vmscan.c 84.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
43 44 45 46 47 48

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

49 50
#include "internal.h"

51 52 53
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

54 55 56 57 58 59
enum lumpy_mode {
	LUMPY_MODE_NONE,
	LUMPY_MODE_ASYNC,
	LUMPY_MODE_SYNC,
};

L
Linus Torvalds 已提交
60 61 62 63
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

64 65 66
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

67 68 69
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

70 71
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
72
	/* This context's GFP mask */
A
Al Viro 已提交
73
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
74 75 76

	int may_writepage;

77 78
	/* Can mapped pages be reclaimed? */
	int may_unmap;
79

80 81 82
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

83
	int swappiness;
84

A
Andy Whitcroft 已提交
85
	int order;
86

87
	/*
88 89
	 * Intend to reclaim enough continuous memory rather than reclaim
	 * enough amount of memory. i.e, mode for high order allocation.
90
	 */
91
	enum lumpy_mode lumpy_reclaim_mode;
92

93 94 95
	/* Which cgroup do we reclaim from */
	struct mem_cgroup *mem_cgroup;

96 97 98 99 100
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
137
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
138 139 140 141

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

142
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
143
#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
144
#else
145
#define scanning_global_lru(sc)	(1)
146 147
#endif

148 149 150
static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
						  struct scan_control *sc)
{
151
	if (!scanning_global_lru(sc))
K
KOSAKI Motohiro 已提交
152 153
		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);

154 155 156
	return &zone->reclaim_stat;
}

157 158
static unsigned long zone_nr_lru_pages(struct zone *zone,
				struct scan_control *sc, enum lru_list lru)
159
{
160
	if (!scanning_global_lru(sc))
161 162
		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);

163 164 165 166
	return zone_page_state(zone, NR_LRU_BASE + lru);
}


L
Linus Torvalds 已提交
167 168 169
/*
 * Add a shrinker callback to be called from the vm
 */
170
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
171
{
172 173 174 175
	shrinker->nr = 0;
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
176
}
177
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
178 179 180 181

/*
 * Remove one
 */
182
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
183 184 185 186 187
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
188
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
189 190 191 192 193 194 195 196 197 198

#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
199
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
200 201 202 203 204 205 206
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
207 208
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
209
 */
210 211
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
			unsigned long lru_pages)
L
Linus Torvalds 已提交
212 213
{
	struct shrinker *shrinker;
214
	unsigned long ret = 0;
L
Linus Torvalds 已提交
215 216 217 218 219

	if (scanned == 0)
		scanned = SWAP_CLUSTER_MAX;

	if (!down_read_trylock(&shrinker_rwsem))
220
		return 1;	/* Assume we'll be able to shrink next time */
L
Linus Torvalds 已提交
221 222 223 224

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
225
		unsigned long max_pass;
L
Linus Torvalds 已提交
226

227
		max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
L
Linus Torvalds 已提交
228
		delta = (4 * scanned) / shrinker->seeks;
229
		delta *= max_pass;
L
Linus Torvalds 已提交
230 231
		do_div(delta, lru_pages + 1);
		shrinker->nr += delta;
232
		if (shrinker->nr < 0) {
233 234 235
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
			       shrinker->shrink, shrinker->nr);
236 237 238 239 240 241 242 243 244 245
			shrinker->nr = max_pass;
		}

		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
		if (shrinker->nr > max_pass * 2)
			shrinker->nr = max_pass * 2;
L
Linus Torvalds 已提交
246 247 248 249 250 251 252

		total_scan = shrinker->nr;
		shrinker->nr = 0;

		while (total_scan >= SHRINK_BATCH) {
			long this_scan = SHRINK_BATCH;
			int shrink_ret;
253
			int nr_before;
L
Linus Torvalds 已提交
254

255 256 257
			nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
			shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
								gfp_mask);
L
Linus Torvalds 已提交
258 259
			if (shrink_ret == -1)
				break;
260 261
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
262
			count_vm_events(SLABS_SCANNED, this_scan);
L
Linus Torvalds 已提交
263 264 265 266 267 268 269 270
			total_scan -= this_scan;

			cond_resched();
		}

		shrinker->nr += total_scan;
	}
	up_read(&shrinker_rwsem);
271
	return ret;
L
Linus Torvalds 已提交
272 273
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc,
				   bool sync)
{
	enum lumpy_mode mode = sync ? LUMPY_MODE_SYNC : LUMPY_MODE_ASYNC;

	/*
	 * Some reclaim have alredy been failed. No worth to try synchronous
	 * lumpy reclaim.
	 */
	if (sync && sc->lumpy_reclaim_mode == LUMPY_MODE_NONE)
		return;

	/*
	 * If we need a large contiguous chunk of memory, or have
	 * trouble getting a small set of contiguous pages, we
	 * will reclaim both active and inactive pages.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		sc->lumpy_reclaim_mode = mode;
	else if (sc->order && priority < DEF_PRIORITY - 2)
		sc->lumpy_reclaim_mode = mode;
	else
		sc->lumpy_reclaim_mode = LUMPY_MODE_NONE;
}

static void disable_lumpy_reclaim_mode(struct scan_control *sc)
{
	sc->lumpy_reclaim_mode = LUMPY_MODE_NONE;
}

L
Linus Torvalds 已提交
304 305
static inline int is_page_cache_freeable(struct page *page)
{
306 307 308 309 310
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
311
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
312 313
}

314 315
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
316
{
317
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
318 319 320 321 322
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
323 324 325 326

	/* lumpy reclaim for hugepage often need a lot of write */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		return 1;
L
Linus Torvalds 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
345
	lock_page_nosync(page);
346 347
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
348 349 350
	unlock_page(page);
}

351 352 353 354 355 356 357 358 359 360 361 362
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
363
/*
A
Andrew Morton 已提交
364 365
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
366
 */
367
static pageout_t pageout(struct page *page, struct address_space *mapping,
368
			 struct scan_control *sc)
L
Linus Torvalds 已提交
369 370 371 372 373 374 375 376
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
377
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
393
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
394 395
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
396
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
397 398 399 400 401 402 403
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
404
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
405 406 407 408 409 410 411
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
412 413
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
414 415 416 417 418 419 420
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
421
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
422 423 424
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
425 426 427 428 429 430

		/*
		 * Wait on writeback if requested to. This happens when
		 * direct reclaiming a large contiguous area and the
		 * first attempt to free a range of pages fails.
		 */
431 432
		if (PageWriteback(page) &&
		    sc->lumpy_reclaim_mode == LUMPY_MODE_SYNC)
433 434
			wait_on_page_writeback(page);

