slab_common.c 15.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/compiler.h>
#include <linux/module.h>
14 15
#include <linux/cpu.h>
#include <linux/uaccess.h>
16 17
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
18 19 20
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
21
#include <linux/memcontrol.h>
22
#include <trace/events/kmem.h>
23

24 25 26
#include "slab.h"

enum slab_state slab_state;
27 28
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
29
struct kmem_cache *kmem_cache;
30

31
#ifdef CONFIG_DEBUG_VM
32 33
static int kmem_cache_sanity_check(struct mem_cgroup *memcg, const char *name,
				   size_t size)
34 35 36 37 38
{
	struct kmem_cache *s = NULL;

	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
39 40
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
41
	}
42

43 44 45 46 47 48 49 50 51 52 53
	list_for_each_entry(s, &slab_caches, list) {
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		res = probe_kernel_address(s->name, tmp);
		if (res) {
54
			pr_err("Slab cache with size %d has lost its name\n",
55 56 57 58
			       s->object_size);
			continue;
		}

59 60 61 62 63 64 65
		/*
		 * For simplicity, we won't check this in the list of memcg
		 * caches. We have control over memcg naming, and if there
		 * aren't duplicates in the global list, there won't be any
		 * duplicates in the memcg lists as well.
		 */
		if (!memcg && !strcmp(s->name, name)) {
66 67
			pr_err("%s (%s): Cache name already exists.\n",
			       __func__, name);
68 69
			dump_stack();
			s = NULL;
70
			return -EINVAL;
71 72 73 74
		}
	}

	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
75 76 77
	return 0;
}
#else
78 79
static inline int kmem_cache_sanity_check(struct mem_cgroup *memcg,
					  const char *name, size_t size)
80 81 82
{
	return 0;
}
83 84
#endif

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
#ifdef CONFIG_MEMCG_KMEM
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;
	mutex_lock(&slab_mutex);

	list_for_each_entry(s, &slab_caches, list) {
		if (!is_root_cache(s))
			continue;

		ret = memcg_update_cache_size(s, num_memcgs);
		/*
		 * See comment in memcontrol.c, memcg_update_cache_size:
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
			goto out;
	}

	memcg_update_array_size(num_memcgs);
out:
	mutex_unlock(&slab_mutex);
	return ret;
}
#endif

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}


141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
/*
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */

166 167
struct kmem_cache *
kmem_cache_create_memcg(struct mem_cgroup *memcg, const char *name, size_t size,
G
Glauber Costa 已提交
168 169
			size_t align, unsigned long flags, void (*ctor)(void *),
			struct kmem_cache *parent_cache)
170 171
{
	struct kmem_cache *s = NULL;
172
	int err = 0;
173

174 175
	get_online_cpus();
	mutex_lock(&slab_mutex);
176

177
	if (!kmem_cache_sanity_check(memcg, name, size) == 0)
178 179
		goto out_locked;

180 181 182 183 184 185 186
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
187

188
	s = __kmem_cache_alias(memcg, name, size, align, flags, ctor);
189 190 191
	if (s)
		goto out_locked;

192
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
193
	if (s) {
194
		s->object_size = s->size = size;
195
		s->align = calculate_alignment(flags, align, size);
196
		s->ctor = ctor;
197

G
Glauber Costa 已提交
198
		if (memcg_register_cache(memcg, s, parent_cache)) {
199 200 201 202 203
			kmem_cache_free(kmem_cache, s);
			err = -ENOMEM;
			goto out_locked;
		}

204 205 206 207 208 209 210 211
		s->name = kstrdup(name, GFP_KERNEL);
		if (!s->name) {
			kmem_cache_free(kmem_cache, s);
			err = -ENOMEM;
			goto out_locked;
		}

		err = __kmem_cache_create(s, flags);
212 213
		if (!err) {
			s->refcount = 1;
214
			list_add(&s->list, &slab_caches);
215
			memcg_cache_list_add(memcg, s);
216
		} else {
217
			kfree(s->name);
218 219
			kmem_cache_free(kmem_cache, s);
		}
220
	} else
221
		err = -ENOMEM;
222

223
out_locked:
224 225 226
	mutex_unlock(&slab_mutex);
	put_online_cpus();

227 228 229 230 231 232 233 234 235 236 237 238 239
	if (err) {

		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
				name, err);
			dump_stack();
		}

		return NULL;
	}
240 241 242

	return s;
}
243 244 245 246 247

struct kmem_cache *
kmem_cache_create(const char *name, size_t size, size_t align,
		  unsigned long flags, void (*ctor)(void *))
{
G
Glauber Costa 已提交
248
	return kmem_cache_create_memcg(NULL, name, size, align, flags, ctor, NULL);
249
}
250
EXPORT_SYMBOL(kmem_cache_create);
251

252 253
void kmem_cache_destroy(struct kmem_cache *s)
{
254 255 256
	/* Destroy all the children caches if we aren't a memcg cache */
	kmem_cache_destroy_memcg_children(s);

