/* * SGI UltraViolet TLB flush routines. * * (c) 2008 Cliff Wickman , SGI. * * This code is released under the GNU General Public License version 2 or * later. */ #include #include #include #include #include #include #include #include #include #include #include static struct bau_control **uv_bau_table_bases __read_mostly; static int uv_bau_retry_limit __read_mostly; static int uv_nshift __read_mostly; /* position of pnode (which is nasid>>1) */ static unsigned long uv_mmask __read_mostly; char *status_table[] = { "IDLE", "ACTIVE", "DESTINATION TIMEOUT", "SOURCE TIMEOUT" }; DEFINE_PER_CPU(struct ptc_stats, ptcstats); DEFINE_PER_CPU(struct bau_control, bau_control); /* * Free a software acknowledge hardware resource by clearing its Pending * bit. This will return a reply to the sender. * If the message has timed out, a reply has already been sent by the * hardware but the resource has not been released. In that case our * clear of the Timeout bit (as well) will free the resource. No reply will * be sent (the hardware will only do one reply per message). */ static void uv_reply_to_message(int resource, struct bau_payload_queue_entry *msg, struct bau_msg_status *msp) { unsigned long dw; dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource); msg->replied_to = 1; msg->sw_ack_vector = 0; if (msp) msp->seen_by.bits = 0; uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw); return; } /* * Do all the things a cpu should do for a TLB shootdown message. * Other cpu's may come here at the same time for this message. */ static void uv_bau_process_message(struct bau_payload_queue_entry *msg, int msg_slot, int sw_ack_slot) { int cpu; unsigned long this_cpu_mask; struct bau_msg_status *msp; msp = __get_cpu_var(bau_control).msg_statuses + msg_slot; cpu = uv_blade_processor_id(); msg->number_of_cpus = uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id())); this_cpu_mask = (unsigned long)1 << cpu; if (msp->seen_by.bits & this_cpu_mask) return; atomic_or_long(&msp->seen_by.bits, this_cpu_mask); if (msg->replied_to == 1) return; if (msg->address == TLB_FLUSH_ALL) { local_flush_tlb(); __get_cpu_var(ptcstats).alltlb++; } else { __flush_tlb_one(msg->address); __get_cpu_var(ptcstats).onetlb++; } __get_cpu_var(ptcstats).requestee++; atomic_inc_short(&msg->acknowledge_count); if (msg->number_of_cpus == msg->acknowledge_count) uv_reply_to_message(sw_ack_slot, msg, msp); return; } /* * Examine the payload queue on all the distribution nodes to see * which messages have not been seen, and which cpu(s) have not seen them. * * Returns the number of cpu's that have not responded. */ static int uv_examine_destinations(struct bau_target_nodemask *distribution) { int sender; int i; int j; int k; int count = 0; struct bau_control *bau_tablesp; struct bau_payload_queue_entry *msg; struct bau_msg_status *msp; sender = smp_processor_id(); for (i = 0; i < (sizeof(struct bau_target_nodemask) * BITSPERBYTE); i++) { if (!bau_node_isset(i, distribution)) continue; bau_tablesp = uv_bau_table_bases[i]; for (msg = bau_tablesp->va_queue_first, j = 0; j < DESTINATION_PAYLOAD_QUEUE_SIZE; msg++, j++) { if ((msg->sending_cpu == sender) && (!msg->replied_to)) { msp = bau_tablesp->msg_statuses + j; printk(KERN_DEBUG "blade %d: address:%#lx %d of %d, not cpu(s): ", i, msg->address, msg->acknowledge_count, msg->number_of_cpus); for (k = 0; k < msg->number_of_cpus; k++) { if (!