tsb.h 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#ifndef _SPARC64_TSB_H
#define _SPARC64_TSB_H

/* The sparc64 TSB is similar to the powerpc hashtables.  It's a
 * power-of-2 sized table of TAG/PTE pairs.  The cpu precomputes
 * pointers into this table for 8K and 64K page sizes, and also a
 * comparison TAG based upon the virtual address and context which
 * faults.
 *
 * TLB miss trap handler software does the actual lookup via something
 * of the form:
 *
 * 	ldxa		[%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1
 * 	ldxa		[%g0] ASI_{D,I}MMU, %g6
 *	sllx		%g6, 22, %g6
 *	srlx		%g6, 22, %g6
 * 	ldda		[%g1] ASI_NUCLEUS_QUAD_LDD, %g4
 * 	cmp		%g4, %g6
 * 	bne,pn	%xcc, tsb_miss_{d,i}tlb
 * 	 mov		FAULT_CODE_{D,I}TLB, %g3
 * 	stxa		%g5, [%g0] ASI_{D,I}TLB_DATA_IN
 * 	retry
 *
 *
 * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte
 * PTE.  The TAG is of the same layout as the TLB TAG TARGET mmu
 * register which is:
 *
 * -------------------------------------------------
 * |  -  |  CONTEXT |  -  |    VADDR bits 63:22    |
 * -------------------------------------------------
 *  63 61 60      48 47 42 41                     0
 *
 * But actually, since we use per-mm TSB's, we zero out the CONTEXT
 * field.
 *
 * Like the powerpc hashtables we need to use locking in order to
 * synchronize while we update the entries.  PTE updates need locking
 * as well.
 *
 * We need to carefully choose a lock bits for the TSB entry.  We
 * choose to use bit 47 in the tag.  Also, since we never map anything
 * at page zero in context zero, we use zero as an invalid tag entry.
 * When the lock bit is set, this forces a tag comparison failure.
 */

#define TSB_TAG_LOCK_BIT	47
#define TSB_TAG_LOCK_HIGH	(1 << (TSB_TAG_LOCK_BIT - 32))

#define TSB_TAG_INVALID_BIT	46
#define TSB_TAG_INVALID_HIGH	(1 << (TSB_TAG_INVALID_BIT - 32))

/* Some cpus support physical address quad loads.  We want to use
 * those if possible so we don't need to hard-lock the TSB mapping
 * into the TLB.  We encode some instruction patching in order to
 * support this.
 *
 * The kernel TSB is locked into the TLB by virtue of being in the
 * kernel image, so we don't play these games for swapper_tsb access.
 */
#ifndef __ASSEMBLY__
struct tsb_ldquad_phys_patch_entry {
	unsigned int	addr;
	unsigned int	sun4u_insn;
	unsigned int	sun4v_insn;
};
extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch,
	__tsb_ldquad_phys_patch_end;

struct tsb_phys_patch_entry {
	unsigned int	addr;
	unsigned int	insn;
};
extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end;
#endif
#define TSB_LOAD_QUAD(TSB, REG)	\
661:	ldda		[TSB] ASI_NUCLEUS_QUAD_LDD, REG; \
	.section	.tsb_ldquad_phys_patch, "ax"; \
	.word		661b; \
	ldda		[TSB] ASI_QUAD_LDD_PHYS, REG; \
	ldda		[TSB] ASI_QUAD_LDD_PHYS_4V, REG; \
	.previous

#define TSB_LOAD_TAG_HIGH(TSB, REG) \
661:	lduwa		[TSB] ASI_N, REG; \
	.section	.tsb_phys_patch, "ax"; \
	.word		661b; \
	lduwa		[TSB] ASI_PHYS_USE_EC, REG; \
	.previous

#define TSB_LOAD_TAG(TSB, REG) \
661:	ldxa		[TSB] ASI_N, REG; \
	.section	.tsb_phys_patch, "ax"; \
	.word		661b; \
	ldxa		[TSB] ASI_PHYS_USE_EC, REG; \
	.previous

#define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \
661:	casa		[TSB] ASI_N, REG1, REG2; \
	.section	.tsb_phys_patch, "ax"; \
	.word		661b; \
	casa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
	.previous

#define TSB_CAS_TAG(TSB, REG1, REG2) \
661:	casxa		[TSB] ASI_N, REG1, REG2; \
	.section	.tsb_phys_patch, "ax"; \
	.word		661b; \
	casxa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
	.previous

#define TSB_STORE(ADDR, VAL) \
661:	stxa		VAL, [ADDR] ASI_N; \
	.section	.tsb_phys_patch, "ax"; \
	.word		661b; \
	stxa		VAL, [ADDR] ASI_PHYS_USE_EC; \
	.previous