L
Linus Torvalds 已提交
435 436 437 438
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
439
		trace_mm_vmscan_writepage(page,
440
			trace_reclaim_flags(page, sc->lumpy_reclaim_mode));
441
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
442 443 444 445 446 447
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

448
/*
N
Nick Piggin 已提交
449 450
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
451
 */
N
Nick Piggin 已提交
452
static int __remove_mapping(struct address_space *mapping, struct page *page)
453
{
454 455
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
456

N
Nick Piggin 已提交
457
	spin_lock_irq(&mapping->tree_lock);
458
	/*
N
Nick Piggin 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
482
	 */
N
Nick Piggin 已提交
483
	if (!page_freeze_refs(page, 2))
484
		goto cannot_free;
N
Nick Piggin 已提交
485 486 487
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
488
		goto cannot_free;
N
Nick Piggin 已提交
489
	}
490 491 492 493

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
494
		spin_unlock_irq(&mapping->tree_lock);
495
		swapcache_free(swap, page);
N
Nick Piggin 已提交
496
	} else {
497 498 499 500
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

N
Nick Piggin 已提交
501
		__remove_from_page_cache(page);
N
Nick Piggin 已提交
502
		spin_unlock_irq(&mapping->tree_lock);
503
		mem_cgroup_uncharge_cache_page(page);
504 505 506

		if (freepage != NULL)
			freepage(page);
507 508 509 510 511
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
512
	spin_unlock_irq(&mapping->tree_lock);
513 514 515
	return 0;
}

N
Nick Piggin 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
549
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
563
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
564 565 566 567 568 569 570 571
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
572 573 574 575 576 577 578 579 580 581
		/*
		 * When racing with an mlock clearing (page is
		 * unlocked), make sure that if the other thread does
		 * not observe our setting of PG_lru and fails
		 * isolation, we see PG_mlocked cleared below and move
		 * the page back to the evictable list.
		 *
		 * The other side is TestClearPageMlocked().
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

600 601 602 603 604
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
605 606 607
	put_page(page);		/* drop ref from isolate */
}

608 609 610
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
611
	PAGEREF_KEEP,
612 613 614 615 616 617
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
618
	int referenced_ptes, referenced_page;
619 620
	unsigned long vm_flags;

621 622
	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
	referenced_page = TestClearPageReferenced(page);
623 624

	/* Lumpy reclaim - ignore references */
625
	if (sc->lumpy_reclaim_mode != LUMPY_MODE_NONE)
626 627 628 629 630 631 632 633 634
		return PAGEREF_RECLAIM;

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
	if (referenced_ptes) {
		if (PageAnon(page))
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

		if (referenced_page)
			return PAGEREF_ACTIVATE;

		return PAGEREF_KEEP;
	}
659 660

	/* Reclaim if clean, defer dirty pages to writeback */
661
	if (referenced_page && !PageSwapBacked(page))
662 663 664
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
665 666
}

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
static noinline_for_stack void free_page_list(struct list_head *free_pages)
{
	struct pagevec freed_pvec;
	struct page *page, *tmp;

	pagevec_init(&freed_pvec, 1);

	list_for_each_entry_safe(page, tmp, free_pages, lru) {
		list_del(&page->lru);
		if (!pagevec_add(&freed_pvec, page)) {
			__pagevec_free(&freed_pvec);
			pagevec_reinit(&freed_pvec);
		}
	}

	pagevec_free(&freed_pvec);
}

L
Linus Torvalds 已提交
685
/*
A
Andrew Morton 已提交
686
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
687
 */
A
Andrew Morton 已提交
688
static unsigned long shrink_page_list(struct list_head *page_list,
689
				      struct zone *zone,
690
				      struct scan_control *sc)
L
Linus Torvalds 已提交
691 692
{
	LIST_HEAD(ret_pages);
693
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
694
	int pgactivate = 0;
695 696
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
697
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
698 699 700 701

	cond_resched();

	while (!list_empty(page_list)) {
702
		enum page_references references;
L
Linus Torvalds 已提交
703 704 705 706 707 708 709 710 711
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
712
		if (!trylock_page(page))
L
Linus Torvalds 已提交
713 714
			goto keep;

N
Nick Piggin 已提交
715
		VM_BUG_ON(PageActive(page));
716
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
717 718

		sc->nr_scanned++;
719

N
Nick Piggin 已提交
720 721
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
722

723
		if (!sc->may_unmap && page_mapped(page))
724 725
			goto keep_locked;

L
Linus Torvalds 已提交
726 727 728 729
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

730 731 732 733 734 735 736 737 738 739 740 741
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
			/*
			 * Synchronous reclaim is performed in two passes,
			 * first an asynchronous pass over the list to
			 * start parallel writeback, and a second synchronous
			 * pass to wait for the IO to complete.  Wait here
			 * for any page for which writeback has already
			 * started.
			 */
742 743
			if (sc->lumpy_reclaim_mode == LUMPY_MODE_SYNC &&
			    may_enter_fs)
744
				wait_on_page_writeback(page);
745 746 747 748
			else {
				unlock_page(page);
				goto keep_lumpy;
			}
749
		}
L
Linus Torvalds 已提交
750

751 752 753
		references = page_check_references(page, sc);
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
754
			goto activate_locked;
755 756
		case PAGEREF_KEEP:
			goto keep_locked;
757 758 759 760
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
761 762 763 764 765

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
766
		if (PageAnon(page) && !PageSwapCache(page)) {
767 768
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
769
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
770
				goto activate_locked;
771
			may_enter_fs = 1;
N
Nick Piggin 已提交
772
		}
L
Linus Torvalds 已提交
773 774 775 776 777 778 779 780

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
781
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
782 783 784 785
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
786 787
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
788 789 790 791 792 793
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
794 795
			nr_dirty++;

796
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
797
				goto keep_locked;
798
			if (!may_enter_fs)
L
Linus Torvalds 已提交
799
				goto keep_locked;
800
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
801 802 803
				goto keep_locked;

			/* Page is dirty, try to write it out here */
804
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
805
			case PAGE_KEEP:
806
				nr_congested++;
L
Linus Torvalds 已提交
807 808 809 810
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
811 812 813
				if (PageWriteback(page))
					goto keep_lumpy;
				if (PageDirty(page))
L
Linus Torvalds 已提交
814
					goto keep;
815

