smp.c 9.7 KB
Newer Older
1 2 3 4
/*
 * Author: Andy Fleming <afleming@freescale.com>
 * 	   Kumar Gala <galak@kernel.crashing.org>
 *
5
 * Copyright 2006-2008, 2011-2012 Freescale Semiconductor Inc.
6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute  it and/or modify it
 * under  the terms of  the GNU General  Public License as published by the
 * Free Software Foundation;  either version 2 of the  License, or (at your
 * option) any later version.
 */

#include <linux/stddef.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/of.h>
18
#include <linux/kexec.h>
19
#include <linux/highmem.h>
20
#include <linux/cpu.h>
21 22 23 24 25 26

#include <asm/machdep.h>
#include <asm/pgtable.h>
#include <asm/page.h>
#include <asm/mpic.h>
#include <asm/cacheflush.h>
27
#include <asm/dbell.h>
28
#include <asm/fsl_guts.h>
29 30

#include <sysdev/fsl_soc.h>
31
#include <sysdev/mpic.h>
32
#include "smp.h"
33

34 35 36 37 38 39 40 41
struct epapr_spin_table {
	u32	addr_h;
	u32	addr_l;
	u32	r3_h;
	u32	r3_l;
	u32	reserved;
	u32	pir;
};
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
static struct ccsr_guts __iomem *guts;
static u64 timebase;
static int tb_req;
static int tb_valid;

static void mpc85xx_timebase_freeze(int freeze)
{
	uint32_t mask;

	mask = CCSR_GUTS_DEVDISR_TB0 | CCSR_GUTS_DEVDISR_TB1;
	if (freeze)
		setbits32(&guts->devdisr, mask);
	else
		clrbits32(&guts->devdisr, mask);

	in_be32(&guts->devdisr);
}

static void mpc85xx_give_timebase(void)
{
	unsigned long flags;

	local_irq_save(flags);

	while (!tb_req)
		barrier();
	tb_req = 0;

	mpc85xx_timebase_freeze(1);
	timebase = get_tb();
	mb();
	tb_valid = 1;

	while (tb_valid)
		barrier();

	mpc85xx_timebase_freeze(0);

	local_irq_restore(flags);
}

static void mpc85xx_take_timebase(void)
{
	unsigned long flags;

	local_irq_save(flags);

	tb_req = 1;
	while (!tb_valid)
		barrier();

	set_tb(timebase >> 32, timebase & 0xffffffff);
	isync();
	tb_valid = 0;

	local_irq_restore(flags);
}

101
#ifdef CONFIG_HOTPLUG_CPU
102
static void smp_85xx_mach_cpu_die(void)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
{
	unsigned int cpu = smp_processor_id();
	u32 tmp;

	local_irq_disable();
	idle_task_exit();
	generic_set_cpu_dead(cpu);
	mb();

	mtspr(SPRN_TCR, 0);

	__flush_disable_L1();
	tmp = (mfspr(SPRN_HID0) & ~(HID0_DOZE|HID0_SLEEP)) | HID0_NAP;
	mtspr(SPRN_HID0, tmp);
	isync();

	/* Enter NAP mode. */
	tmp = mfmsr();
	tmp |= MSR_WE;
	mb();
	mtmsr(tmp);
	isync();

	while (1)
		;
}
#endif

131 132 133 134 135 136 137 138 139 140 141 142 143
static inline void flush_spin_table(void *spin_table)
{
	flush_dcache_range((ulong)spin_table,
		(ulong)spin_table + sizeof(struct epapr_spin_table));
}

static inline u32 read_spin_table_addr_l(void *spin_table)
{
	flush_dcache_range((ulong)spin_table,
		(ulong)spin_table + sizeof(struct epapr_spin_table));
	return in_be32(&((struct epapr_spin_table *)spin_table)->addr_l);
}

144
static int smp_85xx_kick_cpu(int nr)
145 146 147
{
	unsigned long flags;
	const u64 *cpu_rel_addr;
148
	__iomem struct epapr_spin_table *spin_table;
149
	struct device_node *np;
150
	int hw_cpu = get_hard_smp_processor_id(nr);
151
	int ioremappable;
152
	int ret = 0;
153

154 155
	WARN_ON(nr < 0 || nr >= NR_CPUS);
	WARN_ON(hw_cpu < 0 || hw_cpu >= NR_CPUS);
156 157 158 159 160 161 162 163

	pr_debug("smp_85xx_kick_cpu: kick CPU #%d\n", nr);

	np = of_get_cpu_node(nr, NULL);
	cpu_rel_addr = of_get_property(np, "cpu-release-addr", NULL);

	if (cpu_rel_addr == NULL) {
		printk(KERN_ERR "No cpu-release-addr for cpu %d\n", nr);
164
		return -ENOENT;
165 166
	}

