(TIDV);

	regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
457 458 459 460

	/* ethtool doesn't use anything past this point, so all this
	 * code is likely legacy junk for apps that may or may not
	 * exist */
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
	if (hw->phy.type == e1000_phy_m88) {
		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
		regs_buff[13] = (u32)phy_data; /* cable length */
		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
		regs_buff[18] = regs_buff[13]; /* cable polarity */
		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
		regs_buff[20] = regs_buff[17]; /* polarity correction */
		/* phy receive errors */
		regs_buff[22] = adapter->phy_stats.receive_errors;
		regs_buff[23] = regs_buff[13]; /* mdix mode */
	}
476
	regs_buff[21] = 0; /* was idle_errors */
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
	e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
}

static int e1000_get_eeprom_len(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	return adapter->hw.nvm.word_size * 2;
}

static int e1000_get_eeprom(struct net_device *netdev,
			    struct ethtool_eeprom *eeprom, u8 *bytes)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u16 *eeprom_buff;
	int first_word;
	int last_word;
	int ret_val = 0;
	u16 i;

	if (eeprom->len == 0)
		return -EINVAL;

	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);

	first_word = eeprom->offset >> 1;
	last_word = (eeprom->offset + eeprom->len - 1) >> 1;

	eeprom_buff = kmalloc(sizeof(u16) *
			(last_word - first_word + 1), GFP_KERNEL);
	if (!eeprom_buff)
		return -ENOMEM;

	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
		ret_val = e1000_read_nvm(hw, first_word,
					 last_word - first_word + 1,
					 eeprom_buff);
	} else {
		for (i = 0; i < last_word - first_word + 1; i++) {
			ret_val = e1000_read_nvm(hw, first_word + i, 1,
						      &eeprom_buff[i]);
520
			if (ret_val)
521 522 523 524
				break;
		}
	}

525 526 527 528 529 530 531 532
	if (ret_val) {
		/* a read error occurred, throw away the result */
		memset(eeprom_buff, 0xff, sizeof(eeprom_buff));
	} else {
		/* Device's eeprom is always little-endian, word addressable */
		for (i = 0; i < last_word - first_word + 1; i++)
			le16_to_cpus(&eeprom_buff[i]);
	}
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558

	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
	kfree(eeprom_buff);

	return ret_val;
}

static int e1000_set_eeprom(struct net_device *netdev,
			    struct ethtool_eeprom *eeprom, u8 *bytes)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u16 *eeprom_buff;
	void *ptr;
	int max_len;
	int first_word;
	int last_word;
	int ret_val = 0;
	u16 i;

	if (eeprom->len == 0)
		return -EOPNOTSUPP;

	if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
		return -EFAULT;

559 560 561
	if (adapter->flags & FLAG_READ_ONLY_NVM)
		return -EINVAL;

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
	max_len = hw->nvm.word_size * 2;

	first_word = eeprom->offset >> 1;
	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
	if (!eeprom_buff)
		return -ENOMEM;

	ptr = (void *)eeprom_buff;

	if (eeprom->offset & 1) {
		/* need read/modify/write of first changed EEPROM word */
		/* only the second byte of the word is being modified */
		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
		ptr++;
	}
	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
		/* need read/modify/write of last changed EEPROM word */
		/* only the first byte of the word is being modified */
		ret_val = e1000_read_nvm(hw, last_word, 1,
				  &eeprom_buff[last_word - first_word]);

584 585 586
	if (ret_val)
		goto out;

587 588 589 590 591 592 593 594 595 596 597 598
	/* Device's eeprom is always little-endian, word addressable */
	for (i = 0; i < last_word - first_word + 1; i++)
		le16_to_cpus(&eeprom_buff[i]);

	memcpy(ptr, bytes, eeprom->len);

	for (i = 0; i < last_word - first_word + 1; i++)
		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);

	ret_val = e1000_write_nvm(hw, first_word,
				  last_word - first_word + 1, eeprom_buff);

599 600 601
	if (ret_val)
		goto out;

602 603
	/*
	 * Update the checksum over the first part of the EEPROM if needed
604
	 * and flush shadow RAM for applicable controllers
605
	 */
606 607 608
	if ((first_word <= NVM_CHECKSUM_REG) ||
	    (hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82573))
		ret_val = e1000e_update_nvm_checksum(hw);
609

610
out:
611 612 613 614 615 616 617 618 619 620 621 622 623
	kfree(eeprom_buff);
	return ret_val;
}

static void e1000_get_drvinfo(struct net_device *netdev,
			      struct ethtool_drvinfo *drvinfo)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	char firmware_version[32];

	strncpy(drvinfo->driver,  e1000e_driver_name, 32);
	strncpy(drvinfo->version, e1000e_driver_version, 32);

624 625 626 627
	/*
	 * EEPROM image version # is reported as firmware version # for
	 * PCI-E controllers
	 */
628
	sprintf(firmware_version, "%d.%d-%d",
629 630 631
		(adapter->eeprom_vers & 0xF000) >> 12,
		(adapter->eeprom_vers & 0x0FF0) >> 4,
		(adapter->eeprom_vers & 0x000F));
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679

	strncpy(drvinfo->fw_version, firmware_version, 32);
	strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
	drvinfo->regdump_len = e1000_get_regs_len(netdev);
	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
}

static void e1000_get_ringparam(struct net_device *netdev,
				struct ethtool_ringparam *ring)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_ring *rx_ring = adapter->rx_ring;

	ring->rx_max_pending = E1000_MAX_RXD;
	ring->tx_max_pending = E1000_MAX_TXD;
	ring->rx_mini_max_pending = 0;
	ring->rx_jumbo_max_pending = 0;
	ring->rx_pending = rx_ring->count;
	ring->tx_pending = tx_ring->count;
	ring->rx_mini_pending = 0;
	ring->rx_jumbo_pending = 0;
}

static int e1000_set_ringparam(struct net_device *netdev,
			       struct ethtool_ringparam *ring)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring, *tx_old;
	struct e1000_ring *rx_ring, *rx_old;
	int err;