L
Linus Torvalds 已提交
816 817 818 819
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
820
				if (!trylock_page(page))
L
Linus Torvalds 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
840
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
841 842 843 844 845 846 847 848 849 850
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
851
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
852 853
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
870 871
		}

N
Nick Piggin 已提交
872
		if (!mapping || !__remove_mapping(mapping, page))
873
			goto keep_locked;
L
Linus Torvalds 已提交
874

N
Nick Piggin 已提交
875 876 877 878 879 880 881 882
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
883
free_it:
884
		nr_reclaimed++;
885 886 887 888 889 890

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
891 892
		continue;

N
Nick Piggin 已提交
893
cull_mlocked:
894 895
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
896 897
		unlock_page(page);
		putback_lru_page(page);
898
		disable_lumpy_reclaim_mode(sc);
N
Nick Piggin 已提交
899 900
		continue;

L
Linus Torvalds 已提交
901
activate_locked:
902 903
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
904
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
905
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
906 907 908 909 910
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
911 912
		disable_lumpy_reclaim_mode(sc);
keep_lumpy:
L
Linus Torvalds 已提交
913
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
914
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
915
	}
916

917 918 919 920 921 922
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
923
	if (nr_dirty == nr_congested && nr_dirty != 0)
924 925
		zone_set_flag(zone, ZONE_CONGESTED);

926 927
	free_page_list(&free_pages);

L
Linus Torvalds 已提交
928
	list_splice(&ret_pages, page_list);
929
	count_vm_events(PGACTIVATE, pgactivate);
930
	return nr_reclaimed;
L
Linus Torvalds 已提交
931 932
}

A
Andy Whitcroft 已提交
933 934 935 936 937 938 939 940 941 942
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
943
int __isolate_lru_page(struct page *page, int mode, int file)
A
Andy Whitcroft 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
		return ret;

959
	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
960 961
		return ret;

L
Lee Schermerhorn 已提交
962 963 964 965 966 967 968 969
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
970
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
971

A
Andy Whitcroft 已提交
972 973 974 975 976 977 978 979 980 981 982 983 984
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
985 986 987 988 989 990 991 992 993 994 995 996 997 998
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
999 1000
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
1001
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
1002 1003 1004
 *
 * returns how many pages were moved onto *@dst.
 */
1005 1006
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
1007
		unsigned long *scanned, int order, int mode, int file)
L
Linus Torvalds 已提交
1008
{
1009
	unsigned long nr_taken = 0;
1010 1011 1012
	unsigned long nr_lumpy_taken = 0;
	unsigned long nr_lumpy_dirty = 0;
	unsigned long nr_lumpy_failed = 0;
1013
	unsigned long scan;
L
Linus Torvalds 已提交
1014

1015
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1016 1017 1018 1019 1020 1021
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
1022 1023 1024
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1025
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1026

1027
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
1028 1029
		case 0:
			list_move(&page->lru, dst);
1030
			mem_cgroup_del_lru(page);
1031
			nr_taken++;
A
Andy Whitcroft 已提交
1032 1033 1034 1035 1036
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
1037
			mem_cgroup_rotate_lru_list(page, page_lru(page));
A
Andy Whitcroft 已提交
1038
			continue;
1039

A
Andy Whitcroft 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
		 * as the mem_map is guarenteed valid out to MAX_ORDER,
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
1072

A
Andy Whitcroft 已提交
1073 1074
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
1075
				break;
1076 1077 1078 1079 1080 1081 1082

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1083 1084
			    !PageSwapCache(cursor_page))
				break;
1085

1086
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
A
Andy Whitcroft 已提交
1087
				list_move(&cursor_page->lru, dst);
1088
				mem_cgroup_del_lru(cursor_page);
A
Andy Whitcroft 已提交
1089
				nr_taken++;
1090 1091 1092
				nr_lumpy_taken++;
				if (PageDirty(cursor_page))
					nr_lumpy_dirty++;
A
Andy Whitcroft 已提交
1093
				scan++;
1094
			} else {
1095 1096 1097 1098
				/* the page is freed already. */
				if (!page_count(cursor_page))
					continue;
				break;
A
Andy Whitcroft 已提交
1099 1100
			}
		}
1101 1102 1103 1104

		/* If we break out of the loop above, lumpy reclaim failed */
		if (pfn < end_pfn)
			nr_lumpy_failed++;
L
Linus Torvalds 已提交
1105 1106 1107
	}

	*scanned = scan;
1108 1109 1110 1111 1112 1113

	trace_mm_vmscan_lru_isolate(order,
			nr_to_scan, scan,
			nr_taken,
			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
			mode);
L
Linus Torvalds 已提交
1114 1115 1116
	return nr_taken;
}

1117 1118 1119 1120
static unsigned long isolate_pages_global(unsigned long nr,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
1121
					int active, int file)
1122
{
1123
	int lru = LRU_BASE;
1124
	if (active)
1125 1126 1127 1128
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1129
								mode, file);
1130 1131
}

A
Andy Whitcroft 已提交
1132 1133 1134 1135
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
1136 1137
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
1138 1139
{
	int nr_active = 0;
1140
	int lru;
A
Andy Whitcroft 已提交
1141 1142
	struct page *page;

1143
	list_for_each_entry(page, page_list, lru) {
1144
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
1145
		if (PageActive(page)) {
1146
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
1147 1148 1149
			ClearPageActive(page);
			nr_active++;
		}
1150 1151
		if (count)
			count[lru]++;
1152
	}
A
Andy Whitcroft 已提交
1153 1154 1155 1156

	return nr_active;
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1168 1169 1170
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page) && get_page_unless_zero(page)) {
L
Lee Schermerhorn 已提交
1191
			int lru = page_lru(page);
1192 1193
			ret = 0;
			ClearPageLRU(page);
1194 1195

			del_page_from_lru_list(zone, page, lru);
1196 1197 1198 1199 1200 1201
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

	if (!scanning_global_lru(sc))
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1227 1228 1229 1230
/*
 * TODO: Try merging with migrations version of putback_lru_pages
 */
static noinline_for_stack void
1231
putback_lru_pages(struct zone *zone, struct scan_control *sc,
1232 1233 1234 1235 1236
				unsigned long nr_anon, unsigned long nr_file,
				struct list_head *page_list)
{
	struct page *page;
	struct pagevec pvec;
1237
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275

	pagevec_init(&pvec, 1);

