turbostat.8 17.8 KB
Newer Older
L
Len Brown 已提交
1 2 3 4 5 6
.TH TURBOSTAT 8
.SH NAME
turbostat \- Report processor frequency and idle statistics
.SH SYNOPSIS
.ft B
.B turbostat
7
.RB [ Options ]
L
Len Brown 已提交
8 9 10
.RB command
.br
.B turbostat
11
.RB [ Options ]
12
.RB [ "\--interval seconds" ]
L
Len Brown 已提交
13
.SH DESCRIPTION
14
\fBturbostat \fP reports processor topology, frequency,
15 16 17 18
idle power-state statistics, temperature and power on X86 processors.
There are two ways to invoke turbostat.
The first method is to supply a
\fBcommand\fP, which is forked and statistics are printed
19
in one-shot upon its completion.
20
The second method is to omit the command,
21
and turbostat displays statistics every 5 seconds interval.
22
The 5-second interval can be changed using the --interval option.
23
.PP
24
Some information is not available on older processors.
L
Len Brown 已提交
25
.SS Options
26 27
Options can be specified with a single or double '-', and only as much of the option
name as necessary to disambiguate it from others is necessary.  Note that options are case-sensitive.
28 29 30
.PP
\fB--add attributes\fP add column with counter having specified 'attributes'.  The 'location' attribute is required, all others are optional.
.nf
31
	location: {\fBmsrDDD\fP | \fBmsr0xXXX\fP | \fB/sys/path...\fP}
32 33
		msrDDD is a decimal offset, eg. msr16
		msr0xXXX is a hex offset, eg. msr0x10
34
		/sys/path... is an absolute path to a sysfs attribute
35 36 37 38 39 40 41 42 43 44 45 46 47 48

	scope: {\fBcpu\fP | \fBcore\fP | \fBpackage\fP}
		sample and print the counter for every cpu, core, or package.
		default: cpu

	size: {\fBu32\fP | \fBu64\fP }
		MSRs are read as 64-bits, u32 truncates the displayed value to 32-bits.
		default: u64

	format: {\fBraw\fP | \fBdelta\fP | \fBpercent\fP}
		'raw' shows the MSR contents in hex.
		'delta' shows the difference in values during the measurement interval.
		'percent' shows the delta as a percentage of the cycles elapsed.
		default: delta
49 50 51 52

