turbostat.8 10.7 KB
Newer Older
L
Len Brown 已提交
1 2 3 4 5 6
.TH TURBOSTAT 8
.SH NAME
turbostat \- Report processor frequency and idle statistics
.SH SYNOPSIS
.ft B
.B turbostat
7
.RB [ Options ]
L
Len Brown 已提交
8 9 10
.RB command
.br
.B turbostat
11
.RB [ Options ]
L
Len Brown 已提交
12 13
.RB [ "\-i interval_sec" ]
.SH DESCRIPTION
14
\fBturbostat \fP reports processor topology, frequency,
15 16 17 18 19 20 21 22 23 24
idle power-state statistics, temperature and power on X86 processors.
There are two ways to invoke turbostat.
The first method is to supply a
\fBcommand\fP, which is forked and statistics are printed
upon its completion.
The second method is to omit the command,
and turbodstat will print statistics every 5 seconds.
The 5-second interval can changed using the -i option.

Some information is not availalbe on older processors.
L
Len Brown 已提交
25
.SS Options
26
The \fB-p\fP option limits output to the 1st thread in 1st core of each package.
27
.PP
28
The \fB-P\fP option limits output to the 1st thread in each Package.
29
.PP
30
The \fB-S\fP option limits output to a 1-line System Summary for each interval.
L
Len Brown 已提交
31
.PP
L
Len Brown 已提交
32 33
The \fB-v\fP option increases verbosity.
.PP
34 35 36
The \fB-c MSR#\fP option includes the delta of the specified 32-bit MSR counter.
.PP
The \fB-C MSR#\fP option includes the delta of the specified 64-bit MSR counter.
37 38 39 40
.PP
The \fB-m MSR#\fP option includes the the specified 32-bit MSR value.
.PP
The \fB-M MSR#\fP option includes the the specified 64-bit MSR value.
L
Len Brown 已提交
41 42 43 44 45 46 47 48 49
.PP
The \fB-i interval_sec\fP option prints statistics every \fiinterval_sec\fP seconds.
The default is 5 seconds.
.PP
The \fBcommand\fP parameter forks \fBcommand\fP and upon its exit,
displays the statistics gathered since it was forked.
.PP
.SH FIELD DESCRIPTIONS
.nf
50 51
\fBPackage\fP processor package number.
\fBCore\fP processor core number.
L
Len Brown 已提交
52
\fBCPU\fP Linux CPU (logical processor) number.
L
Len Brown 已提交
53
Note that multiple CPUs per core indicate support for Intel(R) Hyper-Threading Technology.
54 55 56 57 58 59 60 61 62 63 64 65
\fBAVG_MHz\fP number of cycles executed divided by time elapsed.
\fB%Buzy\fP percent of the interval that the CPU retired instructions, aka. % of time in "C0" state.
\fBBzy_MHz\fP average clock rate while the CPU was busy (in "c0" state).
\fBTSC_MHz\fP average MHz that the TSC ran during the entire interval.
\fBCPU%c1, CPU%c3, CPU%c6, CPU%c7\fP show the percentage residency in hardware core idle states.
\fBCoreTmp\fP Degrees Celsius reported by the per-core Digital Thermal Sensor.
\fBPkgTtmp\fP Degrees Celsius reported by the per-package Package Thermal Monitor.
\fBPkg%pc2, Pkg%pc3, Pkg%pc6, Pkg%pc7\fP percentage residency in hardware package idle states.
\fBPkgWatt\fP Watts consumed by the whole package.
\fBCorWatt\fP Watts consumed by the core part of the package.
\fBGFXWatt\fP Watts consumed by the Graphics part of the package -- available only on client processors.
\fBRAMWatt\fP Watts consumed by the DRAM DIMMS -- available only on server processors.
66 67
\fBPKG_%\fP percent of the interval that RAPL throttling was active on the Package.
\fBRAM_%\fP percent of the interval that RAPL throttling was active on DRAM.
L
Len Brown 已提交
68 69 70 71 72 73 74
.fi
.PP
.SH EXAMPLE
Without any parameters, turbostat prints out counters ever 5 seconds.
(override interval with "-i sec" option, or specify a command
for turbostat to fork).

L
Len Brown 已提交
75
The first row of statistics is a summary for the entire system.
76 77 78
For residency % columns, the summary is a weighted average.
For Temperature columns, the summary is the column maximum.
For Watts columns, the summary is a system total.
L
Len Brown 已提交
79 80 81
Subsequent rows show per-CPU statistics.