	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
		return -EINVAL;

	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
		msleep(1);

	if (netif_running(adapter->netdev))
		e1000e_down(adapter);

	tx_old = adapter->tx_ring;
	rx_old = adapter->rx_ring;

	err = -ENOMEM;
	tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
	if (!tx_ring)
		goto err_alloc_tx;
680 681 682 683 684 685
	/*
	 * use a memcpy to save any previously configured
	 * items like napi structs from having to be
	 * reinitialized
	 */
	memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
686 687 688 689

	rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
	if (!rx_ring)
		goto err_alloc_rx;
690
	memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711

	adapter->tx_ring = tx_ring;
	adapter->rx_ring = rx_ring;

	rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
	rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
	rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);

	tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
	tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
	tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);

	if (netif_running(adapter->netdev)) {
		/* Try to get new resources before deleting old */
		err = e1000e_setup_rx_resources(adapter);
		if (err)
			goto err_setup_rx;
		err = e1000e_setup_tx_resources(adapter);
		if (err)
			goto err_setup_tx;

712 713 714 715
		/*
		 * restore the old in order to free it,
		 * then add in the new
		 */
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
		adapter->rx_ring = rx_old;
		adapter->tx_ring = tx_old;
		e1000e_free_rx_resources(adapter);
		e1000e_free_tx_resources(adapter);
		kfree(tx_old);
		kfree(rx_old);
		adapter->rx_ring = rx_ring;
		adapter->tx_ring = tx_ring;
		err = e1000e_up(adapter);
		if (err)
			goto err_setup;
	}

	clear_bit(__E1000_RESETTING, &adapter->state);
	return 0;
err_setup_tx:
	e1000e_free_rx_resources(adapter);
err_setup_rx:
	adapter->rx_ring = rx_old;
	adapter->tx_ring = tx_old;
	kfree(rx_ring);
err_alloc_rx:
	kfree(tx_ring);
err_alloc_tx:
	e1000e_up(adapter);
err_setup:
	clear_bit(__E1000_RESETTING, &adapter->state);
	return err;
}

746 747
static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
			     int reg, int offset, u32 mask, u32 write)
748
{
749
	u32 pat, val;
750 751
	static const u32 test[] =
		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
752
	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
753
		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
754 755 756
				      (test[pat] & write));
		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
		if (val != (test[pat] & write & mask)) {
757 758 759
			e_err("pattern test reg %04X failed: got 0x%08X "
			      "expected 0x%08X\n", reg + offset, val,
			      (test[pat] & write & mask));
760
			*data = reg;
761
			return 1;
762 763
		}
	}
764
	return 0;
765 766
}

767 768 769
static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
			      int reg, u32 mask, u32 write)
{
770
	u32 val;
771
	__ew32(&adapter->hw, reg, write & mask);
772 773
	val = __er32(&adapter->hw, reg);
	if ((write & mask) != (val & mask)) {
774 775
		e_err("set/check reg %04X test failed: got 0x%08X "
		      "expected 0x%08X\n", reg, (val & mask), (write & mask));
776
		*data = reg;
777
		return 1;
778
	}
779
	return 0;
780
}
781 782 783 784
#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
	do {                                                                   \
		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
			return 1;                                              \
785
	} while (0)
786 787
#define REG_PATTERN_TEST(reg, mask, write)                                     \
	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
788

789 790 791 792
#define REG_SET_AND_CHECK(reg, mask, write)                                    \
	do {                                                                   \
		if (reg_set_and_check(adapter, data, reg, mask, write))        \
			return 1;                                              \
793 794
	} while (0)

795 796 797 798 799 800 801 802 803
static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_mac_info *mac = &adapter->hw.mac;
	u32 value;
	u32 before;
	u32 after;
	u32 i;
	u32 toggle;
804
	u32 mask;
805

806 807
	/*
	 * The status register is Read Only, so a write should fail.
808 809 810 811 812 813 814 815 816
	 * Some bits that get toggled are ignored.
	 */
	switch (mac->type) {
	/* there are several bits on newer hardware that are r/w */
	case e1000_82571:
	case e1000_82572:
	case e1000_80003es2lan:
		toggle = 0x7FFFF3FF;
		break;
817
        default:
818 819 820 821 822 823 824 825 826
		toggle = 0x7FFFF033;
		break;
	}

	before = er32(STATUS);
	value = (er32(STATUS) & toggle);
	ew32(STATUS, toggle);
	after = er32(STATUS) & toggle;
	if (value != after) {
827 828
		e_err("failed STATUS register test got: 0x%08X expected: "
		      "0x%08X\n", after, value);
829 830 831 832 833 834
		*data = 1;
		return 1;
	}
	/* restore previous status */
	ew32(STATUS, before);

835
	if (!(adapter->flags & FLAG_IS_ICH)) {
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
	}