	name: "name_string"
		Any string that does not match a key-word above is used
		as the column header.
53 54
.fi
.PP
55
\fB--cpu cpu-set\fP limit output to system summary plus the specified cpu-set.  If cpu-set is the string "core", then the system summary plus the first CPU in each core are printed -- eg. subsequent HT siblings are not printed.  Or if cpu-set is the string "package", then the system summary plus the first CPU in each package is printed.  Otherwise, the system summary plus the specified set of CPUs are printed.  The cpu-set is ordered from low to high, comma delimited with ".." and "-" permitted to denote a range. eg. 1,2,8,14..17,21-44
56
.PP
57
\fB--hide column\fP do not show the specified columns.  May be invoked multiple times, or with a comma-separated list of column names.  Use "--hide sysfs" to hide the sysfs statistics columns as a group.
58
.PP
59
\fB--show column\fP show only the specified columns.  May be invoked multiple times, or with a comma-separated list of column names.  Use "--show sysfs" to show the sysfs statistics columns as a group.
60
.PP
61
\fB--Dump\fP displays the raw counter values.
L
Len Brown 已提交
62
.PP
63
\fB--quiet\fP Do not decode and print the system configuration header information.
L
Len Brown 已提交
64
.PP
65
\fB--interval seconds\fP overrides the default 5.0 second measurement interval.
66
.PP
67 68 69
\fB--out output_file\fP turbostat output is written to the specified output_file.
The file is truncated if it already exists, and it is created if it does not exist.
.PP
70
\fB--help\fP displays usage for the most common parameters.
71
.PP
72
\fB--Joules\fP displays energy in Joules, rather than dividing Joules by time to print power in Watts.
73
.PP
74 75
\fB--list\fP display column header names available for use by --show and --hide, then exit.
.PP
76 77 78 79 80 81 82
\fB--Summary\fP limits output to a 1-line System Summary for each interval.
.PP
\fB--TCC temperature\fP sets the Thermal Control Circuit temperature for systems which do not export that value.  This is used for making sense of the Digital Thermal Sensor outputs, as they return degrees Celsius below the TCC activation temperature.
.PP
\fB--version\fP displays the version.
.PP
The \fBcommand\fP parameter forks \fBcommand\fP, and upon its exit,
L
Len Brown 已提交
83 84
displays the statistics gathered since it was forked.
.PP
85 86 87
.SH ROW DESCRIPTIONS
The system configuration dump (if --quiet is not used) is followed by statistics.  The first row of the statistics labels the content of each column (below).  The second row of statistics is the system summary line.  The system summary line has a '-' in the columns for the Package, Core, and CPU.  The contents of the system summary line depends on the type of column.  Columns that count items (eg. IRQ) show the sum across all CPUs in the system.  Columns that show a percentage show the average across all CPUs in the system.  Columns that dump raw MSR values simply show 0 in the summary.  After the system summary row, each row describes a specific Package/Core/CPU.  Note that if the --cpu parameter is used to limit which specific CPUs are displayed, turbostat will still collect statistics for all CPUs in the system and will still show the system summary for all CPUs in the system.
.SH COLUMN DESCRIPTIONS
L
Len Brown 已提交
88
.nf
89
\fBCore\fP processor core number.  Note that multiple CPUs per core indicate support for Intel(R) Hyper-Threading Technology (HT).
90
\fBCPU\fP Linux CPU (logical processor) number.  Yes, it is okay that on many systems the CPUs are not listed in numerical order -- for efficiency reasons, turbostat runs in topology order, so HT siblings appear together.
91 92 93 94
\fBPackage\fP processor package number -- not present on systems with a single processor package.
\fBAvg_MHz\fP number of cycles executed divided by time elapsed.  Note that this includes idle-time when 0 instructions are executed.
\fBBusy%\fP percent of the measurement interval that the CPU executes instructions, aka. % of time in "C0" state.
\fBBzy_MHz\fP average clock rate while the CPU was not idle (ie. in "c0" state).
95
\fBTSC_MHz\fP average MHz that the TSC ran during the entire interval.
96 97 98 99 100
\fBIRQ\fP The number of interrupts serviced by that CPU during the measurement interval.  The system total line is the sum of interrupts serviced across all CPUs.  turbostat parses /proc/interrupts to generate this summary.
