tsb.h 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
#ifndef _SPARC64_TSB_H
#define _SPARC64_TSB_H

/* The sparc64 TSB is similar to the powerpc hashtables.  It's a
 * power-of-2 sized table of TAG/PTE pairs.  The cpu precomputes
 * pointers into this table for 8K and 64K page sizes, and also a
 * comparison TAG based upon the virtual address and context which
 * faults.
 *
 * TLB miss trap handler software does the actual lookup via something
 * of the form:
 *
 * 	ldxa		[%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1
 * 	ldxa		[%g0] ASI_{D,I}MMU, %g6
 *	sllx		%g6, 22, %g6
 *	srlx		%g6, 22, %g6
 * 	ldda		[%g1] ASI_NUCLEUS_QUAD_LDD, %g4
 * 	cmp		%g4, %g6
 * 	bne,pn	%xcc, tsb_miss_{d,i}tlb
 * 	 mov		FAULT_CODE_{D,I}TLB, %g3
 * 	stxa		%g5, [%g0] ASI_{D,I}TLB_DATA_IN
 * 	retry
 *
 *
 * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte
 * PTE.  The TAG is of the same layout as the TLB TAG TARGET mmu
 * register which is:
 *
 * -------------------------------------------------
 * |  -  |  CONTEXT |  -  |    VADDR bits 63:22    |
 * -------------------------------------------------
 *  63 61 60      48 47 42 41                     0
 *
 * But actually, since we use per-mm TSB's, we zero out the CONTEXT
 * field.
 *
 * Like the powerpc hashtables we need to use locking in order to
 * synchronize while we update the entries.  PTE updates need locking
 * as well.
 *
 * We need to carefully choose a lock bits for the TSB entry.  We
 * choose to use bit 47 in the tag.  Also, since we never map anything
 * at page zero in context zero, we use zero as an invalid tag entry.
 * When the lock bit is set, this forces a tag comparison failure.
 */

#define TSB_TAG_LOCK_BIT	47
#define TSB_TAG_LOCK_HIGH	(1 << (TSB_TAG_LOCK_BIT - 32))

#define TSB_TAG_INVALID_BIT	46
#define TSB_TAG_INVALID_HIGH	(1 << (TSB_TAG_INVALID_BIT - 32))

/* Some cpus support physical address quad loads.  We want to use
 * those if possible so we don't need to hard-lock the TSB mapping
 * into the TLB.  We encode some instruction patching in order to
 * support this.
 *
 * The kernel TSB is locked into the TLB by virtue of being in the
 * kernel image, so we don't play these games for swapper_tsb access.
 */
#ifndef __ASSEMBLY__
struct tsb_ldquad_phys_patch_entry {
	unsigned int	addr;
	unsigned int	sun4u_insn;
	unsigned int	sun4v_insn;
};
extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch,
	__tsb_ldquad_phys_patch_end;

struct tsb_phys_patch_entry {
	unsigned int	addr;
	unsigned int	insn;
};
extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end;
#endif
#define TSB_LOAD_QUAD(TSB, REG)	\
661:	ldda		[TSB] ASI_NUCLEUS_QUAD_LDD, REG; \
	.section	.tsb_ldquad_phys_patch, "ax"; \
	.word		661b; \
	ldda		[TSB] ASI_QUAD_LDD_PHYS, REG; \
	ldda		[TSB] ASI_QUAD_LDD_PHYS_4V, REG; \
	.previous

#define TSB_LOAD_TAG_HIGH(TSB, REG) \
661:	lduwa		[TSB] ASI_N, REG; \
	.section	.tsb_phys_patch, "ax"; \
	.word		661b; \
	lduwa		[TSB] ASI_PHYS_USE_EC, REG; \
	.previous

#define TSB_LOAD_TAG(TSB, REG) \
661:	ldxa		[TSB] ASI_N, REG; \
	.section	.tsb_phys_patch, "ax"; \
	.word		661b; \
	ldxa		[TSB] ASI_PHYS_USE_EC, REG; \
	.previous

#define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \
661:	casa		[TSB] ASI_N, REG1, REG2; \
	.section	.tsb_phys_patch, "ax"; \
	.word		661b; \
	casa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
	.previous