	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
	REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
	REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
	REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
	REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
	REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
	REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);

	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);

855
	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
856 857 858
	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);

A
Auke Kok 已提交
859 860
	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
	REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
861
	if (!(adapter->flags & FLAG_IS_ICH))
A
Auke Kok 已提交
862 863 864
		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
	REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
865 866 867 868 869 870 871 872 873
	mask = 0x8003FFFF;
	switch (mac->type) {
	case e1000_ich10lan:
	case e1000_pchlan:
		mask |= (1 << 18);
		break;
	default:
		break;
	}
A
Auke Kok 已提交
874 875
	for (i = 0; i < mac->rar_entry_count; i++)
		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
876
		                       mask, 0xFFFFFFFF);
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895

	for (i = 0; i < mac->mta_reg_count; i++)
		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);

	*data = 0;
	return 0;
}

static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
{
	u16 temp;
	u16 checksum = 0;
	u16 i;

	*data = 0;
	/* Read and add up the contents of the EEPROM */
	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
			*data = 1;
896
			return *data;
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
		}
		checksum += temp;
	}

	/* If Checksum is not Correct return error else test passed */
	if ((checksum != (u16) NVM_SUM) && !(*data))
		*data = 2;

	return *data;
}

static irqreturn_t e1000_test_intr(int irq, void *data)
{
	struct net_device *netdev = (struct net_device *) data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	adapter->test_icr |= er32(ICR);

	return IRQ_HANDLED;
}

static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 mask;
	u32 shared_int = 1;
	u32 irq = adapter->pdev->irq;
	int i;
927 928
	int ret_val = 0;
	int int_mode = E1000E_INT_MODE_LEGACY;
929 930 931

	*data = 0;

932 933 934 935 936 937 938
	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
		int_mode = adapter->int_mode;
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
		e1000e_set_interrupt_capability(adapter);
	}
939
	/* Hook up test interrupt handler just for this test */
940
	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
941 942
			 netdev)) {
		shared_int = 0;
943
	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
944 945
		 netdev->name, netdev)) {
		*data = 1;
946 947
		ret_val = -1;
		goto out;
948
	}
949
	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
950 951 952 953 954 955 956 957 958 959

	/* Disable all the interrupts */
	ew32(IMC, 0xFFFFFFFF);
	msleep(10);

	/* Test each interrupt */
	for (i = 0; i < 10; i++) {
		/* Interrupt to test */
		mask = 1 << i;

960 961 962 963 964 965 966 967 968 969 970 971 972 973
		if (adapter->flags & FLAG_IS_ICH) {
			switch (mask) {
			case E1000_ICR_RXSEQ:
				continue;
			case 0x00000100:
				if (adapter->hw.mac.type == e1000_ich8lan ||
				    adapter->hw.mac.type == e1000_ich9lan)
					continue;
				break;
			default:
				break;
			}
		}

974
		if (!shared_int) {
975 976
			/*
			 * Disable the interrupt to be reported in
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
			 * the cause register and then force the same
			 * interrupt and see if one gets posted.  If
			 * an interrupt was posted to the bus, the
			 * test failed.
			 */
			adapter->test_icr = 0;
			ew32(IMC, mask);
			ew32(ICS, mask);
			msleep(10);

			if (adapter->test_icr & mask) {
				*data = 3;
				break;
			}
		}

993 994
		/*
		 * Enable the interrupt to be reported in
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
		 * the cause register and then force the same
		 * interrupt and see if one gets posted.  If
		 * an interrupt was not posted to the bus, the
		 * test failed.
		 */
		adapter->test_icr = 0;
		ew32(IMS, mask);
		ew32(ICS, mask);
		msleep(10);

		if (!(adapter->test_icr & mask)) {
			*data = 4;
			break;
		}

		if (!shared_int) {
1011 1012
			/*
			 * Disable the other interrupts to be reported in
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
			 * the cause register and then force the other
			 * interrupts and see if any get posted.  If
			 * an interrupt was posted to the bus, the
			 * test failed.
			 */
			adapter->test_icr = 0;
			ew32(IMC, ~mask & 0x00007FFF);
			ew32(ICS, ~mask & 0x00007FFF);
			msleep(10);

			if (adapter->test_icr) {
				*data = 5;
				break;
			}
		}
	}

	/* Disable all the interrupts */
	ew32(IMC, 0xFFFFFFFF);
	msleep(10);

	/* Unhook test interrupt handler */
	free_irq(irq, netdev);

1037 1038 1039 1040 1041 1042 1043 1044
out:
	if (int_mode == E1000E_INT_MODE_MSIX) {
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = int_mode;
		e1000e_set_interrupt_capability(adapter);
	}

	return ret_val;
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
}

static void e1000_free_desc_rings(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
	struct pci_dev *pdev = adapter->pdev;
	int i;

	if (tx_ring->desc && tx_ring->buffer_info) {
		for (i = 0; i < tx_ring->count; i++) {
			if (tx_ring->buffer_info[i].dma)
				pci_unmap_single(pdev,
					tx_ring->buffer_info[i].dma,
					tx_ring->buffer_info[i].length,
					PCI_DMA_TODEVICE);
			if (tx_ring->buffer_info[i].skb)
				dev_kfree_skb(tx_ring->buffer_info[i].skb);
		}
	}

	if (rx_ring->desc && rx_ring->buffer_info) {
		for (i = 0; i < rx_ring->count; i++) {
			if (rx_ring->buffer_info[i].dma)
				pci_unmap_single(pdev,
					rx_ring->buffer_info[i].dma,
					2048, PCI_DMA_FROMDEVICE);
			if (rx_ring->buffer_info[i].skb)
				dev_kfree_skb(rx_ring->buffer_info[i].skb);
		}
	}

	if (tx_ring->desc) {
		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
				  tx_ring->dma);
		tx_ring->desc = NULL;
	}
	if (rx_ring->desc) {
		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
				  rx_ring->dma);
		rx_ring->desc = NULL;
	}

	kfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;
	kfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;
}

static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;
	int i;
	int ret_val;