#define TSB_LOCK_TAG(TSB, REG1, REG2)	\
99:	TSB_LOAD_TAG_HIGH(TSB, REG1);	\
	sethi	%hi(TSB_TAG_LOCK_HIGH), REG2;\
	andcc	REG1, REG2, %g0;	\
	bne,pn	%icc, 99b;		\
	 nop;				\
	TSB_CAS_TAG_HIGH(TSB, REG1, REG2);	\
	cmp	REG1, REG2;		\
	bne,pn	%icc, 99b;		\
	 nop;				\

#define TSB_WRITE(TSB, TTE, TAG) \
	add	TSB, 0x8, TSB;   \
	TSB_STORE(TSB, TTE);     \
	sub	TSB, 0x8, TSB;   \
	TSB_STORE(TSB, TAG);

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
	/* Do a kernel page table walk.  Leaves valid PTE value in
	 * REG1.  Jumps to FAIL_LABEL on early page table walk
	 * termination.  VADDR will not be clobbered, but REG2 will.
	 *
	 * There are two masks we must apply to propagate bits from
	 * the virtual address into the PTE physical address field
	 * when dealing with huge pages.  This is because the page
	 * table boundaries do not match the huge page size(s) the
	 * hardware supports.
	 *
	 * In these cases we propagate the bits that are below the
	 * page table level where we saw the huge page mapping, but
	 * are still within the relevant physical bits for the huge
	 * page size in question.  So for PMD mappings (which fall on
	 * bit 23, for 8MB per PMD) we must propagate bit 22 for a
	 * 4MB huge page.  For huge PUDs (which fall on bit 33, for
152
	 * 8GB per PUD), we have to accommodate 256MB and 2GB huge
153
	 * pages.  So for those we propagate bits 32 to 28.
154 155 156 157 158 159
	 */
#define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL)	\
	sethi		%hi(swapper_pg_dir), REG1; \
	or		REG1, %lo(swapper_pg_dir), REG1; \
	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
160 161
	andn		REG2, 0x7, REG2; \
	ldx		[REG1 + REG2], REG1; \
162 163 164 165 166
	brz,pn		REG1, FAIL_LABEL; \
	 sllx		VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \
	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
	andn		REG2, 0x7, REG2; \
	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
167
	brz,pn		REG1, FAIL_LABEL; \
168 169 170 171 172 173 174 175
	sethi		%uhi(_PAGE_PUD_HUGE), REG2; \
	brz,pn		REG1, FAIL_LABEL; \
	 sllx		REG2, 32, REG2; \
	andcc		REG1, REG2, %g0; \
	sethi		%hi(0xf8000000), REG2; \
	bne,pt		%xcc, 697f; \
	 sllx		REG2, 1, REG2; \
	sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
176
	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
177 178
	andn		REG2, 0x7, REG2; \
	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
179
	sethi		%uhi(_PAGE_PMD_HUGE), REG2; \
180
	brz,pn		REG1, FAIL_LABEL; \
181 182 183 184 185 186 187 188 189 190
	 sllx		REG2, 32, REG2; \
	andcc		REG1, REG2, %g0; \
	be,pn		%xcc, 698f; \
	 sethi		%hi(0x400000), REG2; \
697:	brgez,pn	REG1, FAIL_LABEL; \
	 andn		REG1, REG2, REG1; \
	and		VADDR, REG2, REG2; \
	ba,pt		%xcc, 699f; \
	 or		REG1, REG2, REG1; \
698:	sllx		VADDR, 64 - PMD_SHIFT, REG2; \
191
	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
192
	andn		REG2, 0x7, REG2; \
193 194 195 196
	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
	brgez,pn	REG1, FAIL_LABEL; \
	 nop; \
699:
197

198 199 200 201 202
	/* PMD has been loaded into REG1, interpret the value, seeing
	 * if it is a HUGE PMD or a normal one.  If it is not valid
	 * then jump to FAIL_LABEL.  If it is a HUGE PMD, and it
	 * translates to a valid PTE, branch to PTE_LABEL.
	 *
203 204
	 * We have to propagate the 4MB bit of the virtual address
	 * because we are fabricating 8MB pages using 4MB hw pages.
205 206 207
	 */
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
208 209 210 211 212 213
	brz,pn		REG1, FAIL_LABEL;		\
	 sethi		%uhi(_PAGE_PMD_HUGE), REG2;	\
	sllx		REG2, 32, REG2;			\
	andcc		REG1, REG2, %g0;		\
	be,pt		%xcc, 700f;			\
	 sethi		%hi(4 * 1024 * 1024), REG2;	\
214 215
	brgez,pn	REG1, FAIL_LABEL;		\
	 andn		REG1, REG2, REG1;		\
216 217 218
	and		VADDR, REG2, REG2;		\
	brlz,pt		REG1, PTE_LABEL;		\
	 or		REG1, REG2, REG1;		\
219 220 221 222 223 224 225 226 227 228 229 230 231
700:
#else
#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
	brz,pn		REG1, FAIL_LABEL; \
	 nop;
#endif