#define TSB_CAS_TAG(TSB, REG1, REG2) \
661:	casxa		[TSB] ASI_N, REG1, REG2; \
	.section	.tsb_phys_patch, "ax"; \
	.word		661b; \
	casxa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
	.previous

#define TSB_STORE(ADDR, VAL) \
661:	stxa		VAL, [ADDR] ASI_N; \
	.section	.tsb_phys_patch, "ax"; \
	.word		661b; \
	stxa		VAL, [ADDR] ASI_PHYS_USE_EC; \
	.previous

#define TSB_LOCK_TAG(TSB, REG1, REG2)	\
99:	TSB_LOAD_TAG_HIGH(TSB, REG1);	\
	sethi	%hi(TSB_TAG_LOCK_HIGH), REG2;\
	andcc	REG1, REG2, %g0;	\
	bne,pn	%icc, 99b;		\
	 nop;				\
	TSB_CAS_TAG_HIGH(TSB, REG1, REG2);	\
	cmp	REG1, REG2;		\
	bne,pn	%icc, 99b;		\
	 nop;				\

#define TSB_WRITE(TSB, TTE, TAG) \
	add	TSB, 0x8, TSB;   \
	TSB_STORE(TSB, TTE);     \
	sub	TSB, 0x8, TSB;   \
	TSB_STORE(TSB, TAG);

	/* Do a kernel page table walk.  Leaves physical PTE pointer in
	 * REG1.  Jumps to FAIL_LABEL on early page table walk termination.
	 * VADDR will not be clobbered, but REG2 will.
	 */
#define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL)	\
	sethi		%hi(swapper_pg_dir), REG1; \
	or		REG1, %lo(swapper_pg_dir), REG1; \
	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
145 146
	andn		REG2, 0x7, REG2; \
	ldx		[REG1 + REG2], REG1; \
147 148 149
	brz,pn		REG1, FAIL_LABEL; \
	 sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
150
	sllx		REG1, PGD_PADDR_SHIFT, REG1; \
151 152
	andn		REG2, 0x7, REG2; \
	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
153 154
	brz,pn		REG1, FAIL_LABEL; \
	 sllx		VADDR, 64 - PMD_SHIFT, REG2; \
155
	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
156
	sllx		REG1, PMD_PADDR_SHIFT, REG1; \
157 158 159
	andn		REG2, 0x7, REG2; \
	add		REG1, REG2, REG1;

160 161 162
	/* These macros exists only to make the PMD translator below
	 * easier to read.  It hides the ELF section switch for the
	 * sun4v code patching.
163
	 */
164
#define OR_PTE_BIT_1INSN(REG, NAME)			\
165 166 167 168 169 170
661:	or		REG, _PAGE_##NAME##_4U, REG;	\
	.section	.sun4v_1insn_patch, "ax";	\
	.word		661b;				\
	or		REG, _PAGE_##NAME##_4V, REG;	\
	.previous;

171 172 173 174 175 176 177 178 179
#define OR_PTE_BIT_2INSN(REG, TMP, NAME)		\
661:	sethi		%hi(_PAGE_##NAME##_4U), TMP;	\
	or		REG, TMP, REG;			\
	.section	.sun4v_2insn_patch, "ax";	\
	.word		661b;				\
	mov		-1, TMP;			\
	or		REG, _PAGE_##NAME##_4V, REG;	\
	.previous;

180 181 182 183 184 185 186 187 188
	/* Load into REG the PTE value for VALID, CACHE, and SZHUGE.
	 *
	 * We are fabricating an 8MB page using 2 4MB HW pages here.
	 */
#define BUILD_PTE_VALID_SZHUGE_CACHE(VADDR, PADDR_BITS, REG)		   \
	sethi		%hi(4 * 1024 * 1024), REG;			   \
	andn		PADDR_BITS, REG, PADDR_BITS;			   \
	and		VADDR, REG, REG;				   \
	or		PADDR_BITS, REG, PADDR_BITS;			   \
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
661:	sethi		%uhi(_PAGE_VALID|_PAGE_SZHUGE_4U), REG;		   \
	.section	.sun4v_1insn_patch, "ax";			   \
	.word		661b;						   \
	sethi		%uhi(_PAGE_VALID), REG;				   \
	.previous;							   \
	sllx		REG, 32, REG;					   \
661:	or		REG, _PAGE_CP_4U|_PAGE_CV_4U, REG;		   \
	.section	.sun4v_1insn_patch, "ax";			   \
	.word		661b;						   \
	or		REG, _PAGE_CP_4V|_PAGE_CV_4V|_PAGE_SZHUGE_4V, REG; \
	.previous;