	/*
	 * Put back any unfreeable pages.
	 */
	spin_lock(&zone->lru_lock);
	while (!list_empty(page_list)) {
		int lru;
		page = lru_to_page(page_list);
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
		SetPageLRU(page);
		lru = page_lru(page);
		add_page_to_lru_list(zone, page, lru);
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
			reclaim_stat->recent_rotated[file]++;
		}
		if (!pagevec_add(&pvec, page)) {
			spin_unlock_irq(&zone->lru_lock);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

	spin_unlock_irq(&zone->lru_lock);
	pagevec_release(&pvec);
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
static noinline_for_stack void update_isolated_counts(struct zone *zone,
					struct scan_control *sc,
					unsigned long *nr_anon,
					unsigned long *nr_file,
					struct list_head *isolated_list)
{
	unsigned long nr_active;
	unsigned int count[NR_LRU_LISTS] = { 0, };
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);

	nr_active = clear_active_flags(isolated_list, count);
	__count_vm_events(PGDEACTIVATE, nr_active);

	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
			      -count[LRU_ACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
			      -count[LRU_INACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
			      -count[LRU_ACTIVE_ANON]);
	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
			      -count[LRU_INACTIVE_ANON]);

	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);

	reclaim_stat->recent_scanned[0] += *nr_anon;
	reclaim_stat->recent_scanned[1] += *nr_file;
}

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
/*
 * Returns true if the caller should wait to clean dirty/writeback pages.
 *
 * If we are direct reclaiming for contiguous pages and we do not reclaim
 * everything in the list, try again and wait for writeback IO to complete.
 * This will stall high-order allocations noticeably. Only do that when really
 * need to free the pages under high memory pressure.
 */
static inline bool should_reclaim_stall(unsigned long nr_taken,
					unsigned long nr_freed,
					int priority,
					struct scan_control *sc)
{
	int lumpy_stall_priority;

	/* kswapd should not stall on sync IO */
	if (current_is_kswapd())
		return false;

	/* Only stall on lumpy reclaim */
1327
	if (sc->lumpy_reclaim_mode == LUMPY_MODE_NONE)
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
		return false;

	/* If we have relaimed everything on the isolated list, no stall */
	if (nr_freed == nr_taken)
		return false;

	/*
	 * For high-order allocations, there are two stall thresholds.
	 * High-cost allocations stall immediately where as lower
	 * order allocations such as stacks require the scanning
	 * priority to be much higher before stalling.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		lumpy_stall_priority = DEF_PRIORITY;
	else
		lumpy_stall_priority = DEF_PRIORITY / 3;

	return priority <= lumpy_stall_priority;
}

L
Linus Torvalds 已提交
1348
/*
A
Andrew Morton 已提交
1349 1350
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1351
 */
1352 1353 1354
static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1355 1356
{
	LIST_HEAD(page_list);
1357
	unsigned long nr_scanned;
1358
	unsigned long nr_reclaimed = 0;
1359 1360 1361
	unsigned long nr_taken;
	unsigned long nr_anon;
	unsigned long nr_file;
1362

1363
	while (unlikely(too_many_isolated(zone, file, sc))) {
1364
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1365 1366 1367 1368 1369 1370

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

1371
	set_lumpy_reclaim_mode(priority, sc, false);
L
Linus Torvalds 已提交
1372 1373
	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1374

1375 1376 1377
	if (scanning_global_lru(sc)) {
		nr_taken = isolate_pages_global(nr_to_scan,
			&page_list, &nr_scanned, sc->order,
1378 1379
			sc->lumpy_reclaim_mode == LUMPY_MODE_NONE ?
					ISOLATE_INACTIVE : ISOLATE_BOTH,
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
			zone, 0, file);
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
					       nr_scanned);
		else
			__count_zone_vm_events(PGSCAN_DIRECT, zone,
					       nr_scanned);
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
			&page_list, &nr_scanned, sc->order,
1391 1392
			sc->lumpy_reclaim_mode == LUMPY_MODE_NONE ?
					ISOLATE_INACTIVE : ISOLATE_BOTH,
1393 1394 1395 1396 1397 1398 1399
			zone, sc->mem_cgroup,
			0, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
	}
1400

1401 1402 1403 1404
	if (nr_taken == 0) {
		spin_unlock_irq(&zone->lru_lock);
		return 0;
	}
A
Andy Whitcroft 已提交
1405

1406
	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
L
Linus Torvalds 已提交
1407

1408
	spin_unlock_irq(&zone->lru_lock);
1409

1410
	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1411

1412 1413
	/* Check if we should syncronously wait for writeback */
	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1414
		set_lumpy_reclaim_mode(priority, sc, true);
1415
		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1416
	}
1417

1418 1419 1420 1421
	local_irq_disable();
	if (current_is_kswapd())
		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
N
Nick Piggin 已提交
1422

1423
	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1424 1425 1426 1427 1428 1429

	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
		priority,
		trace_shrink_flags(file, sc->lumpy_reclaim_mode));
1430
	return nr_reclaimed;
L
Linus Torvalds 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct pagevec pvec;
	struct page *page;

	pagevec_init(&pvec, 1);

	while (!list_empty(list)) {
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

		list_move(&page->lru, &zone->lru[lru].list);
		mem_cgroup_add_lru_list(page, lru);
		pgmoved++;

		if (!pagevec_add(&pvec, page) || list_empty(list)) {
			spin_unlock_irq(&zone->lru_lock);
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1483

A
Andrew Morton 已提交
1484
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1485
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1486
{
1487
	unsigned long nr_taken;
1488
	unsigned long pgscanned;
1489
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1490
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1491
	LIST_HEAD(l_active);
1492
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1493
	struct page *page;
1494
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1495
	unsigned long nr_rotated = 0;
L
Linus Torvalds 已提交
1496 1497 1498

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1499
	if (scanning_global_lru(sc)) {
1500 1501 1502 1503
		nr_taken = isolate_pages_global(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						1, file);
1504
		zone->pages_scanned += pgscanned;
1505 1506 1507 1508 1509 1510 1511 1512 1513
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						sc->mem_cgroup, 1, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
1514
	}
1515

1516
	reclaim_stat->recent_scanned[file] += nr_taken;
1517

1518
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1519
	if (file)
1520
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1521
	else
1522
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1523
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1524 1525 1526 1527 1528 1529
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1530