((long)1 << k & msp-> seen_by.bits)) { count++; printk("%d ", k); } } printk("\n"); } } } return count; } /* * wait for completion of a broadcast message * * return COMPLETE, RETRY or GIVEUP */ static int uv_wait_completion(struct bau_activation_descriptor *bau_desc, unsigned long mmr_offset, int right_shift) { int exams = 0; long destination_timeouts = 0; long source_timeouts = 0; unsigned long descriptor_status; while ((descriptor_status = (((unsigned long) uv_read_local_mmr(mmr_offset) >> right_shift) & UV_ACT_STATUS_MASK)) != DESC_STATUS_IDLE) { if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) { source_timeouts++; if (source_timeouts > SOURCE_TIMEOUT_LIMIT) source_timeouts = 0; __get_cpu_var(ptcstats).s_retry++; return FLUSH_RETRY; } /* * spin here looking for progress at the destinations */ if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) { destination_timeouts++; if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) { /* * returns number of cpus not responding */ if (uv_examine_destinations (&bau_desc->distribution) == 0) { __get_cpu_var(ptcstats).d_retry++; return FLUSH_RETRY; } exams++; if (exams >= uv_bau_retry_limit) { printk(KERN_DEBUG "uv_flush_tlb_others"); printk("giving up on cpu %d\n", smp_processor_id()); return FLUSH_GIVEUP; } /* * delays can hang the simulator udelay(1000); */ destination_timeouts = 0; } } } return FLUSH_COMPLETE; } /** * uv_flush_send_and_wait * * Send a broadcast and wait for a broadcast message to complete. * * The cpumaskp mask contains the cpus the broadcast was sent to. * * Returns 1 if all remote flushing was done. The mask is zeroed. * Returns 0 if some remote flushing remains to be done. The mask is left * unchanged. */ int uv_flush_send_and_wait(int cpu, int this_blade, struct bau_activation_descriptor *bau_desc, cpumask_t *cpumaskp) { int completion_status = 0; int right_shift; int bit; int blade; int tries = 0; unsigned long index; unsigned long mmr_offset; cycles_t time1; cycles_t time2; if (cpu < UV_CPUS_PER_ACT_STATUS) { mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0; right_shift = cpu * UV_ACT_STATUS_SIZE; } else { mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1; right_shift = ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE); } time1 = get_cycles(); do { tries++; index = ((unsigned long) 1 << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) | cpu; uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index); completion_status = uv_wait_completion(bau_desc, mmr_offset, right_shift); } while (completion_status == FLUSH_RETRY); time2 = get_cycles(); __get_cpu_var(ptcstats).sflush += (time2 - time1); if (tries > 1) __get_cpu_var(ptcstats).retriesok++; if (completion_status == FLUSH_GIVEUP) { /* * Cause the caller to do an IPI-style TLB shootdown on * the cpu's, all of which are still in the mask. */ __get_cpu_var(ptcstats).ptc_i++; return 0; } /* * Success, so clear the remote cpu's from the mask so we don't * use the IPI method of shootdown on them. */ for_each_cpu_mask(bit, *cpumaskp) { blade = uv_cpu_to_blade_id(bit); if (blade == this_blade) continue; cpu_clear(bit, *cpumaskp); } if (!cpus_empty(*cpumaskp)) return 0; return 1; } /** * uv_flush_tlb_others - globally purge translation cache of a virtual * address or all TLB's * @cpumaskp: mask of all cpu's in which the address is to be removed * @mm: mm_struct containing virtual address range * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu) * * This is the entry point for initiating any UV global TLB shootdown. * * Purges the translation caches of all specified processors of the given * virtual address, or purges all TLB's on specified processors. * * The caller has derived the cpumaskp from the mm_struct and has subtracted * the local cpu from the mask. This function is called only if there * are bits set in the mask. (e.g. flush_tlb_page()) * * The cpumaskp is converted into a nodemask of the nodes containing * the cpus. * * Returns 1 if all remote flushing was done. * Returns 0 if some remote flushing remains to be done. */ int uv_flush_tlb_others(cpumask_t *cpumaskp, struct mm_struct *mm, unsigned long va) { int i; int bit; int blade; int cpu; int this_blade; int locals = 0; struct bau_activation_descriptor *bau_desc; cpu = uv_blade_processor_id(); this_blade = uv_numa_blade_id(); bau_desc = __get_cpu_var(bau_control).descriptor_base; bau_desc += UV_ITEMS_PER_DESCRIPTOR * cpu; bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE); i = 0; for_each_cpu_mask(bit, *cpumaskp) { blade = uv_cpu_to_blade_id(bit); if (blade > (UV_DISTRIBUTION_SIZE - 1)) BUG(); if (blade == this_blade) { locals++; continue; } bau_node_set(blade, &bau_desc->distribution); i++; } if (i == 0) { /* * no off_node flushing; return status for local node */ if (locals) return 0; else return 1; } __get_cpu_var(ptcstats).requestor++; __get_cpu_var(ptcstats).ntargeted += i; bau_desc->payload.address = va; bau_desc->payload.sending_cpu = smp_processor_id(); return uv_flush_send_and_wait(cpu, this_blade, bau_desc, cpumaskp); } /* * The BAU message interrupt comes here. (registered by set_intr_gate) * See entry_64.S * * We received a broadcast assist message. * * Interrupts may have been disabled; this interrupt could represent * the receipt of several messages. * * All cores/threads on this node get this interrupt. * The last one to see it does the s/w ack. * (the resource will not be freed until noninterruptable cpus see this * interrupt; hardware will timeout the s/w ack and reply ERROR) */ void uv_bau_message_interrupt(struct pt_regs *regs) { struct bau_payload_queue_entry *pqp; struct bau_payload_queue_entry *msg; struct pt_regs *old_regs = set_irq_regs(regs); cycles_t time1, time2; int msg_slot; int sw_ack_slot; int fw; int count = 0; unsigned long local_pnode; ack_APIC_irq(); exit_idle(); irq_enter(); time1 = get_cycles(); local_pnode = uv_blade_to_pnode(uv_numa_blade_id()); pqp = __get_cpu_var(bau_control).va_queue_first; msg = __get_cpu_var(bau_control).bau_msg_head; while (msg->sw_ack_vector) { count++; fw = msg->sw_ack_vector; msg_slot = msg - pqp; sw_ack_slot = ffs(fw) - 1; uv_bau_process_message(msg, msg_slot, sw_ack_slot); msg++; if (msg > __get_cpu_var(bau_control).va_queue_last) msg = __get_cpu_var(bau_control).va_queue_first; __get_cpu_var(bau_control).bau_msg_head = msg; } if (!count) __get_cpu_var(ptcstats).nomsg++; else if (count > 1) __get_cpu_var(ptcstats).multmsg++; time2 = get_cycles(); __get_cpu_var(ptcstats).dflush += (time2 - time1); irq_exit(); set_irq_regs(old_regs); return; } static void uv_enable_timeouts(void) { int i; int blade; int last_blade; int pnode; int cur_cpu = 0; unsigned long apicid; last_blade = -1; for_each_online_node(i) { blade = uv_node_to_blade_id(i); if (blade == last_blade) continue; last_blade = blade; apicid = per_cpu(x86_cpu_to_apicid, cur_cpu); pnode = uv_blade_to_pnode(blade); cur_cpu += uv_blade_nr_possible_cpus(i); } return; } static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset) { if (*offset < num_possible_cpus()) return offset; return NULL; } static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset) { (*offset)++; if (*offset < num_possible_cpus()) return offset; return NULL; } static void uv_ptc_seq_stop(struct seq_file *file, void *data) { } /* * Display the statistics thru /proc * data points to the cpu number */ static int uv_ptc_seq_show(struct seq_file *file, void *data) { struct ptc_stats *stat; int cpu; cpu = *(loff_t *)data; if (!cpu) { seq_printf(file, "# cpu requestor requestee one all sretry dretry ptc_i "); seq_printf(file, "sw_ack sflush dflush sok dnomsg dmult starget\n"); } if (cpu < num_possible_cpus() && cpu_online(cpu)) { stat = &per_cpu(ptcstats, cpu); seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ", cpu, stat->requestor, stat->requestee, stat->onetlb, stat->alltlb, stat->s_retry, stat->d_retry, stat->ptc_i); seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n", uv_read_global_mmr64(uv_blade_to_pnode (uv_cpu_to_blade_id(cpu)), UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE), stat->sflush, stat->dflush, stat->retriesok, stat->nomsg, stat->multmsg, stat->ntargeted); } return 0; } /* * 0: display meaning of the statistics * >0: retry limit */ static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user, size_t