167 168 169 170 171 172 173 174
	/*
	 * A secondary core could be in a spinloop in the bootpage
	 * (0xfffff000), somewhere in highmem, or somewhere in lowmem.
	 * The bootpage and highmem can be accessed via ioremap(), but
	 * we need to directly access the spinloop if its in lowmem.
	 */
	ioremappable = *cpu_rel_addr > virt_to_phys(high_memory);

175
	/* Map the spin table */
176
	if (ioremappable)
177 178
		spin_table = ioremap_prot(*cpu_rel_addr,
			sizeof(struct epapr_spin_table), _PAGE_COHERENT);
179
	else
180
		spin_table = phys_to_virt(*cpu_rel_addr);
181

182
	local_irq_save(flags);
183 184 185 186 187 188
#ifdef CONFIG_PPC32
#ifdef CONFIG_HOTPLUG_CPU
	/* Corresponding to generic_set_cpu_dead() */
	generic_set_cpu_up(nr);

	if (system_state == SYSTEM_RUNNING) {
189 190 191 192 193 194 195 196
		/*
		 * To keep it compatible with old boot program which uses
		 * cache-inhibit spin table, we need to flush the cache
		 * before accessing spin table to invalidate any staled data.
		 * We also need to flush the cache after writing to spin
		 * table to push data out.
		 */
		flush_spin_table(spin_table);
197
		out_be32(&spin_table->addr_l, 0);
198
		flush_spin_table(spin_table);
199

200 201 202 203
		/*
		 * We don't set the BPTR register here since it already points
		 * to the boot page properly.
		 */
204
		mpic_reset_core(nr);
205

206 207 208 209 210 211 212 213
		/*
		 * wait until core is ready...
		 * We need to invalidate the stale data, in case the boot
		 * loader uses a cache-inhibited spin table.
		 */
		if (!spin_event_timeout(
				read_spin_table_addr_l(spin_table) == 1,
				10000, 100)) {
214 215 216 217 218 219 220 221 222 223
			pr_err("%s: timeout waiting for core %d to reset\n",
							__func__, hw_cpu);
			ret = -ENOENT;
			goto out;
		}

		/*  clear the acknowledge status */
		__secondary_hold_acknowledge = -1;
	}
#endif
224
	flush_spin_table(spin_table);
225 226
	out_be32(&spin_table->pir, hw_cpu);
	out_be32(&spin_table->addr_l, __pa(__early_start));
227
	flush_spin_table(spin_table);
228

229
	/* Wait a bit for the CPU to ack. */
230 231 232 233 234 235 236 237
	if (!spin_event_timeout(__secondary_hold_acknowledge == hw_cpu,
					10000, 100)) {
		pr_err("%s: timeout waiting for core %d to ack\n",
						__func__, hw_cpu);
		ret = -ENOENT;
		goto out;
	}
out:
238
#else
239 240
	smp_generic_kick_cpu(nr);

241
	flush_spin_table(spin_table);
242
	out_be32(&spin_table->pir, hw_cpu);
243 244
	out_be64((u64 *)(&spin_table->addr_h),
	  __pa((u64)*((unsigned long long *)generic_secondary_smp_init)));
245
	flush_spin_table(spin_table);
246
#endif
247 248 249

	local_irq_restore(flags);

250
	if (ioremappable)
251
		iounmap(spin_table);
252

253
	return ret;
254 255 256 257
}

struct smp_ops_t smp_85xx_ops = {
	.kick_cpu = smp_85xx_kick_cpu,
258
	.cpu_bootable = smp_generic_cpu_bootable,
259 260 261 262
#ifdef CONFIG_HOTPLUG_CPU
	.cpu_disable	= generic_cpu_disable,
	.cpu_die	= generic_cpu_die,
#endif
263 264 265 266
#ifdef CONFIG_KEXEC
	.give_timebase	= smp_generic_give_timebase,
	.take_timebase	= smp_generic_take_timebase,
#endif
267 268
};

269
#ifdef CONFIG_KEXEC
270
atomic_t kexec_down_cpus = ATOMIC_INIT(0);
271 272 273

void mpc85xx_smp_kexec_cpu_down(int crash_shutdown, int secondary)
{
274
	local_irq_disable();
275