L
Lee Schermerhorn 已提交
1531 1532 1533 1534 1535
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1536
		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1537
			nr_rotated++;
1538 1539 1540 1541 1542 1543 1544 1545 1546
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1547
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1548 1549 1550 1551
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1552

1553
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1554 1555 1556
		list_add(&page->lru, &l_inactive);
	}

1557
	/*
1558
	 * Move pages back to the lru list.
1559
	 */
1560
	spin_lock_irq(&zone->lru_lock);
1561
	/*
1562 1563 1564 1565
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1566
	 */
1567
	reclaim_stat->recent_rotated[file] += nr_rotated;
1568

1569 1570 1571 1572
	move_active_pages_to_lru(zone, &l_active,
						LRU_ACTIVE + file * LRU_FILE);
	move_active_pages_to_lru(zone, &l_inactive,
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1573
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1574
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1575 1576
}

1577
#ifdef CONFIG_SWAP
1578
static int inactive_anon_is_low_global(struct zone *zone)
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

1603 1604 1605 1606 1607 1608 1609
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1610
	if (scanning_global_lru(sc))
1611 1612
		low = inactive_anon_is_low_global(zone);
	else
1613
		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1614 1615
	return low;
}
1616 1617 1618 1619 1620 1621 1622
#else
static inline int inactive_anon_is_low(struct zone *zone,
					struct scan_control *sc)
{
	return 0;
}
#endif
1623

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

	if (scanning_global_lru(sc))
		low = inactive_file_is_low_global(zone);
	else
		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
	return low;
}

1660 1661 1662 1663 1664 1665 1666 1667 1668
static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
				int file)
{
	if (file)
		return inactive_file_is_low(zone, sc);
	else
		return inactive_anon_is_low(zone, sc);
}

1669
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1670 1671
	struct zone *zone, struct scan_control *sc, int priority)
{
1672 1673
	int file = is_file_lru(lru);

1674 1675 1676
	if (is_active_lru(lru)) {
		if (inactive_list_is_low(zone, sc, file))
		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1677 1678 1679
		return 0;
	}

R
Rik van Riel 已提交
1680
	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1681 1682
}

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
/*
 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
 * until we collected @swap_cluster_max pages to scan.
 */
static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
				       unsigned long *nr_saved_scan)
{
	unsigned long nr;

	*nr_saved_scan += nr_to_scan;
	nr = *nr_saved_scan;

	if (nr >= SWAP_CLUSTER_MAX)
		*nr_saved_scan = 0;
	else
		nr = 0;

	return nr;
}

1703 1704 1705 1706 1707 1708
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1709
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1710
 */
1711 1712
static void get_scan_count(struct zone *zone, struct scan_control *sc,
					unsigned long *nr, int priority)
1713 1714 1715 1716
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1717
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
	u64 fraction[2], denominator;
	enum lru_list l;
	int noswap = 0;

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1730

1731 1732 1733 1734
	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1735

1736
	if (scanning_global_lru(sc)) {
1737 1738 1739
		free  = zone_page_state(zone, NR_FREE_PAGES);
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1740
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1741 1742 1743 1744
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1745
		}
1746 1747
	}

1748 1749 1750 1751 1752 1753 1754
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
	anon_prio = sc->swappiness;
	file_prio = 200 - sc->swappiness;

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1766
	spin_lock_irq(&zone->lru_lock);
1767 1768 1769
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1770 1771
	}

1772 1773 1774
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1775 1776 1777
	}

	/*
1778 1779 1780
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1781
	 */
1782 1783
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1784

1785 1786
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1787
	spin_unlock_irq(&zone->lru_lock);
1788

1789 1790 1791 1792 1793 1794 1795
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
	for_each_evictable_lru(l) {
		int file = is_file_lru(l);
		unsigned long scan;
1796

1797 1798 1799 1800 1801 1802 1803 1804
		scan = zone_nr_lru_pages(zone, sc, l);
		if (priority || noswap) {
			scan >>= priority;
			scan = div64_u64(scan * fraction[file], denominator);
		}
		nr[l] = nr_scan_try_batch(scan,
					  &reclaim_stat->nr_saved_scan[l]);
	}
1805
}
1806

L
Linus Torvalds 已提交
1807 1808 1809
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1810
static void shrink_zone(int priority, struct zone *zone,
1811
				struct scan_control *sc)
L
Linus Torvalds 已提交
1812
{
1813
	unsigned long nr[NR_LRU_LISTS];
1814
	unsigned long nr_to_scan;
1815
	enum lru_list l;
1816
	unsigned long nr_reclaimed = sc->nr_reclaimed;
1817
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1818

1819
	get_scan_count(zone, sc, nr, priority);
L
Linus Torvalds 已提交
1820

1821 1822
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
1823
		for_each_evictable_lru(l) {
1824
			if (nr[l]) {
K
KOSAKI Motohiro 已提交
1825 1826
				nr_to_scan = min_t(unsigned long,
						   nr[l], SWAP_CLUSTER_MAX);
1827
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
1828

1829 1830
				nr_reclaimed += shrink_list(l, nr_to_scan,
							    zone, sc, priority);
1831
			}
L
Linus Torvalds 已提交
1832
		}
1833 1834 1835 1836 1837 1838 1839 1840
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1841
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1842
			break;
L
Linus Torvalds 已提交
1843 1844
	}

1845 1846
	sc->nr_reclaimed = nr_reclaimed;

1847 1848 1849 1850
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1851
	if (inactive_anon_is_low(zone, sc))
1852 1853
		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);

1854
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1855 1856 1857 1858 1859 1860 1861
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1862 1863
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1864 1865
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1866 1867 1868
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1869 1870 1871 1872
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
1873
static void shrink_zones(int priority, struct zonelist *zonelist,
1874
					struct scan_control *sc)
L
Linus Torvalds 已提交
1875
{
1876
	struct zoneref *z;
1877
	struct zone *zone;
1878

1879 1880
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
1881
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1882
			continue;
1883 1884 1885 1886
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
1887
		if (scanning_global_lru(sc)) {
1888 1889
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
1890
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1891 1892
				continue;	/* Let kswapd poll it */
		}
1893

1894
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
1895
	}
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

/*
 * As hibernation is going on, kswapd is freezed so that it can't mark
 * the zone into all_unreclaimable. It can't handle OOM during hibernation.
 * So let's check zone's unreclaimable in direct reclaim as well as kswapd.
 */
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;
	bool all_unreclaimable = true;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
		if (zone_reclaimable(zone)) {
			all_unreclaimable = false;
			break;
		}
	}