count, loff_t *data) { long newmode; char optstr[64]; if (copy_from_user(optstr, user, count)) return -EFAULT; optstr[count - 1] = '\0'; if (strict_strtoul(optstr, 10, &newmode) < 0) { printk(KERN_DEBUG "%s is invalid\n", optstr); return -EINVAL; } if (newmode == 0) { printk(KERN_DEBUG "# cpu: cpu number\n"); printk(KERN_DEBUG "requestor: times this cpu was the flush requestor\n"); printk(KERN_DEBUG "requestee: times this cpu was requested to flush its TLBs\n"); printk(KERN_DEBUG "one: times requested to flush a single address\n"); printk(KERN_DEBUG "all: times requested to flush all TLB's\n"); printk(KERN_DEBUG "sretry: number of retries of source-side timeouts\n"); printk(KERN_DEBUG "dretry: number of retries of destination-side timeouts\n"); printk(KERN_DEBUG "ptc_i: times UV fell through to IPI-style flushes\n"); printk(KERN_DEBUG "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n"); printk(KERN_DEBUG "sflush_us: cycles spent in uv_flush_tlb_others()\n"); printk(KERN_DEBUG "dflush_us: cycles spent in handling flush requests\n"); printk(KERN_DEBUG "sok: successes on retry\n"); printk(KERN_DEBUG "dnomsg: interrupts with no message\n"); printk(KERN_DEBUG "dmult: interrupts with multiple messages\n"); printk(KERN_DEBUG "starget: nodes targeted\n"); } else { uv_bau_retry_limit = newmode; printk(KERN_DEBUG "timeout retry limit:%d\n", uv_bau_retry_limit); } return count; } static const struct seq_operations uv_ptc_seq_ops = { .start = uv_ptc_seq_start, .next = uv_ptc_seq_next, .stop = uv_ptc_seq_stop, .show = uv_ptc_seq_show }; static int uv_ptc_proc_open(struct inode *inode, struct file *file) { return seq_open(file, &uv_ptc_seq_ops); } static const struct file_operations proc_uv_ptc_operations = { .open = uv_ptc_proc_open, .read = seq_read, .write = uv_ptc_proc_write, .llseek = seq_lseek, .release = seq_release, }; static int __init uv_ptc_init(void) { struct proc_dir_entry *proc_uv_ptc; if (!is_uv_system()) return 0; if (!proc_mkdir("sgi_uv", NULL)) return -EINVAL; proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL); if (!proc_uv_ptc) { printk(KERN_ERR "unable to create %s proc entry\n", UV_PTC_BASENAME); return -EINVAL; } proc_uv_ptc->proc_fops = &proc_uv_ptc_operations; return 0; } /* * begin the initialization of the per-blade control structures */ static struct bau_control * __init uv_table_bases_init(int blade, int node) { int i; int *ip; struct bau_msg_status *msp; struct bau_control *bau_tablesp; bau_tablesp = kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node); if (!bau_tablesp) BUG(); bau_tablesp->msg_statuses = kmalloc_node(sizeof(struct bau_msg_status) * DESTINATION_PAYLOAD_QUEUE_SIZE, GFP_KERNEL, node); if (!bau_tablesp->msg_statuses) BUG(); for (i = 0, msp = bau_tablesp->msg_statuses; i < DESTINATION_PAYLOAD_QUEUE_SIZE; i++, msp++) { bau_cpubits_clear(&msp->seen_by, (int) uv_blade_nr_possible_cpus(blade)); } bau_tablesp->watching = kmalloc_node(sizeof(int) * DESTINATION_NUM_RESOURCES, GFP_KERNEL, node); if (!bau_tablesp->watching) BUG(); for (i = 0, ip = bau_tablesp->watching; i < DESTINATION_PAYLOAD_QUEUE_SIZE; i++, ip++) { *ip = 0; } uv_bau_table_bases[blade] = bau_tablesp; return bau_tablesp; } /* * finish the initialization of the per-blade control structures */ static void __init uv_table_bases_finish(int blade, int node, int cur_cpu, struct bau_control *bau_tablesp, struct bau_activation_descriptor *adp) { int i; struct bau_control *bcp; for (i = cur_cpu; i < (cur_cpu + uv_blade_nr_possible_cpus(blade)); i++) { bcp = (struct bau_control *)&per_cpu(bau_control, i); bcp->bau_msg_head = bau_tablesp->va_queue_first; bcp->va_queue_first = bau_tablesp->va_queue_first; bcp->va_queue_last = bau_tablesp->va_queue_last; bcp->watching = bau_tablesp->watching; bcp->msg_statuses = bau_tablesp->msg_statuses; bcp->descriptor_base = adp; } } /* * initialize the sending side's sending buffers */ static