	/* Setup Tx descriptor ring and Tx buffers */

	if (!tx_ring->count)
		tx_ring->count = E1000_DEFAULT_TXD;

1109 1110 1111 1112
	tx_ring->buffer_info = kcalloc(tx_ring->count,
				       sizeof(struct e1000_buffer),
				       GFP_KERNEL);
	if (!(tx_ring->buffer_info)) {
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
		ret_val = 1;
		goto err_nomem;
	}

	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		ret_val = 2;
		goto err_nomem;
	}
	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

1128
	ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1129
	ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1130
	ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1131 1132
	ew32(TDH, 0);
	ew32(TDT, 0);
1133 1134 1135
	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

	for (i = 0; i < tx_ring->count; i++) {
		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
		struct sk_buff *skb;
		unsigned int skb_size = 1024;

		skb = alloc_skb(skb_size, GFP_KERNEL);
		if (!skb) {
			ret_val = 3;
			goto err_nomem;
		}
		skb_put(skb, skb_size);
		tx_ring->buffer_info[i].skb = skb;
		tx_ring->buffer_info[i].length = skb->len;
		tx_ring->buffer_info[i].dma =
			pci_map_single(pdev, skb->data, skb->len,
				       PCI_DMA_TODEVICE);
1153
		if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) {
1154 1155 1156
			ret_val = 4;
			goto err_nomem;
		}
1157
		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1158 1159 1160
		tx_desc->lower.data = cpu_to_le32(skb->len);
		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
						   E1000_TXD_CMD_IFCS |
1161
						   E1000_TXD_CMD_RS);
1162 1163 1164 1165 1166 1167 1168 1169
		tx_desc->upper.data = 0;
	}

	/* Setup Rx descriptor ring and Rx buffers */

	if (!rx_ring->count)
		rx_ring->count = E1000_DEFAULT_RXD;

1170 1171 1172 1173
	rx_ring->buffer_info = kcalloc(rx_ring->count,
				       sizeof(struct e1000_buffer),
				       GFP_KERNEL);
	if (!(rx_ring->buffer_info)) {
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
		ret_val = 5;
		goto err_nomem;
	}

	rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);
	if (!rx_ring->desc) {
		ret_val = 6;
		goto err_nomem;
	}
	rx_ring->next_to_use = 0;
	rx_ring->next_to_clean = 0;

	rctl = er32(RCTL);
	ew32(RCTL, rctl & ~E1000_RCTL_EN);
	ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
	ew32(RDBAH, ((u64) rx_ring->dma >> 32));
	ew32(RDLEN, rx_ring->size);
	ew32(RDH, 0);
	ew32(RDT, 0);
	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1196 1197
		E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
		E1000_RCTL_SBP | E1000_RCTL_SECRC |
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
	ew32(RCTL, rctl);

	for (i = 0; i < rx_ring->count; i++) {
		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
		struct sk_buff *skb;

		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
		if (!skb) {
			ret_val = 7;
			goto err_nomem;
		}
		skb_reserve(skb, NET_IP_ALIGN);
		rx_ring->buffer_info[i].skb = skb;
		rx_ring->buffer_info[i].dma =
			pci_map_single(pdev, skb->data, 2048,
				       PCI_DMA_FROMDEVICE);
1216
		if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) {
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
			ret_val = 8;
			goto err_nomem;
		}
		rx_desc->buffer_addr =
			cpu_to_le64(rx_ring->buffer_info[i].dma);
		memset(skb->data, 0x00, skb->len);
	}

	return 0;

err_nomem:
	e1000_free_desc_rings(adapter);
	return ret_val;
}

static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
{
	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
	e1e_wphy(&adapter->hw, 29, 0x001F);
	e1e_wphy(&adapter->hw, 30, 0x8FFC);
	e1e_wphy(&adapter->hw, 29, 0x001A);
	e1e_wphy(&adapter->hw, 30, 0x8FF0);
}

static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_reg = 0;
	u32 stat_reg = 0;
1246
	u16 phy_reg = 0;
1247

1248
	hw->mac.autoneg = 0;
1249

1250
	if (hw->phy.type == e1000_phy_m88) {
1251 1252 1253 1254 1255 1256
		/* Auto-MDI/MDIX Off */
		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
		/* reset to update Auto-MDI/MDIX */
		e1e_wphy(hw, PHY_CONTROL, 0x9140);
		/* autoneg off */
		e1e_wphy(hw, PHY_CONTROL, 0x8140);
1257
	} else if (hw->phy.type == e1000_phy_gg82563)
1258 1259 1260 1261
		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);

	ctrl_reg = er32(CTRL);

1262 1263
	switch (hw->phy.type) {
	case e1000_phy_ife:
1264 1265 1266 1267 1268 1269 1270 1271 1272
		/* force 100, set loopback */
		e1e_wphy(hw, PHY_CONTROL, 0x6100);

