smp.c 6.1 KB
Newer Older
1 2 3 4
/*
 * Author: Andy Fleming <afleming@freescale.com>
 * 	   Kumar Gala <galak@kernel.crashing.org>
 *
5
 * Copyright 2006-2008, 2011-2012 Freescale Semiconductor Inc.
6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute  it and/or modify it
 * under  the terms of  the GNU General  Public License as published by the
 * Free Software Foundation;  either version 2 of the  License, or (at your
 * option) any later version.
 */

#include <linux/stddef.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/of.h>
18
#include <linux/kexec.h>
19
#include <linux/highmem.h>
20
#include <linux/cpu.h>
21 22 23 24 25 26

#include <asm/machdep.h>
#include <asm/pgtable.h>
#include <asm/page.h>
#include <asm/mpic.h>
#include <asm/cacheflush.h>
27
#include <asm/dbell.h>
28 29

#include <sysdev/fsl_soc.h>
30
#include <sysdev/mpic.h>
31
#include "smp.h"
32 33 34

extern void __early_start(void);

35 36 37 38 39 40 41 42
struct epapr_spin_table {
	u32	addr_h;
	u32	addr_l;
	u32	r3_h;
	u32	r3_l;
	u32	reserved;
	u32	pir;
};
43

44
static int __init
45 46 47 48
smp_85xx_kick_cpu(int nr)
{
	unsigned long flags;
	const u64 *cpu_rel_addr;
49
	__iomem struct epapr_spin_table *spin_table;
50
	struct device_node *np;
51
	int n = 0, hw_cpu = get_hard_smp_processor_id(nr);
52
	int ioremappable;
53

54 55
	WARN_ON(nr < 0 || nr >= NR_CPUS);
	WARN_ON(hw_cpu < 0 || hw_cpu >= NR_CPUS);
56 57 58 59 60 61 62 63

	pr_debug("smp_85xx_kick_cpu: kick CPU #%d\n", nr);

	np = of_get_cpu_node(nr, NULL);
	cpu_rel_addr = of_get_property(np, "cpu-release-addr", NULL);

	if (cpu_rel_addr == NULL) {
		printk(KERN_ERR "No cpu-release-addr for cpu %d\n", nr);
64
		return -ENOENT;
65 66
	}

67 68 69 70 71 72 73 74
	/*
	 * A secondary core could be in a spinloop in the bootpage
	 * (0xfffff000), somewhere in highmem, or somewhere in lowmem.
	 * The bootpage and highmem can be accessed via ioremap(), but
	 * we need to directly access the spinloop if its in lowmem.
	 */
	ioremappable = *cpu_rel_addr > virt_to_phys(high_memory);

75
	/* Map the spin table */
76
	if (ioremappable)
77 78
		spin_table = ioremap(*cpu_rel_addr,
				sizeof(struct epapr_spin_table));
79
	else
80
		spin_table = phys_to_virt(*cpu_rel_addr);
81

82 83
	local_irq_save(flags);

84
	out_be32(&spin_table->pir, hw_cpu);
85
#ifdef CONFIG_PPC32
86
	out_be32(&spin_table->addr_l, __pa(__early_start));
87

88
	if (!ioremappable)
89 90
		flush_dcache_range((ulong)spin_table,
			(ulong)spin_table + sizeof(struct epapr_spin_table));
91

92
	/* Wait a bit for the CPU to ack. */
93
	while ((__secondary_hold_acknowledge != hw_cpu) && (++n < 1000))
94
		mdelay(1);
95
#else
96 97
	smp_generic_kick_cpu(nr);

98 99
	out_be64((u64 *)(&spin_table->addr_h),
	  __pa((u64)*((unsigned long long *)generic_secondary_smp_init)));
100

101
	if (!ioremappable)
102 103
		flush_dcache_range((ulong)spin_table,
			(ulong)spin_table + sizeof(struct epapr_spin_table));
104
#endif
105 106 107

	local_irq_restore(flags);

108
	if (ioremappable)
109
		iounmap(spin_table);
110

111
	pr_debug("waited %d msecs for CPU #%d.\n", n, nr);
112 113

	return 0;
114 115 116 117
}

struct smp_ops_t smp_85xx_ops = {
	.kick_cpu = smp_85xx_kick_cpu,
118 119 120 121
#ifdef CONFIG_KEXEC
	.give_timebase	= smp_generic_give_timebase,
	.take_timebase	= smp_generic_take_timebase,
#endif
122 123
};