1927
	return all_unreclaimable;
L
Linus Torvalds 已提交
1928
}
1929

L
Linus Torvalds 已提交
1930 1931 1932 1933 1934 1935 1936 1937
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
1938 1939 1940 1941
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
1942 1943 1944
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
1945
 */
1946
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1947
					struct scan_control *sc)
L
Linus Torvalds 已提交
1948 1949
{
	int priority;
1950
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
1951
	struct reclaim_state *reclaim_state = current->reclaim_state;
1952
	struct zoneref *z;
1953
	struct zone *zone;
1954
	unsigned long writeback_threshold;
L
Linus Torvalds 已提交
1955

1956
	get_mems_allowed();
1957 1958
	delayacct_freepages_start();

1959
	if (scanning_global_lru(sc))
1960
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
1961 1962

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1963
		sc->nr_scanned = 0;
1964 1965
		if (!priority)
			disable_swap_token();
1966
		shrink_zones(priority, zonelist, sc);
1967 1968 1969 1970
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
1971
		if (scanning_global_lru(sc)) {
1972
			unsigned long lru_pages = 0;
1973 1974
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
1975 1976 1977 1978 1979 1980
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

1981
			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1982
			if (reclaim_state) {
1983
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1984 1985
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
1986
		}
1987
		total_scanned += sc->nr_scanned;
1988
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
1998 1999
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2000
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2001
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2002 2003 2004
		}

		/* Take a nap, wait for some writeback to complete */
2005
		if (!sc->hibernation_mode && sc->nr_scanned &&
2006 2007 2008 2009 2010 2011 2012
		    priority < DEF_PRIORITY - 2) {
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
							NULL, &preferred_zone);
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2013
	}
2014

L
Linus Torvalds 已提交
2015
out:
2016
	delayacct_freepages_end();
2017
	put_mems_allowed();
2018

2019 2020 2021 2022
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

	/* top priority shrink_zones still had more to do? don't OOM, then */
2023
	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2024 2025 2026
		return 1;

	return 0;
L
Linus Torvalds 已提交
2027 2028
}

2029
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2030
				gfp_t gfp_mask, nodemask_t *nodemask)
2031
{
2032
	unsigned long nr_reclaimed;
2033 2034 2035
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2036
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2037
		.may_unmap = 1,
2038
		.may_swap = 1,
2039 2040 2041
		.swappiness = vm_swappiness,
		.order = order,
		.mem_cgroup = NULL,
2042
		.nodemask = nodemask,
2043 2044
	};

2045 2046 2047 2048 2049 2050 2051 2052 2053
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2054 2055
}

2056
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2057

2058 2059 2060
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
						gfp_t gfp_mask, bool noswap,
						unsigned int swappiness,
2061
						struct zone *zone)
2062 2063
{
	struct scan_control sc = {
2064
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2065 2066 2067 2068 2069 2070 2071 2072 2073
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.swappiness = swappiness,
		.order = 0,
		.mem_cgroup = mem,
	};
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2074 2075 2076 2077 2078

	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
						      sc.may_writepage,
						      sc.gfp_mask);

2079 2080 2081 2082 2083 2084 2085 2086
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
	shrink_zone(0, zone, &sc);
2087 2088 2089

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2090 2091 2092
	return sc.nr_reclaimed;
}

2093
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
K
KOSAKI Motohiro 已提交
2094 2095 2096
					   gfp_t gfp_mask,
					   bool noswap,
					   unsigned int swappiness)
2097
{
2098
	struct zonelist *zonelist;
2099
	unsigned long nr_reclaimed;
2100 2101
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2102
		.may_unmap = 1,
2103
		.may_swap = !noswap,
2104
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
K
KOSAKI Motohiro 已提交
2105
		.swappiness = swappiness,
2106 2107
		.order = 0,
		.mem_cgroup = mem_cont,
2108
		.nodemask = NULL, /* we don't care the placement */
2109 2110
	};

2111 2112 2113
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2124 2125 2126
}
#endif

2127
/* is kswapd sleeping prematurely? */
2128
static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
2129
{
2130
	int i;
2131 2132 2133 2134 2135 2136

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
		return 1;

	/* If after HZ/10, a zone is below the high mark, it's premature */
2137 2138 2139 2140 2141 2142
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2143
		if (zone->all_unreclaimable)
2144 2145
			continue;

2146
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2147 2148
								0, 0))
			return 1;
2149
	}
2150 2151 2152 2153

	return 0;
}

L
Linus Torvalds 已提交
2154 2155
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2156
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
 *
 * Returns the number of pages which were actually freed.
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2169 2170 2171 2172 2173
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2174
 */
2175
static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
L
Linus Torvalds 已提交
2176 2177 2178 2179
{
	int all_zones_ok;
	int priority;
	int i;
2180
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2181
	struct reclaim_state *reclaim_state = current->reclaim_state;
2182 2183
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2184
		.may_unmap = 1,
2185
		.may_swap = 1,
2186 2187 2188 2189 2190
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
2191
		.swappiness = vm_swappiness,
A
Andy Whitcroft 已提交
2192
		.order = order,
2193
		.mem_cgroup = NULL,
2194
	};
L
Linus Torvalds 已提交
2195 2196
loop_again:
	total_scanned = 0;
2197
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2198
	sc.may_writepage = !laptop_mode;
2199
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2200 2201 2202 2203

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
		unsigned long lru_pages = 0;
2204
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2205

2206 2207 2208 2209
		/* The swap token gets in the way of swapout... */
		if (!priority)
			disable_swap_token();

L
Linus Torvalds 已提交
2210 2211
		all_zones_ok = 1;

2212 2213 2214 2215 2216 2217
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2218

2219 2220
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2221

2222
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2223
				continue;
L
Linus Torvalds 已提交
2224

2225 2226 2227 2228
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2229
			if (inactive_anon_is_low(zone, &sc))
2230 2231 2232
				shrink_active_list(SWAP_CLUSTER_MAX, zone,
							&sc, priority, 0);

2233
			if (!zone_watermark_ok_safe(zone, order,
2234
					high_wmark_pages(zone), 0, 0)) {
2235
				end_zone = i;
A
Andrew Morton 已提交
2236
				break;
L
Linus Torvalds 已提交
2237 2238
			}
		}
A
Andrew Morton 已提交
2239 2240 2241
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2242 2243 2244
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2245
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2259
			int nr_slab;
L
Linus Torvalds 已提交
2260