\fBSMI\fP The number of System Management Interrupts  serviced CPU during the measurement interval.  While this counter is actually per-CPU, SMI are triggered on all processors, so the number should be the same for all CPUs.
\fBC1, C2, C3...\fP The number times Linux requested the C1, C2, C3 idle state during the measurement interval.  The system summary line shows the sum for all CPUs.  These are C-state names as exported in /sys/devices/system/cpu/cpu*/cpuidle/state*/name.  While their names are generic, their attributes are processor specific. They the system description section of output shows what MWAIT sub-states they are mapped to on each system.
\fBC1%, C2%, C3%\fP The residency percentage that Linux requested C1, C2, C3....  The system summary is the average of all CPUs in the system.  Note that these are software, reflecting what was requested.  The hardware counters reflect what was actually achieved.
\fBCPU%c1, CPU%c3, CPU%c6, CPU%c7\fP show the percentage residency in hardware core idle states.  These numbers are from hardware residency counters.
101 102
\fBCoreTmp\fP Degrees Celsius reported by the per-core Digital Thermal Sensor.
\fBPkgTtmp\fP Degrees Celsius reported by the per-package Package Thermal Monitor.
103 104
\fBGFX%rc6\fP The percentage of time the GPU is in the "render C6" state, rc6, during the measurement interval. From /sys/class/drm/card0/power/rc6_residency_ms.
\fBGFXMHz\fP Instantaneous snapshot of what sysfs presents at the end of the measurement interval. From /sys/class/graphics/fb0/device/drm/card0/gt_cur_freq_mhz.
105
\fBPkg%pc2, Pkg%pc3, Pkg%pc6, Pkg%pc7\fP percentage residency in hardware package idle states.  These numbers are from hardware residency counters.
106 107 108 109
\fBPkgWatt\fP Watts consumed by the whole package.
\fBCorWatt\fP Watts consumed by the core part of the package.
\fBGFXWatt\fP Watts consumed by the Graphics part of the package -- available only on client processors.
\fBRAMWatt\fP Watts consumed by the DRAM DIMMS -- available only on server processors.
110 111
\fBPKG_%\fP percent of the interval that RAPL throttling was active on the Package.
\fBRAM_%\fP percent of the interval that RAPL throttling was active on DRAM.
L
Len Brown 已提交
112
.fi
113 114 115
.SH TOO MUCH INFORMATION EXAMPLE
By default, turbostat dumps all possible information -- a system configuration header, followed by columns for all counters.
This is ideal for remote debugging, use the "--out" option to save everything to a text file, and get that file to the expert helping you debug.
L
Len Brown 已提交
116
.PP
117 118
When you are not interested in all that information, and there are several ways to see only what you want.  First the "--quiet" option will skip the configuration information, and turbostat will show only the counter columns.  Second, you can reduce the columns with the "--hide" and "--show" options.  If you use the "--show" option, then turbostat will show only the columns you list.  If you use the "--hide" option, turbostat will show all columns, except the ones you list.
.PP
119
To find out what columns are available for --show and --hide, the "--list" option is available.  For convenience, the special strings "sysfs" can be used to refer to all of the sysfs C-state counters at once:
120
.nf
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
sudo ./turbostat --show sysfs --quiet sleep 10
10.003837 sec
	C1	C1E	C3	C6	C7s	C1%	C1E%	C3%	C6%	C7s%
	4	21	2	2	459	0.14	0.82	0.00	0.00	98.93
	1	17	2	2	130	0.00	0.02	0.00	0.00	99.80
	0	0	0	0	31	0.00	0.00	0.00	0.00	99.95
	2	1	0	0	52	1.14	6.49	0.00	0.00	92.21
	1	2	0	0	52	0.00	0.08	0.00	0.00	99.86
	0	0	0	0	71	0.00	0.00	0.00	0.00	99.89
	0	0	0	0	25	0.00	0.00	0.00	0.00	99.96
	0	0	0	0	74	0.00	0.00	0.00	0.00	99.94
	0	1	0	0	24	0.00	0.00	0.00	0.00	99.84
.fi
.PP
.SH ONE SHOT COMMAND EXAMPLE
If turbostat is invoked with a command, it will fork that command
and output the statistics gathered after the command exits.
In this case, turbostat output goes to stderr, by default.
Output can instead be saved to a file using the --out option.
In this example, the "sleep 10" command is forked, and turbostat waits for it to complete before saving all statistics into "ts.out".  Note that "sleep 10" is not part of turbostat, but is simply an example of a command that turbostat can fork.  The "ts.out" file is what you want to edit in a very wide window, paste into a spreadsheet, or attach to a bugzilla entry.
141

