/* * Author: Andy Fleming * Kumar Gala * * Copyright 2006-2008, 2011-2012 Freescale Semiconductor Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "smp.h" extern void __early_start(void); struct epapr_spin_table { u32 addr_h; u32 addr_l; u32 r3_h; u32 r3_l; u32 reserved; u32 pir; }; static int __init smp_85xx_kick_cpu(int nr) { unsigned long flags; const u64 *cpu_rel_addr; __iomem struct epapr_spin_table *spin_table; struct device_node *np; int n = 0, hw_cpu = get_hard_smp_processor_id(nr); int ioremappable; WARN_ON(nr < 0 || nr >= NR_CPUS); WARN_ON(hw_cpu < 0 || hw_cpu >= NR_CPUS); pr_debug("smp_85xx_kick_cpu: kick CPU #%d\n", nr); np = of_get_cpu_node(nr, NULL); cpu_rel_addr = of_get_property(np, "cpu-release-addr", NULL); if (cpu_rel_addr == NULL) { printk(KERN_ERR "No cpu-release-addr for cpu %d\n", nr); return -ENOENT; } /* * A secondary core could be in a spinloop in the bootpage * (0xfffff000), somewhere in highmem, or somewhere in lowmem. * The bootpage and highmem can be accessed via ioremap(), but * we need to directly access the spinloop if its in lowmem. */ ioremappable = *cpu_rel_addr > virt_to_phys(high_memory); /* Map the spin table */ if (ioremappable) spin_table = ioremap(*cpu_rel_addr, sizeof(struct epapr_spin_table)); else spin_table = phys_to_virt(*cpu_rel_addr); local_irq_save(flags); out_be32(&spin_table->pir, hw_cpu); #ifdef CONFIG_PPC32 out_be32(&spin_table->addr_l, __pa(__early_start)); if (!ioremappable) flush_dcache_range((ulong)spin_table, (ulong)spin_table + sizeof(struct epapr_spin_table)); /* Wait a bit for the CPU to ack. */ while ((__secondary_hold_acknowledge != hw_cpu) && (++n < 1000)) mdelay(1); #else smp_generic_kick_cpu(nr); out_be64((u64 *)(&spin_table->addr_h), __pa((u64)*((unsigned long long *)generic_secondary_smp_init))); if (!ioremappable) flush_dcache_range((ulong)spin_table, (ulong)spin_table + sizeof(struct epapr_spin_table)); #endif local_irq_restore(flags); if (ioremappable) iounmap(spin_table); pr_debug("waited %d msecs for CPU #%d.\n", n, nr); return 0; } struct smp_ops_t smp_85xx_ops = { .kick_cpu = smp_85xx_kick_cpu, #ifdef CONFIG_KEXEC .give_timebase = smp_generic_give_timebase, .take_timebase = smp_generic_take_timebase, #endif }; #ifdef CONFIG_KEXEC atomic_t kexec_down_cpus = ATOMIC_INIT(0); void mpc85xx_smp_kexec_cpu_down(int crash_shutdown, int secondary) { local_irq_disable(); if (secondary) { atomic_inc(&kexec_down_cpus); /* loop forever */ while (1); } } static void mpc85xx_smp_kexec_down(void *arg) { if (ppc_md.kexec_cpu_down) ppc_md.kexec_cpu_down(0,1); } static void map_and_flush(unsigned long paddr) { struct page *page = pfn_to_page(paddr >> PAGE_SHIFT); unsigned long kaddr = (unsigned long)kmap(page); flush_dcache_range(kaddr, kaddr + PAGE_SIZE); kunmap(page); } /** * Before we reset the other cores, we need to flush relevant cache * out to memory so we don't get anything corrupted, some of these flushes * are performed out of an overabundance of caution as interrupts are not * disabled yet and we can switch cores */ static void mpc85xx_smp_flush_dcache_kexec(struct kimage *image) { kimage_entry_t *ptr, entry; unsigned long paddr; int i; if (image->type == KEXEC_TYPE_DEFAULT) { /* normal kexec images are stored in temporary pages */ for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); ptr = (entry & IND_INDIRECTION) ? phys_to_virt(entry & PAGE_MASK) : ptr + 1) { if (!(entry & IND_DESTINATION)) { map_and_flush(entry); } } /* flush out last IND_DONE page */ map_and_flush(entry); } else { /* crash type kexec images are copied to the crash region */ for (i = 0; i < image->nr_segments; i++) { struct kexec_segment *seg = &image->segment[i]; for (paddr = seg->mem; paddr < seg->mem + seg->memsz; paddr += PAGE_SIZE) { map_and_flush(paddr); } } } /* also flush the kimage struct to be passed in as well */ flush_dcache_range((unsigned long)image, (unsigned long)image + sizeof(*image)); } static void mpc85xx_smp_machine_kexec(struct kimage *image) { int timeout = INT_MAX; int i, num_cpus = num_present_cpus(); mpc85xx_smp_flush_dcache_kexec(image); if (image->type == KEXEC_TYPE_DEFAULT) smp_call_function(mpc85xx_smp_kexec_down, NULL, 0); while ( (atomic_read(&kexec_down_cpus) != (num_cpus - 1)) && ( timeout > 0 ) ) { timeout--; } if ( !timeout ) printk(KERN_ERR "Unable to bring down secondary cpu(s)"); for_each_online_cpu(i) { if ( i == smp_processor_id() ) continue; mpic_reset_core(i); } default_machine_kexec(image); } #endif /* CONFIG_KEXEC */ static void __init smp_85xx_setup_cpu(int cpu_nr) { if (smp_85xx_ops.probe == smp_mpic_probe) mpic_setup_this_cpu(); if (cpu_has_feature(CPU_FTR_DBELL)) doorbell_setup_this_cpu(); } void __init mpc85xx_smp_init(void) { struct device_node *np; smp_85xx_ops.setup_cpu = smp_85xx_setup_cpu; np = of_find_node_by_type(NULL, "open-pic"); if (np) { smp_85xx_ops.probe = smp_mpic_probe; smp_85xx_ops.message_pass = smp_mpic_message_pass; } if (cpu_has_feature(CPU_FTR_DBELL)) { /* * If left NULL, .message_pass defaults to * smp_muxed_ipi_message_pass */ smp_85xx_ops.message_pass = NULL; smp_85xx_ops.cause_ipi = doorbell_cause_ipi; } smp_ops = &smp_85xx_ops; #ifdef CONFIG_KEXEC ppc_md.kexec_cpu_down = mpc85xx_smp_kexec_cpu_down; ppc_md.machine_kexec = mpc85xx_smp_machine_kexec; #endif }