		/* Now set up the MAC to the same speed/duplex as the PHY. */
		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1273
		break;
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	case e1000_phy_bm:
		/* Set Default MAC Interface speed to 1GB */
		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
		phy_reg &= ~0x0007;
		phy_reg |= 0x006;
		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
		/* Assert SW reset for above settings to take effect */
		e1000e_commit_phy(hw);
		mdelay(1);
		/* Force Full Duplex */
		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
		/* Set Link Up (in force link) */
		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
		/* Force Link */
		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
		/* Set Early Link Enable */
		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
		/* fall through */
1296
	default:
1297 1298
		/* force 1000, set loopback */
		e1e_wphy(hw, PHY_CONTROL, 0x4140);
1299
		mdelay(250);
1300 1301 1302 1303 1304 1305 1306 1307

		/* Now set up the MAC to the same speed/duplex as the PHY. */
		ctrl_reg = er32(CTRL);
		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
			     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1308

1309
		if (adapter->flags & FLAG_IS_ICH)
1310
			ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1311 1312
	}

1313 1314
	if (hw->phy.media_type == e1000_media_type_copper &&
	    hw->phy.type == e1000_phy_m88) {
1315 1316
		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
	} else {
1317 1318 1319 1320
		/*
		 * Set the ILOS bit on the fiber Nic if half duplex link is
		 * detected.
		 */
1321 1322 1323 1324 1325 1326 1327
		stat_reg = er32(STATUS);
		if ((stat_reg & E1000_STATUS_FD) == 0)
			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
	}

	ew32(CTRL, ctrl_reg);

1328 1329
	/*
	 * Disable the receiver on the PHY so when a cable is plugged in, the
1330 1331
	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
	 */
1332
	if (hw->phy.type == e1000_phy_m88)
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
		e1000_phy_disable_receiver(adapter);

	udelay(500);

	return 0;
}

static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl = er32(CTRL);
	int link = 0;

	/* special requirements for 82571/82572 fiber adapters */

1348 1349 1350 1351
	/*
	 * jump through hoops to make sure link is up because serdes
	 * link is hardwired up
	 */
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	ctrl |= E1000_CTRL_SLU;
	ew32(CTRL, ctrl);

	/* disable autoneg */
	ctrl = er32(TXCW);
	ctrl &= ~(1 << 31);
	ew32(TXCW, ctrl);

	link = (er32(STATUS) & E1000_STATUS_LU);

	if (!link) {
		/* set invert loss of signal */
		ctrl = er32(CTRL);
		ctrl |= E1000_CTRL_ILOS;
		ew32(CTRL, ctrl);
	}

1369 1370 1371 1372
	/*
	 * special write to serdes control register to enable SerDes analog
	 * loopback
	 */
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
#define E1000_SERDES_LB_ON 0x410
	ew32(SCTL, E1000_SERDES_LB_ON);
	msleep(10);

	return 0;
}

/* only call this for fiber/serdes connections to es2lan */
static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrlext = er32(CTRL_EXT);
	u32 ctrl = er32(CTRL);

1387 1388 1389 1390
	/*
	 * save CTRL_EXT to restore later, reuse an empty variable (unused
	 * on mac_type 80003es2lan)
	 */
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	adapter->tx_fifo_head = ctrlext;

	/* clear the serdes mode bits, putting the device into mac loopback */
	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
	ew32(CTRL_EXT, ctrlext);

	/* force speed to 1000/FD, link up */
	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
	ew32(CTRL, ctrl);

	/* set mac loopback */
	ctrl = er32(RCTL);
	ctrl |= E1000_RCTL_LBM_MAC;
	ew32(RCTL, ctrl);

	/* set testing mode parameters (no need to reset later) */
#define KMRNCTRLSTA_OPMODE (0x1F << 16)
#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
	ew32(KMRNCTRLSTA,
1412
	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1413 1414 1415 1416 1417 1418 1419 1420 1421

	return 0;
}

static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

1422 1423
	if (hw->phy.media_type == e1000_media_type_fiber ||
	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
		switch (hw->mac.type) {
		case e1000_80003es2lan:
			return e1000_set_es2lan_mac_loopback(adapter);
			break;
		case e1000_82571:
		case e1000_82572:
			return e1000_set_82571_fiber_loopback(adapter);
			break;
		default:
			rctl = er32(RCTL);
			rctl |= E1000_RCTL_LBM_TCVR;
			ew32(RCTL, rctl);
			return 0;
		}
1438
	} else if (hw->phy.media_type == e1000_media_type_copper) {
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
		return e1000_integrated_phy_loopback(adapter);
	}

	return 7;
}

static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;
	u16 phy_reg;

	rctl = er32(RCTL);
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
	ew32(RCTL, rctl);

	switch (hw->mac.type) {
	case e1000_80003es2lan:
1457 1458
		if (hw->phy.media_type == e1000_media_type_fiber ||
		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1459
			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1460
			ew32(CTRL_EXT, adapter->tx_fifo_head);
1461 1462 1463 1464 1465
			adapter->tx_fifo_head = 0;
		}
		/* fall through */
	case e1000_82571:
	case e1000_82572:
1466 1467
		if (hw->phy.media_type == e1000_media_type_fiber ||
		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
#define E1000_SERDES_LB_OFF 0x400
			ew32(SCTL, E1000_SERDES_LB_OFF);
			msleep(10);
			break;
		}
		/* Fall Through */
	default:
		hw->mac.autoneg = 1;
		if (hw->phy.type == e1000_phy_gg82563)
			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
		e1e_rphy(hw, PHY_CONTROL, &phy_reg);
		if (phy_reg & MII_CR_LOOPBACK) {
			phy_reg &= ~MII_CR_LOOPBACK;
			e1e_wphy(hw, PHY_CONTROL, phy_reg);
			e1000e_commit_phy(hw);
		}
		break;
	}
}