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
.nf
[root@hsw]# ./turbostat -o ts.out sleep 10
[root@hsw]#
.fi

.SH PERIODIC INTERVAL EXAMPLE
Without a command to fork, turbostat displays statistics ever 5 seconds.
Periodic output goes to stdout, by default, unless --out is used to specify an output file.
The 5-second interval can be changed with the "-i sec" option.
.nf
sudo ./turbostat --quiet --hide sysfs,IRQ,SMI,CoreTmp,PkgTmp,GFX%rc6,GFXMHz,PkgWatt,CorWatt,GFXWatt
	Core	CPU	Avg_MHz	Busy%	Bzy_MHz	TSC_MHz	CPU%c1	CPU%c3	CPU%c6	CPU%c7
	-	-	488	12.52	3900	3498	12.50	0.00	0.00	74.98
	0	0	5	0.13	3900	3498	99.87	0.00	0.00	0.00
	0	4	3897	99.99	3900	3498	0.01
	1	1	0	0.00	3856	3498	0.01	0.00	0.00	99.98
	1	5	0	0.00	3861	3498	0.01
	2	2	1	0.02	3889	3498	0.03	0.00	0.00	99.95
	2	6	0	0.00	3863	3498	0.05
	3	3	0	0.01	3869	3498	0.02	0.00	0.00	99.97
	3	7	0	0.00	3878	3498	0.03
	Core	CPU	Avg_MHz	Busy%	Bzy_MHz	TSC_MHz	CPU%c1	CPU%c3	CPU%c6	CPU%c7
	-	-	491	12.59	3900	3498	12.42	0.00	0.00	74.99
	0	0	27	0.69	3900	3498	99.31	0.00	0.00	0.00
	0	4	3898	99.99	3900	3498	0.01
	1	1	0	0.00	3883	3498	0.01	0.00	0.00	99.99
	1	5	0	0.00	3898	3498	0.01
	2	2	0	0.01	3889	3498	0.02	0.00	0.00	99.98
	2	6	0	0.00	3889	3498	0.02
	3	3	0	0.00	3856	3498	0.01	0.00	0.00	99.99
	3	7	0	0.00	3897	3498	0.01
173
.fi
174 175 176 177 178 179
This example also shows the use of the --hide option to skip columns that are not wanted.
Note that cpu4 in this example is 99.99% busy, while the other CPUs are all under 1% busy.
Notice that cpu4's HT sibling is cpu0, which is under 1% busy, but can get into CPU%c1 only,
because its cpu4's activity on shared hardware keeps it from entering a deeper C-state.