	/* Do a user page table walk in MMU globals.  Leaves final,
	 * valid, PTE value in REG1.  Jumps to FAIL_LABEL on early
	 * page table walk termination or if the PTE is not valid.
	 *
	 * Physical base of page tables is in PHYS_PGD which will not
	 * be modified.
232 233 234 235 236 237
	 *
	 * VADDR will not be clobbered, but REG1 and REG2 will.
	 */
#define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL)	\
	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
238 239
	andn		REG2, 0x7, REG2; \
	ldxa		[PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \
240 241 242 243 244
	brz,pn		REG1, FAIL_LABEL; \
	 sllx		VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \
	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
	andn		REG2, 0x7, REG2; \
	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
245 246 247
	brz,pn		REG1, FAIL_LABEL; \
	 sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
248 249
	andn		REG2, 0x7, REG2; \
	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
250 251
	USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \
	sllx		VADDR, 64 - PMD_SHIFT, REG2; \
252
	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
253
	andn		REG2, 0x7, REG2; \
254 255 256 257 258
	add		REG1, REG2, REG1; \
	ldxa		[REG1] ASI_PHYS_USE_EC, REG1; \
	brgez,pn	REG1, FAIL_LABEL; \
	 nop; \
800:
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

/* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0.
 * If no entry is found, FAIL_LABEL will be branched to.  On success
 * the resulting PTE value will be left in REG1.  VADDR is preserved
 * by this routine.
 */
#define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \
	sethi		%hi(prom_trans), REG1; \
	or		REG1, %lo(prom_trans), REG1; \
97:	ldx		[REG1 + 0x00], REG2; \
	brz,pn		REG2, FAIL_LABEL; \
	 nop; \
	ldx		[REG1 + 0x08], REG3; \
	add		REG2, REG3, REG3; \
	cmp		REG2, VADDR; \
	bgu,pt		%xcc, 98f; \
	 cmp		VADDR, REG3; \
	bgeu,pt		%xcc, 98f; \
	 ldx		[REG1 + 0x10], REG3; \
	sub		VADDR, REG2, REG2; \
	ba,pt		%xcc, 99f; \
	 add		REG3, REG2, REG1; \
98:	ba,pt		%xcc, 97b; \
	 add		REG1, (3 * 8), REG1; \
99:

	/* We use a 32K TSB for the whole kernel, this allows to
	 * handle about 16MB of modules and vmalloc mappings without
	 * incurring many hash conflicts.
	 */
#define KERNEL_TSB_SIZE_BYTES	(32 * 1024)
#define KERNEL_TSB_NENTRIES	\
	(KERNEL_TSB_SIZE_BYTES / 16)
#define KERNEL_TSB4M_NENTRIES	4096

	/* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL
	 * on TSB hit.  REG1, REG2, REG3, and REG4 are used as temporaries
	 * and the found TTE will be left in REG1.  REG3 and REG4 must
	 * be an even/odd pair of registers.
	 *
	 * VADDR and TAG will be preserved and not clobbered by this macro.
	 */
#define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
302 303 304 305
661:	sethi		%uhi(swapper_tsb), REG1; \
	sethi		%hi(swapper_tsb), REG2; \
	or		REG1, %ulo(swapper_tsb), REG1; \
	or		REG2, %lo(swapper_tsb), REG2; \
306 307 308
	.section	.swapper_tsb_phys_patch, "ax"; \
	.word		661b; \
	.previous; \
309 310
	sllx		REG1, 32, REG1; \
	or		REG1, REG2, REG1; \
311 312 313 314
	srlx		VADDR, PAGE_SHIFT, REG2; \
	and		REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \
	sllx		REG2, 4, REG2; \
	add		REG1, REG2, REG2; \
315
	TSB_LOAD_QUAD(REG2, REG3); \
316 317 318 319 320 321 322 323 324
	cmp		REG3, TAG; \
	be,a,pt		%xcc, OK_LABEL; \
	 mov		REG4, REG1;

#ifndef CONFIG_DEBUG_PAGEALLOC
	/* This version uses a trick, the TAG is already (VADDR >> 22) so
	 * we can make use of that for the index computation.
	 */
#define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
325 326 327 328
661:	sethi		%uhi(swapper_4m_tsb), REG1; \
	sethi		%hi(swapper_4m_tsb), REG2; \
	or		REG1, %ulo(swapper_4m_tsb), REG1; \
	or		REG2, %lo(swapper_4m_tsb), REG2; \
329 330 331
	.section	.swapper_4m_tsb_phys_patch, "ax"; \
	.word		661b; \
	.previous; \
332 333
	sllx		REG1, 32, REG1; \
	or		REG1, REG2, REG1; \
334 335 336
	and		TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \
	sllx		REG2, 4, REG2; \
	add		REG1, REG2, REG2; \
337
	TSB_LOAD_QUAD(REG2, REG3); \
338 339 340 341 342 343
	cmp		REG3, TAG; \
	be,a,pt		%xcc, OK_LABEL; \
	 mov		REG4, REG1;
#endif

#endif /* !(_SPARC64_TSB_H) */