	/* PMD has been loaded into REG1, interpret the value, seeing
	 * if it is a HUGE PMD or a normal one.  If it is not valid
	 * then jump to FAIL_LABEL.  If it is a HUGE PMD, and it
	 * translates to a valid PTE, branch to PTE_LABEL.
	 *
	 * We translate the PMD by hand, one bit at a time,
	 * constructing the huge PTE.
	 *
	 * So we construct the PTE in REG2 as follows:
	 *
	 * 1) Extract the PMD PFN from REG1 and place it into REG2.
	 *
	 * 2) Translate PMD protection bits in REG1 into REG2, one bit
	 *    at a time using andcc tests on REG1 and OR's into REG2.
	 *
	 *    Only two bits to be concerned with here, EXEC and WRITE.
	 *    Now REG1 is freed up and we can use it as a temporary.
	 *
	 * 3) Construct the VALID, CACHE, and page size PTE bits in
	 *    REG1, OR with REG2 to form final PTE.
	 */
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
	brz,pn		REG1, FAIL_LABEL;				      \
	 andcc		REG1, PMD_ISHUGE, %g0;				      \
	be,pt		%xcc, 700f;					      \
	 and		REG1, PMD_HUGE_PRESENT|PMD_HUGE_ACCESSED, REG2;	      \
	cmp		REG2, PMD_HUGE_PRESENT|PMD_HUGE_ACCESSED;	      \
	bne,pn		%xcc, FAIL_LABEL;				      \
	 andn		REG1, PMD_HUGE_PROTBITS, REG2;			      \
	sllx		REG2, PMD_PADDR_SHIFT, REG2;			      \
	/* REG2 now holds PFN << PAGE_SHIFT */				      \
233
	andcc		REG1, PMD_HUGE_WRITE, %g0;			      \
234
	bne,a,pt	%xcc, 1f;					      \
235 236 237 238 239
	 OR_PTE_BIT_1INSN(REG2, W);					      \
1:	andcc		REG1, PMD_HUGE_EXEC, %g0;			      \
	be,pt		%xcc, 1f;					      \
	 nop;								      \
	OR_PTE_BIT_2INSN(REG2, REG1, EXEC);				      \
240
	/* REG1 can now be clobbered, build final PTE */		      \
241
1:	BUILD_PTE_VALID_SZHUGE_CACHE(VADDR, REG2, REG1);		      \
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
	ba,pt		%xcc, PTE_LABEL;				      \
	 or		REG1, REG2, REG1;				      \
700:
#else
#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
	brz,pn		REG1, FAIL_LABEL; \
	 nop;
#endif

	/* Do a user page table walk in MMU globals.  Leaves final,
	 * valid, PTE value in REG1.  Jumps to FAIL_LABEL on early
	 * page table walk termination or if the PTE is not valid.
	 *
	 * Physical base of page tables is in PHYS_PGD which will not
	 * be modified.
257 258 259 260 261 262
	 *
	 * VADDR will not be clobbered, but REG1 and REG2 will.
	 */
#define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL)	\
	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
263 264
	andn		REG2, 0x7, REG2; \
	ldxa		[PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \
265 266 267
	brz,pn		REG1, FAIL_LABEL; \
	 sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
268
	sllx		REG1, PGD_PADDR_SHIFT, REG1; \
269 270
	andn		REG2, 0x7, REG2; \
	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
271 272
	USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \
	sllx		VADDR, 64 - PMD_SHIFT, REG2; \
273
	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
274
	sllx		REG1, PMD_PADDR_SHIFT, REG1; \
275
	andn		REG2, 0x7, REG2; \
276 277 278 279 280
	add		REG1, REG2, REG1; \
	ldxa		[REG1] ASI_PHYS_USE_EC, REG1; \
	brgez,pn	REG1, FAIL_LABEL; \
	 nop; \
800:
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

/* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0.
 * If no entry is found, FAIL_LABEL will be branched to.  On success
 * the resulting PTE value will be left in REG1.  VADDR is preserved
 * by this routine.
 */
#define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \
	sethi		%hi(prom_trans), REG1; \
	or		REG1, %lo(prom_trans), REG1; \
97:	ldx		[REG1 + 0x00], REG2; \
	brz,pn		REG2, FAIL_LABEL; \
	 nop; \
	ldx		[REG1 + 0x08], REG3; \
	add		REG2, REG3, REG3; \
	cmp		REG2, VADDR; \
	bgu,pt		%xcc, 98f; \
	 cmp		VADDR, REG3; \
	bgeu,pt		%xcc, 98f; \
	 ldx		[REG1 + 0x10], REG3; \
	sub		VADDR, REG2, REG2; \
	ba,pt		%xcc, 99f; \
	 add		REG3, REG2, REG1; \
98:	ba,pt		%xcc, 97b; \
	 add		REG1, (3 * 8), REG1; \
99:

	/* We use a 32K TSB for the whole kernel, this allows to
	 * handle about 16MB of modules and vmalloc mappings without
	 * incurring many hash conflicts.
	 */
#define KERNEL_TSB_SIZE_BYTES	(32 * 1024)
#define KERNEL_TSB_NENTRIES	\
	(KERNEL_TSB_SIZE_BYTES / 16)
#define KERNEL_TSB4M_NENTRIES	4096

316 317
#define KTSB_PHYS_SHIFT		15

318 319 320 321 322 323 324 325
	/* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL
	 * on TSB hit.  REG1, REG2, REG3, and REG4 are used as temporaries
	 * and the found TTE will be left in REG1.  REG3 and REG4 must
	 * be an even/odd pair of registers.
	 *
	 * VADDR and TAG will be preserved and not clobbered by this macro.
	 */
#define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
326
661:	sethi		%hi(swapper_tsb), REG1;			\
327
	or		REG1, %lo(swapper_tsb), REG1; \
328 329 330 331 332 333 334 335 336
	.section	.swapper_tsb_phys_patch, "ax"; \
	.word		661b; \
	.previous; \
661:	nop; \
	.section	.tsb_ldquad_phys_patch, "ax"; \
	.word		661b; \
	sllx		REG1, KTSB_PHYS_SHIFT, REG1; \
	sllx		REG1, KTSB_PHYS_SHIFT, REG1; \
	.previous; \
337 338 339 340
	srlx		VADDR, PAGE_SHIFT, REG2; \
	and		REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \
	sllx		REG2, 4, REG2; \
	add		REG1, REG2, REG2; \
341
	TSB_LOAD_QUAD(REG2, REG3); \
342 343 344 345 346 347 348 349 350
	cmp		REG3, TAG; \
	be,a,pt		%xcc, OK_LABEL; \
	 mov		REG4, REG1;

#ifndef CONFIG_DEBUG_PAGEALLOC
	/* This version uses a trick, the TAG is already (VADDR >> 22) so
	 * we can make use of that for the index computation.
	 */
#define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
351
661:	sethi		%hi(swapper_4m_tsb), REG1;	     \
352
	or		REG1, %lo(swapper_4m_tsb), REG1; \
353 354 355 356 357 358 359 360 361
	.section	.swapper_4m_tsb_phys_patch, "ax"; \
	.word		661b; \
	.previous; \
661:	nop; \
	.section	.tsb_ldquad_phys_patch, "ax"; \
	.word		661b; \
	sllx		REG1, KTSB_PHYS_SHIFT, REG1; \
	sllx		REG1, KTSB_PHYS_SHIFT, REG1; \
	.previous; \
362 363 364
	and		TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \
	sllx		REG2, 4, REG2; \
	add		REG1, REG2, REG2; \
365
	TSB_LOAD_QUAD(REG2, REG3); \
366 367 368 369 370 371
	cmp		REG3, TAG; \
	be,a,pt		%xcc, OK_LABEL; \
	 mov		REG4, REG1;
#endif

#endif /* !(_SPARC64_TSB_H) */