.SH SYSTEM CONFIGURATION INFORMATION EXAMPLE
L
Len Brown 已提交
180

181 182 183
By default, turbostat always dumps system configuration information
before taking measurements.  In the example above, "--quiet" is used
to suppress that output.  Here is an example of the configuration information:
L
Len Brown 已提交
184
.nf
185
turbostat version 2017.02.15 - Len Brown <lenb@kernel.org>
186
CPUID(0): GenuineIntel 13 CPUID levels; family:model:stepping 0x6:3c:3 (6:60:3)
187 188 189 190 191
CPUID(1): SSE3 MONITOR - EIST TM2 TSC MSR ACPI-TM TM
CPUID(6): APERF, TURBO, DTS, PTM, No-HWP, No-HWPnotify, No-HWPwindow, No-HWPepp, No-HWPpkg, EPB
cpu4: MSR_IA32_MISC_ENABLE: 0x00850089 (TCC EIST No-MWAIT PREFETCH TURBO)
CPUID(7): No-SGX
cpu4: MSR_MISC_PWR_MGMT: 0x00400000 (ENable-EIST_Coordination DISable-EPB DISable-OOB)
192
RAPL: 3121 sec. Joule Counter Range, at 84 Watts
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
cpu4: MSR_PLATFORM_INFO: 0x80838f3012300
8 * 100.0 = 800.0 MHz max efficiency frequency
35 * 100.0 = 3500.0 MHz base frequency
cpu4: MSR_IA32_POWER_CTL: 0x0004005d (C1E auto-promotion: DISabled)
cpu4: MSR_TURBO_RATIO_LIMIT: 0x25262727
37 * 100.0 = 3700.0 MHz max turbo 4 active cores
38 * 100.0 = 3800.0 MHz max turbo 3 active cores
39 * 100.0 = 3900.0 MHz max turbo 2 active cores
39 * 100.0 = 3900.0 MHz max turbo 1 active cores
cpu4: MSR_CONFIG_TDP_NOMINAL: 0x00000023 (base_ratio=35)
cpu4: MSR_CONFIG_TDP_LEVEL_1: 0x00000000 ()
cpu4: MSR_CONFIG_TDP_LEVEL_2: 0x00000000 ()
cpu4: MSR_CONFIG_TDP_CONTROL: 0x80000000 ( lock=1)
cpu4: MSR_TURBO_ACTIVATION_RATIO: 0x00000000 (MAX_NON_TURBO_RATIO=0 lock=0)
cpu4: MSR_PKG_CST_CONFIG_CONTROL: 0x1e000400 (UNdemote-C3, UNdemote-C1, demote-C3, demote-C1, UNlocked: pkg-cstate-limit=0: pc0)
cpu4: POLL: CPUIDLE CORE POLL IDLE
cpu4: C1: MWAIT 0x00
cpu4: C1E: MWAIT 0x01
cpu4: C3: MWAIT 0x10
cpu4: C6: MWAIT 0x20
cpu4: C7s: MWAIT 0x32
cpu4: MSR_MISC_FEATURE_CONTROL: 0x00000000 (L2-Prefetch L2-Prefetch-pair L1-Prefetch L1-IP-Prefetch)
215
cpu0: MSR_IA32_ENERGY_PERF_BIAS: 0x00000006 (balanced)
216
cpu0: MSR_CORE_PERF_LIMIT_REASONS, 0x31200000 (Active: ) (Logged: Transitions, MultiCoreTurbo, Amps, Auto-HWP, )
217 218 219 220 221 222 223
cpu0: MSR_GFX_PERF_LIMIT_REASONS, 0x00000000 (Active: ) (Logged: )
cpu0: MSR_RING_PERF_LIMIT_REASONS, 0x0d000000 (Active: ) (Logged: Amps, PkgPwrL1, PkgPwrL2, )
cpu0: MSR_RAPL_POWER_UNIT: 0x000a0e03 (0.125000 Watts, 0.000061 Joules, 0.000977 sec.)
cpu0: MSR_PKG_POWER_INFO: 0x000002a0 (84 W TDP, RAPL 0 - 0 W, 0.000000 sec.)
cpu0: MSR_PKG_POWER_LIMIT: 0x428348001a82a0 (UNlocked)
cpu0: PKG Limit #1: ENabled (84.000000 Watts, 8.000000 sec, clamp DISabled)
cpu0: PKG Limit #2: ENabled (105.000000 Watts, 0.002441* sec, clamp DISabled)
224 225 226 227 228 229
cpu0: MSR_PP0_POLICY: 0
cpu0: MSR_PP0_POWER_LIMIT: 0x00000000 (UNlocked)
cpu0: Cores Limit: DISabled (0.000000 Watts, 0.000977 sec, clamp DISabled)
cpu0: MSR_PP1_POLICY: 0
cpu0: MSR_PP1_POWER_LIMIT: 0x00000000 (UNlocked)
cpu0: GFX Limit: DISabled (0.000000 Watts, 0.000977 sec, clamp DISabled)
230
cpu0: MSR_IA32_TEMPERATURE_TARGET: 0x00641400 (100 C)
231 232 233 234 235 236 237 238
cpu0: MSR_IA32_PACKAGE_THERM_STATUS: 0x884c0800 (24 C)
cpu0: MSR_IA32_THERM_STATUS: 0x884c0000 (24 C +/- 1)
cpu1: MSR_IA32_THERM_STATUS: 0x88510000 (19 C +/- 1)
cpu2: MSR_IA32_THERM_STATUS: 0x884e0000 (22 C +/- 1)
cpu3: MSR_IA32_THERM_STATUS: 0x88510000 (19 C +/- 1)
cpu4: MSR_PKGC3_IRTL: 0x00008842 (valid, 67584 ns)
cpu4: MSR_PKGC6_IRTL: 0x00008873 (valid, 117760 ns)
cpu4: MSR_PKGC7_IRTL: 0x00008891 (valid, 148480 ns)
L
Len Brown 已提交
239 240
.fi
The \fBmax efficiency\fP frequency, a.k.a. Low Frequency Mode, is the frequency
241 242 243
available at the minimum package voltage.  The \fBTSC frequency\fP is the base
frequency of the processor -- this should match the brand string
in /proc/cpuinfo.  This base frequency
L
Len Brown 已提交
244 245
should be sustainable on all CPUs indefinitely, given nominal power and cooling.
The remaining rows show what maximum turbo frequency is possible
246 247
depending on the number of idle cores.  Note that not all information is
available on all processors.
248 249 250 251 252
.SH ADD COUNTER EXAMPLE
Here we limit turbostat to showing just the CPU number for cpu0 - cpu3.
We add a counter showing the 32-bit raw value of MSR 0x199 (MSR_IA32_PERF_CTL),
labeling it with the column header, "PRF_CTRL", and display it only once,
afte the conclusion of a 0.1 second sleep.
L
Len Brown 已提交
253
.nf
254 255 256 257 258 259 260 261
sudo ./turbostat --quiet --cpu 0-3 --show CPU --add msr0x199,u32,raw,PRF_CTRL sleep .1
0.101604 sec
CPU	  PRF_CTRL
-	0x00000000
0	0x00000c00
1	0x00000800
2	0x00000a00
3	0x00000800
262