struct bau_activation_descriptor * __init uv_activation_descriptor_init(int node, int pnode) { int i; unsigned long pa; unsigned long m; unsigned long n; unsigned long mmr_image; struct bau_activation_descriptor *adp; struct bau_activation_descriptor *ad2; adp = (struct bau_activation_descriptor *) kmalloc_node(16384, GFP_KERNEL, node); if (!adp) BUG(); pa = __pa((unsigned long)adp); n = pa >> uv_nshift; m = pa & uv_mmask; mmr_image = uv_read_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE); if (mmr_image) uv_write_global_mmr64(pnode, (unsigned long) UVH_LB_BAU_SB_DESCRIPTOR_BASE, (n << UV_DESC_BASE_PNODE_SHIFT | m)); for (i = 0, ad2 = adp; i < UV_ACTIVATION_DESCRIPTOR_SIZE; i++, ad2++) { memset(ad2, 0, sizeof(struct bau_activation_descriptor)); ad2->header.sw_ack_flag = 1; ad2->header.base_dest_nodeid = uv_blade_to_pnode(uv_cpu_to_blade_id(0)); ad2->header.command = UV_NET_ENDPOINT_INTD; ad2->header.int_both = 1; /* * all others need to be set to zero: * fairness chaining multilevel count replied_to */ } return adp; } /* * initialize the destination side's receiving buffers */ static struct bau_payload_queue_entry * __init uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp) { char *cp; struct bau_payload_queue_entry *pqp; pqp = (struct bau_payload_queue_entry *) kmalloc_node((DESTINATION_PAYLOAD_QUEUE_SIZE + 1) * sizeof(struct bau_payload_queue_entry), GFP_KERNEL, node); if (!pqp) BUG(); cp = (char *)pqp + 31; pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5); bau_tablesp->va_queue_first = pqp; uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST, ((unsigned long)pnode << UV_PAYLOADQ_PNODE_SHIFT) | uv_physnodeaddr(pqp)); uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL, uv_physnodeaddr(pqp)); bau_tablesp->va_queue_last = pqp + (DESTINATION_PAYLOAD_QUEUE_SIZE - 1); uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST, (unsigned long) uv_physnodeaddr(bau_tablesp->va_queue_last)); memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DESTINATION_PAYLOAD_QUEUE_SIZE); return pqp; } /* * Initialization of each UV blade's structures */ static int __init uv_init_blade(int blade, int node, int cur_cpu) { int pnode; unsigned long pa; unsigned long apicid; struct bau_activation_descriptor *adp; struct bau_payload_queue_entry *pqp; struct bau_control *bau_tablesp; bau_tablesp = uv_table_bases_init(blade, node); pnode = uv_blade_to_pnode(blade); adp = uv_activation_descriptor_init(node, pnode); pqp = uv_payload_queue_init(node, pnode, bau_tablesp); uv_table_bases_finish(blade, node, cur_cpu, bau_tablesp, adp); /* * the below initialization can't be in firmware because the * messaging IRQ will be determined by the OS */ apicid = per_cpu(x86_cpu_to_apicid, cur_cpu); pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG); if ((pa & 0xff) != UV_BAU_MESSAGE) { uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG, ((apicid << 32) | UV_BAU_MESSAGE)); } return 0; } /* * Initialization of BAU-related structures */ static int __init uv_bau_init(void) { int blade; int node; int nblades; int last_blade; int cur_cpu = 0; if (!is_uv_system()) return 0; uv_bau_retry_limit = 1; uv_nshift = uv_hub_info->n_val; uv_mmask = ((unsigned long)1 << uv_hub_info->n_val) - 1; nblades = 0; last_blade = -1; for_each_online_node(node) { blade = uv_node_to_blade_id(node); if (blade == last_blade) continue; last_blade = blade; nblades++; } uv_bau_table_bases = (struct bau_control **) kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL); if (!uv_bau_table_bases) BUG(); last_blade = -1; for_each_online_node(node) { blade = uv_node_to_blade_id(node); if (blade == last_blade) continue; last_blade = blade; uv_init_blade(blade, node, cur_cpu); cur_cpu += uv_blade_nr_possible_cpus(blade); } set_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1); uv_enable_timeouts(); return 0; } __initcall(uv_bau_init); __initcall(uv_ptc_init);