124
#ifdef CONFIG_KEXEC
125
atomic_t kexec_down_cpus = ATOMIC_INIT(0);
126 127 128

void mpc85xx_smp_kexec_cpu_down(int crash_shutdown, int secondary)
{
129
	local_irq_disable();
130

131 132 133
	if (secondary) {
		atomic_inc(&kexec_down_cpus);
		/* loop forever */
134 135 136 137 138 139 140 141 142 143
		while (1);
	}
}

static void mpc85xx_smp_kexec_down(void *arg)
{
	if (ppc_md.kexec_cpu_down)
		ppc_md.kexec_cpu_down(0,1);
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
static void map_and_flush(unsigned long paddr)
{
	struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
	unsigned long kaddr  = (unsigned long)kmap(page);

	flush_dcache_range(kaddr, kaddr + PAGE_SIZE);
	kunmap(page);
}

/**
 * Before we reset the other cores, we need to flush relevant cache
 * out to memory so we don't get anything corrupted, some of these flushes
 * are performed out of an overabundance of caution as interrupts are not
 * disabled yet and we can switch cores
 */
static void mpc85xx_smp_flush_dcache_kexec(struct kimage *image)
{
	kimage_entry_t *ptr, entry;
	unsigned long paddr;
	int i;

	if (image->type == KEXEC_TYPE_DEFAULT) {
		/* normal kexec images are stored in temporary pages */
		for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE);
		     ptr = (entry & IND_INDIRECTION) ?
				phys_to_virt(entry & PAGE_MASK) : ptr + 1) {
			if (!(entry & IND_DESTINATION)) {
				map_and_flush(entry);
			}
		}
		/* flush out last IND_DONE page */
		map_and_flush(entry);
	} else {
		/* crash type kexec images are copied to the crash region */
		for (i = 0; i < image->nr_segments; i++) {
			struct kexec_segment *seg = &image->segment[i];
			for (paddr = seg->mem; paddr < seg->mem + seg->memsz;
			     paddr += PAGE_SIZE) {
				map_and_flush(paddr);
			}
		}
	}

	/* also flush the kimage struct to be passed in as well */
	flush_dcache_range((unsigned long)image,
			   (unsigned long)image + sizeof(*image));
}

192 193
static void mpc85xx_smp_machine_kexec(struct kimage *image)
{
194 195
	int timeout = INT_MAX;
	int i, num_cpus = num_present_cpus();
196

197
	mpc85xx_smp_flush_dcache_kexec(image);
198

199 200
	if (image->type == KEXEC_TYPE_DEFAULT)
		smp_call_function(mpc85xx_smp_kexec_down, NULL, 0);
201

202
	while ( (atomic_read(&kexec_down_cpus) != (num_cpus - 1)) &&
203 204 205 206 207 208 209 210
		( timeout > 0 ) )
	{
		timeout--;
	}

	if ( !timeout )
		printk(KERN_ERR "Unable to bring down secondary cpu(s)");

211
	for_each_online_cpu(i)
212 213 214 215 216 217 218 219 220
	{
		if ( i == smp_processor_id() ) continue;
		mpic_reset_core(i);
	}

	default_machine_kexec(image);
}
#endif /* CONFIG_KEXEC */

221 222 223 224 225 226 227 228 229 230
static void __init
smp_85xx_setup_cpu(int cpu_nr)
{
	if (smp_85xx_ops.probe == smp_mpic_probe)
		mpic_setup_this_cpu();

	if (cpu_has_feature(CPU_FTR_DBELL))
		doorbell_setup_this_cpu();
}

231 232 233 234
void __init mpc85xx_smp_init(void)
{
	struct device_node *np;

235 236
	smp_85xx_ops.setup_cpu = smp_85xx_setup_cpu;

237 238 239 240 241 242
	np = of_find_node_by_type(NULL, "open-pic");
	if (np) {
		smp_85xx_ops.probe = smp_mpic_probe;
		smp_85xx_ops.message_pass = smp_mpic_message_pass;
	}

243
	if (cpu_has_feature(CPU_FTR_DBELL)) {
244 245 246 247
		/*
		 * If left NULL, .message_pass defaults to
		 * smp_muxed_ipi_message_pass
		 */
248
		smp_85xx_ops.message_pass = NULL;
249 250
		smp_85xx_ops.cause_ipi = doorbell_cause_ipi;
	}
251

252
	smp_ops = &smp_85xx_ops;
253 254 255 256 257

#ifdef CONFIG_KEXEC
	ppc_md.kexec_cpu_down = mpc85xx_smp_kexec_cpu_down;
	ppc_md.machine_kexec = mpc85xx_smp_machine_kexec;
#endif
258
}