static void e1000_create_lbtest_frame(struct sk_buff *skb,
				      unsigned int frame_size)
{
	memset(skb->data, 0xFF, frame_size);
	frame_size &= ~1;
	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
}

static int e1000_check_lbtest_frame(struct sk_buff *skb,
				    unsigned int frame_size)
{
	frame_size &= ~1;
	if (*(skb->data + 3) == 0xFF)
		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
		   (*(skb->data + frame_size / 2 + 12) == 0xAF))
			return 0;
	return 13;
}

static int e1000_run_loopback_test(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_hw *hw = &adapter->hw;
	int i, j, k, l;
	int lc;
	int good_cnt;
	int ret_val = 0;
	unsigned long time;

	ew32(RDT, rx_ring->count - 1);

1523 1524
	/*
	 * Calculate the loop count based on the largest descriptor ring
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	 * The idea is to wrap the largest ring a number of times using 64
	 * send/receive pairs during each loop
	 */

	if (rx_ring->count <= tx_ring->count)
		lc = ((tx_ring->count / 64) * 2) + 1;
	else
		lc = ((rx_ring->count / 64) * 2) + 1;

	k = 0;
	l = 0;
	for (j = 0; j <= lc; j++) { /* loop count loop */
		for (i = 0; i < 64; i++) { /* send the packets */
1538 1539
			e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
						  1024);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
			pci_dma_sync_single_for_device(pdev,
					tx_ring->buffer_info[k].dma,
					tx_ring->buffer_info[k].length,
					PCI_DMA_TODEVICE);
			k++;
			if (k == tx_ring->count)
				k = 0;
		}
		ew32(TDT, k);
		msleep(200);
		time = jiffies; /* set the start time for the receive */
		good_cnt = 0;
		do { /* receive the sent packets */
			pci_dma_sync_single_for_cpu(pdev,
					rx_ring->buffer_info[l].dma, 2048,
					PCI_DMA_FROMDEVICE);

			ret_val = e1000_check_lbtest_frame(
					rx_ring->buffer_info[l].skb, 1024);
			if (!ret_val)
				good_cnt++;
			l++;
			if (l == rx_ring->count)
				l = 0;
1564 1565
			/*
			 * time + 20 msecs (200 msecs on 2.4) is more than
1566 1567 1568 1569 1570 1571 1572 1573
			 * enough time to complete the receives, if it's
			 * exceeded, break and error off
			 */
		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
		if (good_cnt != 64) {
			ret_val = 13; /* ret_val is the same as mis-compare */
			break;
		}
1574
		if (jiffies >= (time + 20)) {
1575 1576 1577 1578 1579 1580 1581 1582 1583
			ret_val = 14; /* error code for time out error */
			break;
		}
	} /* end loop count loop */
	return ret_val;
}

static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
{
1584 1585 1586 1587
	/*
	 * PHY loopback cannot be performed if SoL/IDER
	 * sessions are active
	 */
1588
	if (e1000_check_reset_block(&adapter->hw)) {
1589
		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1590 1591 1592 1593 1594
		*data = 0;
		goto out;
	}

	*data = e1000_setup_desc_rings(adapter);
A
Adrian Bunk 已提交
1595
	if (*data)
1596 1597 1598
		goto out;

	*data = e1000_setup_loopback_test(adapter);
A
Adrian Bunk 已提交
1599
	if (*data)
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
		goto err_loopback;

	*data = e1000_run_loopback_test(adapter);
	e1000_loopback_cleanup(adapter);

err_loopback:
	e1000_free_desc_rings(adapter);
out:
	return *data;
}

static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
{
	struct e1000_hw *hw = &adapter->hw;

	*data = 0;
1616
	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1617
		int i = 0;
1618
		hw->mac.serdes_has_link = false;
1619

1620 1621 1622 1623
		/*
		 * On some blade server designs, link establishment
		 * could take as long as 2-3 minutes
		 */
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
		do {
			hw->mac.ops.check_for_link(hw);
			if (hw->mac.serdes_has_link)
				return *data;
			msleep(20);
		} while (i++ < 3750);

		*data = 1;
	} else {
		hw->mac.ops.check_for_link(hw);
		if (hw->mac.autoneg)
			msleep(4000);

		if (!(er32(STATUS) &
		      E1000_STATUS_LU))
			*data = 1;
	}
	return *data;
}

1644
static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1645
{
1646 1647 1648 1649 1650 1651 1652 1653
	switch (sset) {
	case ETH_SS_TEST:
		return E1000_TEST_LEN;
	case ETH_SS_STATS:
		return E1000_STATS_LEN;
	default:
		return -EOPNOTSUPP;
	}
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
}

static void e1000_diag_test(struct net_device *netdev,
			    struct ethtool_test *eth_test, u64 *data)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	u16 autoneg_advertised;
	u8 forced_speed_duplex;
	u8 autoneg;
	bool if_running = netif_running(netdev);

	set_bit(__E1000_TESTING, &adapter->state);
	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
		/* Offline tests */