276 277 278
	if (secondary) {
		atomic_inc(&kexec_down_cpus);
		/* loop forever */
279 280 281 282 283 284 285 286 287 288
		while (1);
	}
}

static void mpc85xx_smp_kexec_down(void *arg)
{
	if (ppc_md.kexec_cpu_down)
		ppc_md.kexec_cpu_down(0,1);
}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
static void map_and_flush(unsigned long paddr)
{
	struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
	unsigned long kaddr  = (unsigned long)kmap(page);

	flush_dcache_range(kaddr, kaddr + PAGE_SIZE);
	kunmap(page);
}

/**
 * Before we reset the other cores, we need to flush relevant cache
 * out to memory so we don't get anything corrupted, some of these flushes
 * are performed out of an overabundance of caution as interrupts are not
 * disabled yet and we can switch cores
 */
static void mpc85xx_smp_flush_dcache_kexec(struct kimage *image)
{
	kimage_entry_t *ptr, entry;
	unsigned long paddr;
	int i;

	if (image->type == KEXEC_TYPE_DEFAULT) {
		/* normal kexec images are stored in temporary pages */
		for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE);
		     ptr = (entry & IND_INDIRECTION) ?
				phys_to_virt(entry & PAGE_MASK) : ptr + 1) {
			if (!(entry & IND_DESTINATION)) {
				map_and_flush(entry);
			}
		}
		/* flush out last IND_DONE page */
		map_and_flush(entry);
	} else {
		/* crash type kexec images are copied to the crash region */
		for (i = 0; i < image->nr_segments; i++) {
			struct kexec_segment *seg = &image->segment[i];
			for (paddr = seg->mem; paddr < seg->mem + seg->memsz;
			     paddr += PAGE_SIZE) {
				map_and_flush(paddr);
			}
		}
	}

	/* also flush the kimage struct to be passed in as well */
	flush_dcache_range((unsigned long)image,
			   (unsigned long)image + sizeof(*image));
}

337 338
static void mpc85xx_smp_machine_kexec(struct kimage *image)
{
339 340
	int timeout = INT_MAX;
	int i, num_cpus = num_present_cpus();
341

342
	mpc85xx_smp_flush_dcache_kexec(image);
343

344 345
	if (image->type == KEXEC_TYPE_DEFAULT)
		smp_call_function(mpc85xx_smp_kexec_down, NULL, 0);
346

347
	while ( (atomic_read(&kexec_down_cpus) != (num_cpus - 1)) &&
348 349 350 351 352 353 354 355
		( timeout > 0 ) )
	{
		timeout--;
	}

	if ( !timeout )
		printk(KERN_ERR "Unable to bring down secondary cpu(s)");

356
	for_each_online_cpu(i)
357 358 359 360 361 362 363 364 365
	{
		if ( i == smp_processor_id() ) continue;
		mpic_reset_core(i);
	}

	default_machine_kexec(image);
}
#endif /* CONFIG_KEXEC */

366
static void smp_85xx_setup_cpu(int cpu_nr)
367 368 369 370 371 372 373 374
{
	if (smp_85xx_ops.probe == smp_mpic_probe)
		mpic_setup_this_cpu();

	if (cpu_has_feature(CPU_FTR_DBELL))
		doorbell_setup_this_cpu();
}

375 376 377 378 379 380 381 382 383 384
static const struct of_device_id mpc85xx_smp_guts_ids[] = {
	{ .compatible = "fsl,mpc8572-guts", },
	{ .compatible = "fsl,p1020-guts", },
	{ .compatible = "fsl,p1021-guts", },
	{ .compatible = "fsl,p1022-guts", },
	{ .compatible = "fsl,p1023-guts", },
	{ .compatible = "fsl,p2020-guts", },
	{},
};

385 386 387 388
void __init mpc85xx_smp_init(void)
{
	struct device_node *np;

389 390
	smp_85xx_ops.setup_cpu = smp_85xx_setup_cpu;

391 392 393 394 395 396
	np = of_find_node_by_type(NULL, "open-pic");
	if (np) {
		smp_85xx_ops.probe = smp_mpic_probe;
		smp_85xx_ops.message_pass = smp_mpic_message_pass;
	}

397
	if (cpu_has_feature(CPU_FTR_DBELL)) {
398 399 400 401
		/*
		 * If left NULL, .message_pass defaults to
		 * smp_muxed_ipi_message_pass
		 */
402
		smp_85xx_ops.message_pass = NULL;
403 404
		smp_85xx_ops.cause_ipi = doorbell_cause_ipi;
	}
405

406 407 408 409 410 411 412 413 414 415 416
	np = of_find_matching_node(NULL, mpc85xx_smp_guts_ids);
	if (np) {
		guts = of_iomap(np, 0);
		of_node_put(np);
		if (!guts) {
			pr_err("%s: Could not map guts node address\n",
								__func__);
			return;
		}
		smp_85xx_ops.give_timebase = mpc85xx_give_timebase;
		smp_85xx_ops.take_timebase = mpc85xx_take_timebase;
417 418 419
#ifdef CONFIG_HOTPLUG_CPU
		ppc_md.cpu_die = smp_85xx_mach_cpu_die;
#endif
420 421
	}

422
	smp_ops = &smp_85xx_ops;
423 424 425 426 427

#ifdef CONFIG_KEXEC
	ppc_md.kexec_cpu_down = mpc85xx_smp_kexec_cpu_down;
	ppc_md.machine_kexec = mpc85xx_smp_machine_kexec;
#endif
428
}