2261
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2262 2263
				continue;

2264
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2265 2266 2267
				continue;

			sc.nr_scanned = 0;
2268 2269 2270 2271 2272

			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 * For now we ignore the return value
			 */
2273 2274
			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);

2275 2276 2277 2278
			/*
			 * We put equal pressure on every zone, unless one
			 * zone has way too many pages free already.
			 */
2279
			if (!zone_watermark_ok_safe(zone, order,
2280
					8*high_wmark_pages(zone), end_zone, 0))
2281
				shrink_zone(priority, zone, &sc);
L
Linus Torvalds 已提交
2282
			reclaim_state->reclaimed_slab = 0;
2283 2284
			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
						lru_pages);
2285
			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
2286
			total_scanned += sc.nr_scanned;
2287
			if (zone->all_unreclaimable)
L
Linus Torvalds 已提交
2288
				continue;
2289
			if (nr_slab == 0 && !zone_reclaimable(zone))
2290
				zone->all_unreclaimable = 1;
L
Linus Torvalds 已提交
2291 2292 2293 2294 2295 2296
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2297
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2298
				sc.may_writepage = 1;
2299

2300
			if (!zone_watermark_ok_safe(zone, order,
2301 2302 2303 2304 2305 2306 2307
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2308
				if (!zone_watermark_ok_safe(zone, order,
2309 2310
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2311 2312 2313 2314 2315 2316 2317 2318 2319
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
				 * spectulatively avoid congestion waits
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2320
			}
2321

L
Linus Torvalds 已提交
2322 2323 2324 2325 2326 2327 2328
		}
		if (all_zones_ok)
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2329 2330 2331 2332 2333 2334
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2335 2336 2337 2338 2339 2340 2341

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2342
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2343 2344 2345 2346 2347
			break;
	}
out:
	if (!all_zones_ok) {
		cond_resched();
2348 2349 2350

		try_to_freeze();

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2368 2369 2370
		goto loop_again;
	}

2371
	return sc.nr_reclaimed;
L
Linus Torvalds 已提交
2372 2373 2374 2375
}

/*
 * The background pageout daemon, started as a kernel thread
2376
 * from the init process.
L
Linus Torvalds 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
	unsigned long order;
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
	DEFINE_WAIT(wait);
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2396
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2397

2398 2399
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2400
	if (!cpumask_empty(cpumask))
2401
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2416
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2417
	set_freezable();
L
Linus Torvalds 已提交
2418 2419 2420 2421

	order = 0;
	for ( ; ; ) {
		unsigned long new_order;
2422
		int ret;
2423

L
Linus Torvalds 已提交
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
		new_order = pgdat->kswapd_max_order;
		pgdat->kswapd_max_order = 0;
		if (order < new_order) {
			/*
			 * Don't sleep if someone wants a larger 'order'
			 * allocation
			 */
			order = new_order;
		} else {
2434 2435 2436 2437
			if (!freezing(current) && !kthread_should_stop()) {
				long remaining = 0;

				/* Try to sleep for a short interval */
2438
				if (!sleeping_prematurely(pgdat, order, remaining)) {
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
					remaining = schedule_timeout(HZ/10);
					finish_wait(&pgdat->kswapd_wait, &wait);
					prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
				}

				/*
				 * After a short sleep, check if it was a
				 * premature sleep. If not, then go fully
				 * to sleep until explicitly woken up
				 */
2449 2450
				if (!sleeping_prematurely(pgdat, order, remaining)) {
					trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465

					/*
					 * vmstat counters are not perfectly
					 * accurate and the estimated value
					 * for counters such as NR_FREE_PAGES
					 * can deviate from the true value by
					 * nr_online_cpus * threshold. To
					 * avoid the zone watermarks being
					 * breached while under pressure, we
					 * reduce the per-cpu vmstat threshold
					 * while kswapd is awake and restore
					 * them before going back to sleep.
					 */
					set_pgdat_percpu_threshold(pgdat,
						calculate_normal_threshold);
2466
					schedule();
2467 2468
					set_pgdat_percpu_threshold(pgdat,
						calculate_pressure_threshold);
2469
				} else {
2470
					if (remaining)
2471
						count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2472
					else
2473
						count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2474 2475
				}
			}
2476

L
Linus Torvalds 已提交
2477 2478 2479 2480
			order = pgdat->kswapd_max_order;
		}
		finish_wait(&pgdat->kswapd_wait, &wait);

2481 2482 2483 2484 2485 2486 2487 2488
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2489 2490
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2491
			balance_pgdat(pgdat, order);
2492
		}
L
Linus Torvalds 已提交
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
void wakeup_kswapd(struct zone *zone, int order)
{
	pg_data_t *pgdat;

2504
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2505 2506
		return;

2507
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2508
		return;
2509
	pgdat = zone->zone_pgdat;
L
Linus Torvalds 已提交
2510 2511
	if (pgdat->kswapd_max_order < order)
		pgdat->kswapd_max_order = order;
2512
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2513
		return;
2514 2515 2516 2517
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2518
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2519 2520
}

2521 2522 2523 2524 2525 2526 2527 2528
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2529
{
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2554 2555
}

2556
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2557
/*
2558
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2559 2560 2561 2562 2563
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2564
 */
2565
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2566
{
2567 2568
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2569 2570 2571
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2572
		.may_writepage = 1,
2573 2574 2575 2576
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.swappiness = vm_swappiness,
		.order = 0,
L
Linus Torvalds 已提交
2577
	};
2578 2579 2580
	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
2581

2582 2583 2584 2585
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2586

2587
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2588

2589 2590 2591
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
2592

2593
	return nr_reclaimed;
L
Linus Torvalds 已提交
2594
}
2595
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
2596 2597 2598 2599 2600

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
2601
static int __devinit cpu_callback(struct notifier_block *nfb,
2602
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
2603
{
2604
	int nid;
L
Linus Torvalds 已提交
2605

2606
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2607
		for_each_node_state(nid, N_HIGH_MEMORY) {
2608
			pg_data_t *pgdat = NODE_DATA(nid);
2609 2610 2611
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
2612

2613
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
2614
				/* One of our CPUs online: restore mask */
2615
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
2616 2617 2618 2619 2620
		}
	}
	return NOTIFY_OK;
}

2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
2654 2655
static int __init kswapd_init(void)
{
2656
	int nid;
2657