		/* save speed, duplex, autoneg settings */
		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
		autoneg = adapter->hw.mac.autoneg;

1674
		e_info("offline testing starting\n");
1675

1676 1677 1678 1679
		/*
		 * Link test performed before hardware reset so autoneg doesn't
		 * interfere with test result
		 */
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
		if (e1000_link_test(adapter, &data[4]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		if (if_running)
			/* indicate we're in test mode */
			dev_close(netdev);
		else
			e1000e_reset(adapter);

		if (e1000_reg_test(adapter, &data[0]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		e1000e_reset(adapter);
		if (e1000_eeprom_test(adapter, &data[1]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		e1000e_reset(adapter);
		if (e1000_intr_test(adapter, &data[2]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		e1000e_reset(adapter);
		/* make sure the phy is powered up */
		e1000e_power_up_phy(adapter);
		if (e1000_loopback_test(adapter, &data[3]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		/* restore speed, duplex, autoneg settings */
		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
		adapter->hw.mac.autoneg = autoneg;

		/* force this routine to wait until autoneg complete/timeout */
1712
		adapter->hw.phy.autoneg_wait_to_complete = 1;
1713
		e1000e_reset(adapter);
1714
		adapter->hw.phy.autoneg_wait_to_complete = 0;
1715 1716 1717 1718 1719

		clear_bit(__E1000_TESTING, &adapter->state);
		if (if_running)
			dev_open(netdev);
	} else {
1720
		e_info("online testing starting\n");
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
		/* Online tests */
		if (e1000_link_test(adapter, &data[4]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		/* Online tests aren't run; pass by default */
		data[0] = 0;
		data[1] = 0;
		data[2] = 0;
		data[3] = 0;

		clear_bit(__E1000_TESTING, &adapter->state);
	}
	msleep_interruptible(4 * 1000);
}

static void e1000_get_wol(struct net_device *netdev,
			  struct ethtool_wolinfo *wol)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	wol->supported = 0;
	wol->wolopts = 0;

1744 1745
	if (!(adapter->flags & FLAG_HAS_WOL) ||
	    !device_can_wakeup(&adapter->pdev->dev))
1746 1747 1748
		return;

	wol->supported = WAKE_UCAST | WAKE_MCAST |
1749 1750
	                 WAKE_BCAST | WAKE_MAGIC |
	                 WAKE_PHY | WAKE_ARP;
1751 1752 1753 1754 1755 1756

	/* apply any specific unsupported masks here */
	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
		wol->supported &= ~WAKE_UCAST;

		if (adapter->wol & E1000_WUFC_EX)
1757 1758
			e_err("Interface does not support directed (unicast) "
			      "frame wake-up packets\n");
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
	}

	if (adapter->wol & E1000_WUFC_EX)
		wol->wolopts |= WAKE_UCAST;
	if (adapter->wol & E1000_WUFC_MC)
		wol->wolopts |= WAKE_MCAST;
	if (adapter->wol & E1000_WUFC_BC)
		wol->wolopts |= WAKE_BCAST;
	if (adapter->wol & E1000_WUFC_MAG)
		wol->wolopts |= WAKE_MAGIC;
1769 1770 1771 1772
	if (adapter->wol & E1000_WUFC_LNKC)
		wol->wolopts |= WAKE_PHY;
	if (adapter->wol & E1000_WUFC_ARP)
		wol->wolopts |= WAKE_ARP;
1773 1774 1775 1776 1777 1778 1779
}

static int e1000_set_wol(struct net_device *netdev,
			 struct ethtool_wolinfo *wol)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

1780
	if (wol->wolopts & WAKE_MAGICSECURE)
1781 1782
		return -EOPNOTSUPP;

1783 1784
	if (!(adapter->flags & FLAG_HAS_WOL) ||
	    !device_can_wakeup(&adapter->pdev->dev))
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
		return wol->wolopts ? -EOPNOTSUPP : 0;

	/* these settings will always override what we currently have */
	adapter->wol = 0;

	if (wol->wolopts & WAKE_UCAST)
		adapter->wol |= E1000_WUFC_EX;
	if (wol->wolopts & WAKE_MCAST)
		adapter->wol |= E1000_WUFC_MC;
	if (wol->wolopts & WAKE_BCAST)
		adapter->wol |= E1000_WUFC_BC;
	if (wol->wolopts & WAKE_MAGIC)
		adapter->wol |= E1000_WUFC_MAG;
1798 1799 1800 1801
	if (wol->wolopts & WAKE_PHY)
		adapter->wol |= E1000_WUFC_LNKC;
	if (wol->wolopts & WAKE_ARP)
		adapter->wol |= E1000_WUFC_ARP;
1802

1803 1804
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);

1805 1806 1807 1808 1809 1810 1811 1812 1813
	return 0;
}

/* toggle LED 4 times per second = 2 "blinks" per second */
#define E1000_ID_INTERVAL	(HZ/4)

/* bit defines for adapter->led_status */
#define E1000_LED_ON		0

1814
static void e1000e_led_blink_task(struct work_struct *work)
1815
{
1816 1817
	struct e1000_adapter *adapter = container_of(work,
	                                struct e1000_adapter, led_blink_task);
1818 1819 1820 1821 1822

	if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
		adapter->hw.mac.ops.led_off(&adapter->hw);
	else
		adapter->hw.mac.ops.led_on(&adapter->hw);
1823 1824 1825 1826 1827
}

static void e1000_led_blink_callback(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1828