257 258 259 260 261 262 263
	get_online_cpus();
	mutex_lock(&slab_mutex);
	s->refcount--;
	if (!s->refcount) {
		list_del(&s->list);

		if (!__kmem_cache_shutdown(s)) {
264
			mutex_unlock(&slab_mutex);
265 266 267
			if (s->flags & SLAB_DESTROY_BY_RCU)
				rcu_barrier();

268
			memcg_release_cache(s);
269
			kfree(s->name);
270
			kmem_cache_free(kmem_cache, s);
271 272
		} else {
			list_add(&s->list, &slab_caches);
273
			mutex_unlock(&slab_mutex);
274 275 276 277
			printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n",
				s->name);
			dump_stack();
		}
278 279
	} else {
		mutex_unlock(&slab_mutex);
280 281 282 283 284
	}
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

285 286 287 288
int slab_is_available(void)
{
	return slab_state >= UP;
}
289

290 291 292 293 294 295 296 297 298
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
		unsigned long flags)
{
	int err;

	s->name = name;
	s->size = s->object_size = size;
299
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
300 301 302
	err = __kmem_cache_create(s, flags);

	if (err)
303
		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
				unsigned long flags)
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

	create_boot_cache(s, name, size, flags);
	list_add(&s->list, &slab_caches);
	s->refcount = 1;
	return s;
}

323 324 325 326 327 328 329 330
struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_dma_caches);
#endif

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

static inline int size_index_elem(size_t bytes)
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
	int index;

377
	if (unlikely(size > KMALLOC_MAX_SIZE)) {
378
		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
379
		return NULL;
380
	}
381

382 383 384 385 386 387 388 389 390
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
	} else
		index = fls(size - 1);

#ifdef CONFIG_ZONE_DMA
391
	if (unlikely((flags & GFP_DMA)))
392 393 394 395 396 397
		return kmalloc_dma_caches[index];

#endif
	return kmalloc_caches[index];
}

398 399 400 401 402 403 404 405 406
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
void __init create_kmalloc_caches(unsigned long flags)
{
	int i;

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	/*
	 * Patch up the size_index table if we have strange large alignment
	 * requirements for the kmalloc array. This is only the case for
	 * MIPS it seems. The standard arches will not generate any code here.
	 *
	 * Largest permitted alignment is 256 bytes due to the way we
	 * handle the index determination for the smaller caches.
	 *
	 * Make sure that nothing crazy happens if someone starts tinkering
	 * around with ARCH_KMALLOC_MINALIGN
	 */
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
		int elem = size_index_elem(i);

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
448 449
	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
		if (!kmalloc_caches[i]) {
450 451
			kmalloc_caches[i] = create_kmalloc_cache(NULL,
							1 << i, flags);
452
		}
453

454 455 456 457 458 459 460
		/*
		 * Caches that are not of the two-to-the-power-of size.
		 * These have to be created immediately after the
		 * earlier power of two caches
		 */
		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
			kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
461

462 463
		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
			kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
464 465
	}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
	/* Kmalloc array is now usable */
	slab_state = UP;

	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
		struct kmem_cache *s = kmalloc_caches[i];
		char *n;

		if (s) {
			n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));

			BUG_ON(!n);
			s->name = n;
		}
	}

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
		struct kmem_cache *s = kmalloc_caches[i];

		if (s) {
			int size = kmalloc_size(i);
			char *n = kasprintf(GFP_NOWAIT,
				 "dma-kmalloc-%d", size);

			BUG_ON(!n);
			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
				size, SLAB_CACHE_DMA | flags);
		}
	}
#endif
}
497 498
#endif /* !CONFIG_SLOB */

499 500 501 502 503 504 505 506 507
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
508

509
#ifdef CONFIG_SLABINFO
510 511 512 513 514 515 516

#ifdef CONFIG_SLAB
#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
#else
#define SLABINFO_RIGHTS S_IRUSR
#endif

517
void print_slabinfo_header(struct seq_file *m)
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

540 541 542 543 544 545 546 547 548 549 550
static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

	mutex_lock(&slab_mutex);
	if (!n)
		print_slabinfo_header(m);

	return seq_list_start(&slab_caches, *pos);
}

551
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
552 553 554 555
{
	return seq_list_next(p, &slab_caches, pos);
}

556
void slab_stop(struct seq_file *m, void *p)
557 558 559 560
{
	mutex_unlock(&slab_mutex);
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;
	int i;

	if (!is_root_cache(s))
		return;

	for_each_memcg_cache_index(i) {
		c = cache_from_memcg(s, i);
		if (!c)
			continue;

		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

int cache_show(struct kmem_cache *s, struct seq_file *m)
588
{
589 590 591 592 593
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

594 595
	memcg_accumulate_slabinfo(s, &sinfo);

596
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
597
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
598 599 600 601 602 603 604 605 606
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
	return 0;
607 608
}

609 610 611 612 613 614 615 616 617
static int s_show(struct seq_file *m, void *p)
{
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);

	if (!is_root_cache(s))
		return 0;
	return cache_show(s, m);
}

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
	.start = s_start,
633 634
	.next = slab_next,
	.stop = slab_stop,
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
	.show = s_show,
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
653 654
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
						&proc_slabinfo_operations);
655 656 657 658
	return 0;
}
module_init(slab_proc_init);
#endif /* CONFIG_SLABINFO */