L
Linus Torvalds 已提交
2658
	swap_setup();
2659
	for_each_node_state(nid, N_HIGH_MEMORY)
2660
 		kswapd_run(nid);
L
Linus Torvalds 已提交
2661 2662 2663 2664 2665
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

2676
#define RECLAIM_OFF 0
2677
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2678 2679 2680
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

2681 2682 2683 2684 2685 2686 2687
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

2688 2689 2690 2691 2692 2693
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

2694 2695 2696 2697 2698 2699
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

2742 2743 2744
/*
 * Try to free up some pages from this zone through reclaim.
 */
2745
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2746
{
2747
	/* Minimum pages needed in order to stay on node */
2748
	const unsigned long nr_pages = 1 << order;
2749 2750
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
2751
	int priority;
2752 2753
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2754
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2755
		.may_swap = 1,
2756 2757
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
2758
		.gfp_mask = gfp_mask,
2759
		.swappiness = vm_swappiness,
2760
		.order = order,
2761
	};
2762
	unsigned long nr_slab_pages0, nr_slab_pages1;
2763 2764

	cond_resched();
2765 2766 2767 2768 2769 2770
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2771
	lockdep_set_current_reclaim_state(gfp_mask);
2772 2773
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2774

2775
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2776 2777 2778 2779 2780 2781
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
2782
			shrink_zone(priority, zone, &sc);
2783
			priority--;
2784
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2785
	}
2786

2787 2788
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
2789
		/*
2790
		 * shrink_slab() does not currently allow us to determine how
2791 2792 2793 2794
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
2795
		 *
2796 2797
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
2798
		 */
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
			if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
2812 2813 2814 2815 2816

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
2817 2818 2819
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2820 2821
	}

2822
	p->reclaim_state = NULL;
2823
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2824
	lockdep_clear_current_reclaim_state();
2825
	return sc.nr_reclaimed >= nr_pages;
2826
}
2827 2828 2829 2830

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
2831
	int ret;
2832 2833

	/*
2834 2835
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
2836
	 *
2837 2838 2839 2840 2841
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
2842
	 */
2843 2844
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2845
		return ZONE_RECLAIM_FULL;
2846

2847
	if (zone->all_unreclaimable)
2848
		return ZONE_RECLAIM_FULL;
2849

2850
	/*
2851
	 * Do not scan if the allocation should not be delayed.
2852
	 */
2853
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2854
		return ZONE_RECLAIM_NOSCAN;
2855 2856 2857 2858 2859 2860 2861

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
2862
	node_id = zone_to_nid(zone);
2863
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2864
		return ZONE_RECLAIM_NOSCAN;
2865 2866

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2867 2868
		return ZONE_RECLAIM_NOSCAN;

2869 2870 2871
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

2872 2873 2874
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

2875
	return ret;
2876
}
2877
#endif
L
Lee Schermerhorn 已提交
2878 2879 2880 2881 2882 2883 2884

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
2885 2886
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
2887 2888
 *
 * Reasons page might not be evictable:
2889
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
2890
 * (2) page is part of an mlocked VMA
2891
 *
L
Lee Schermerhorn 已提交
2892 2893 2894 2895
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

2896 2897 2898
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
2899 2900
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
2901 2902 2903

	return 1;
}
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
	VM_BUG_ON(PageActive(page));

retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
2923
		enum lru_list l = page_lru_base_type(page);
2924

2925 2926
		__dec_zone_state(zone, NR_UNEVICTABLE);
		list_move(&page->lru, &zone->lru[l].list);
K
KAMEZAWA Hiroyuki 已提交
2927
		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2928 2929 2930 2931 2932 2933 2934 2935
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
K
KAMEZAWA Hiroyuki 已提交
2936
		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

/**
 * scan_zone_unevictable_pages - check unevictable list for evictable pages
 * @zone - zone of which to scan the unevictable list
 *
 * Scan @zone's unevictable LRU lists to check for pages that have become
 * evictable.  Move those that have to @zone's inactive list where they
 * become candidates for reclaim, unless shrink_inactive_zone() decides
 * to reactivate them.  Pages that are still unevictable are rotated
 * back onto @zone's unevictable list.
 */
#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3008
static void scan_zone_unevictable_pages(struct zone *zone)
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
{
	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
	unsigned long scan;
	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);

	while (nr_to_scan > 0) {
		unsigned long batch_size = min(nr_to_scan,
						SCAN_UNEVICTABLE_BATCH_SIZE);

		spin_lock_irq(&zone->lru_lock);
		for (scan = 0;  scan < batch_size; scan++) {
			struct page *page = lru_to_page(l_unevictable);

			if (!trylock_page(page))
				continue;

			prefetchw_prev_lru_page(page, l_unevictable, flags);

			if (likely(PageLRU(page) && PageUnevictable(page)))
				check_move_unevictable_page(page, zone);

			unlock_page(page);
		}
		spin_unlock_irq(&zone->lru_lock);

		nr_to_scan -= batch_size;
	}
}


/**
 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
 *
 * A really big hammer:  scan all zones' unevictable LRU lists to check for
 * pages that have become evictable.  Move those back to the zones'
 * inactive list where they become candidates for reclaim.
 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
 * and we add swap to the system.  As such, it runs in the context of a task
 * that has possibly/probably made some previously unevictable pages
 * evictable.
 */
3050
static void scan_all_zones_unevictable_pages(void)
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
{
	struct zone *zone;

	for_each_zone(zone) {
		scan_zone_unevictable_pages(zone);
	}
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3066
			   void __user *buffer,
3067 3068
			   size_t *length, loff_t *ppos)
{
3069
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3070 3071 3072 3073 3074 3075 3076 3077

	if (write && *(unsigned long *)table->data)
		scan_all_zones_unevictable_pages();

	scan_unevictable_pages = 0;
	return 0;
}

3078
#ifdef CONFIG_NUMA
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

static ssize_t read_scan_unevictable_node(struct sys_device *dev,
					  struct sysdev_attribute *attr,
					  char *buf)
{
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

static ssize_t write_scan_unevictable_node(struct sys_device *dev,
					   struct sysdev_attribute *attr,
					const char *buf, size_t count)
{
	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
	struct zone *zone;
	unsigned long res;
	unsigned long req = strict_strtoul(buf, 10, &res);

	if (!req)
		return 1;	/* zero is no-op */

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;
		scan_zone_unevictable_pages(zone);
	}
	return 1;
}


static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
}

void scan_unevictable_unregister_node(struct node *node)
{
	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
}
3125
#endif