1829
	schedule_work(&adapter->led_blink_task);
1830 1831 1832 1833 1834 1835
	mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
}

static int e1000_phys_id(struct net_device *netdev, u32 data)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
1836
	struct e1000_hw *hw = &adapter->hw;
1837

S
Stephen Hemminger 已提交
1838 1839
	if (!data)
		data = INT_MAX;
1840

1841
	if ((hw->phy.type == e1000_phy_ife) ||
1842
	    (hw->mac.type == e1000_pchlan) ||
1843
	    (hw->mac.type == e1000_82574)) {
1844
		INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
1845 1846 1847 1848 1849 1850 1851 1852 1853
		if (!adapter->blink_timer.function) {
			init_timer(&adapter->blink_timer);
			adapter->blink_timer.function =
				e1000_led_blink_callback;
			adapter->blink_timer.data = (unsigned long) adapter;
		}
		mod_timer(&adapter->blink_timer, jiffies);
		msleep_interruptible(data * 1000);
		del_timer_sync(&adapter->blink_timer);
1854 1855
		if (hw->phy.type == e1000_phy_ife)
			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1856
	} else {
1857
		e1000e_blink_led(hw);
1858 1859 1860
		msleep_interruptible(data * 1000);
	}

1861
	hw->mac.ops.led_off(hw);
1862
	clear_bit(E1000_LED_ON, &adapter->led_status);
1863
	hw->mac.ops.cleanup_led(hw);
1864 1865 1866 1867

	return 0;
}

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
static int e1000_get_coalesce(struct net_device *netdev,
			      struct ethtool_coalesce *ec)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (adapter->itr_setting <= 3)
		ec->rx_coalesce_usecs = adapter->itr_setting;
	else
		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;

	return 0;
}

static int e1000_set_coalesce(struct net_device *netdev,
			      struct ethtool_coalesce *ec)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
	    ((ec->rx_coalesce_usecs > 3) &&
	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
	    (ec->rx_coalesce_usecs == 2))
		return -EINVAL;

	if (ec->rx_coalesce_usecs <= 3) {
		adapter->itr = 20000;
		adapter->itr_setting = ec->rx_coalesce_usecs;
	} else {
		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
		adapter->itr_setting = adapter->itr & ~3;
	}

	if (adapter->itr_setting != 0)
		ew32(ITR, 1000000000 / (adapter->itr * 256));
	else
		ew32(ITR, 0);

	return 0;
}

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
static int e1000_nway_reset(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	if (netif_running(netdev))
		e1000e_reinit_locked(adapter);
	return 0;
}

static void e1000_get_ethtool_stats(struct net_device *netdev,
				    struct ethtool_stats *stats,
				    u64 *data)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	int i;
1923
	char *p = NULL;
1924 1925 1926

	e1000e_update_stats(adapter);
	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
		switch (e1000_gstrings_stats[i].type) {
		case NETDEV_STATS:
			p = (char *) netdev +
					e1000_gstrings_stats[i].stat_offset;
			break;
		case E1000_STATS:
			p = (char *) adapter +
					e1000_gstrings_stats[i].stat_offset;
			break;
		}

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
	}
}

static void e1000_get_strings(struct net_device *netdev, u32 stringset,
			      u8 *data)
{
	u8 *p = data;
	int i;

	switch (stringset) {
	case ETH_SS_TEST:
1951
		memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
		break;
	case ETH_SS_STATS:
		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
			memcpy(p, e1000_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
		break;
	}
}

static const struct ethtool_ops e1000_ethtool_ops = {
	.get_settings		= e1000_get_settings,
	.set_settings		= e1000_set_settings,
	.get_drvinfo		= e1000_get_drvinfo,
	.get_regs_len		= e1000_get_regs_len,
	.get_regs		= e1000_get_regs,
	.get_wol		= e1000_get_wol,
	.set_wol		= e1000_set_wol,
	.get_msglevel		= e1000_get_msglevel,
	.set_msglevel		= e1000_set_msglevel,
	.nway_reset		= e1000_nway_reset,
1974
	.get_link		= e1000_get_link,
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
	.get_eeprom_len		= e1000_get_eeprom_len,
	.get_eeprom		= e1000_get_eeprom,
	.set_eeprom		= e1000_set_eeprom,
	.get_ringparam		= e1000_get_ringparam,
	.set_ringparam		= e1000_set_ringparam,
	.get_pauseparam		= e1000_get_pauseparam,
	.set_pauseparam		= e1000_set_pauseparam,
	.get_rx_csum		= e1000_get_rx_csum,
	.set_rx_csum		= e1000_set_rx_csum,
	.get_tx_csum		= e1000_get_tx_csum,
	.set_tx_csum		= e1000_set_tx_csum,
	.get_sg			= ethtool_op_get_sg,
	.set_sg			= ethtool_op_set_sg,
	.get_tso		= ethtool_op_get_tso,
	.set_tso		= e1000_set_tso,
	.self_test		= e1000_diag_test,
	.get_strings		= e1000_get_strings,
	.phys_id		= e1000_phys_id,
	.get_ethtool_stats	= e1000_get_ethtool_stats,
1994
	.get_sset_count		= e1000e_get_sset_count,
1995 1996
	.get_coalesce		= e1000_get_coalesce,
	.set_coalesce		= e1000_set_coalesce,
1997 1998 1999 2000 2001 2002
};

void e1000e_set_ethtool_ops(struct net_device *netdev)
{
	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
}