L
Len Brown 已提交
263
.fi
264

L
Len Brown 已提交
265 266 267 268
.SH NOTES

.B "turbostat "
must be run as root.
269 270 271 272 273
Alternatively, non-root users can be enabled to run turbostat this way:

# setcap cap_sys_rawio=ep ./turbostat

# chmod +r /dev/cpu/*/msr
L
Len Brown 已提交
274 275 276 277 278 279 280 281

.B "turbostat "
reads hardware counters, but doesn't write them.
So it will not interfere with the OS or other programs, including
multiple invocations of itself.

\fBturbostat \fP
may work poorly on Linux-2.6.20 through 2.6.29,
282
as \fBacpi-cpufreq \fPperiodically cleared the APERF and MPERF MSRs
L
Len Brown 已提交
283 284
in those kernels.

285 286
AVG_MHz = APERF_delta/measurement_interval.  This is the actual
number of elapsed cycles divided by the entire sample interval --
287
including idle time.  Note that this calculation is resilient
288 289 290 291 292 293 294 295 296
to systems lacking a non-stop TSC.

TSC_MHz = TSC_delta/measurement_interval.
On a system with an invariant TSC, this value will be constant
and will closely match the base frequency value shown
in the brand string in /proc/cpuinfo.  On a system where
the TSC stops in idle, TSC_MHz will drop
below the processor's base frequency.

297
Busy% = MPERF_delta/TSC_delta
298 299 300 301 302 303 304 305 306 307 308

Bzy_MHz = TSC_delta/APERF_delta/MPERF_delta/measurement_interval

Note that these calculations depend on TSC_delta, so they
are not reliable during intervals when TSC_MHz is not running at the base frequency.

Turbostat data collection is not atomic.
Extremely short measurement intervals (much less than 1 second),
or system activity that prevents turbostat from being able
to run on all CPUS to quickly collect data, will result in
inconsistent results.
309

L
Len Brown 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
The APERF, MPERF MSRs are defined to count non-halted cycles.
Although it is not guaranteed by the architecture, turbostat assumes
that they count at TSC rate, which is true on all processors tested to date.

.SH REFERENCES
Volume 3B: System Programming Guide"
http://www.intel.com/products/processor/manuals/

.SH FILES
.ta
.nf
/dev/cpu/*/msr
.fi

.SH "SEE ALSO"
msr(4), vmstat(8)
.PP
L
Len Brown 已提交
327
.SH AUTHOR
L
Len Brown 已提交
328 329
.nf
Written by Len Brown <len.brown@intel.com>