.nf
82 83 84 85 86 87 88 89 90 91 92
[root@ivy]# ./turbostat
    Core     CPU Avg_MHz   %Busy Bzy_MHz TSC_MHz     SMI  CPU%c1  CPU%c3  CPU%c6  CPU%c7 CoreTmp  PkgTmp Pkg%pc2 Pkg%pc3 Pkg%pc6 Pkg%pc7 PkgWatt CorWatt GFXWatt 
       -       -       6    0.36    1596    3492       0    0.59    0.01   99.04    0.00      23      24   23.82    0.01   72.47    0.00    6.40    1.01    0.00
       0       0       9    0.58    1596    3492       0    0.28    0.01   99.13    0.00      23      24   23.82    0.01   72.47    0.00    6.40    1.01    0.00
       0       4       1    0.07    1596    3492       0    0.79
       1       1      10    0.65    1596    3492       0    0.59    0.00   98.76    0.00      23
       1       5       5    0.28    1596    3492       0    0.95
       2       2      10    0.66    1596    3492       0    0.41    0.01   98.92    0.00      23
       2       6       2    0.10    1597    3492       0    0.97
       3       3       3    0.20    1596    3492       0    0.44    0.00   99.37    0.00      23
       3       7       5    0.31    1596    3492       0    0.33
L
Len Brown 已提交
93 94 95 96 97
.fi
.SH VERBOSE EXAMPLE
The "-v" option adds verbosity to the output:

.nf
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
[root@ivy]# turbostat -v
turbostat v3.0 November 23, 2012 - Len Brown <lenb@kernel.org>
CPUID(0): GenuineIntel 13 CPUID levels; family:model:stepping 0x6:3a:9 (6:58:9)
CPUID(6): APERF, DTS, PTM, EPB
RAPL: 851 sec. Joule Counter Range
cpu0: MSR_NHM_PLATFORM_INFO: 0x81010f0012300
16 * 100 = 1600 MHz max efficiency
35 * 100 = 3500 MHz TSC frequency
cpu0: MSR_NHM_SNB_PKG_CST_CFG_CTL: 0x1e008402 (UNdemote-C3, UNdemote-C1, demote-C3, demote-C1, locked: pkg-cstate-limit=2: pc6-noret)
cpu0: MSR_NHM_TURBO_RATIO_LIMIT: 0x25262727
37 * 100 = 3700 MHz max turbo 4 active cores
38 * 100 = 3800 MHz max turbo 3 active cores
39 * 100 = 3900 MHz max turbo 2 active cores
39 * 100 = 3900 MHz max turbo 1 active cores
cpu0: MSR_IA32_ENERGY_PERF_BIAS: 0x00000006 (balanced)
cpu0: MSR_RAPL_POWER_UNIT: 0x000a1003 (0.125000 Watts, 0.000015 Joules, 0.000977 sec.)
cpu0: MSR_PKG_POWER_INFO: 0x01e00268 (77 W TDP, RAPL 60 - 0 W, 0.000000 sec.)
cpu0: MSR_PKG_POWER_LIMIT: 0x830000148268 (UNlocked)
cpu0: PKG Limit #1: ENabled (77.000000 Watts, 1.000000 sec, clamp DISabled)
cpu0: PKG Limit #2: ENabled (96.000000 Watts, 0.000977* sec, clamp DISabled)
cpu0: MSR_PP0_POLICY: 0
cpu0: MSR_PP0_POWER_LIMIT: 0x00000000 (UNlocked)
cpu0: Cores Limit: DISabled (0.000000 Watts, 0.000977 sec, clamp DISabled)
cpu0: MSR_PP1_POLICY: 0
cpu0: MSR_PP1_POWER_LIMIT: 0x00000000 (UNlocked)
cpu0: GFX Limit: DISabled (0.000000 Watts, 0.000977 sec, clamp DISabled)
cpu0: MSR_IA32_TEMPERATURE_TARGET: 0x00691400 (105 C)
cpu0: MSR_IA32_PACKAGE_THERM_STATUS: 0x884e0000 (27 C)
cpu0: MSR_IA32_THERM_STATUS: 0x88560000 (19 C +/- 1)
cpu1: MSR_IA32_THERM_STATUS: 0x88560000 (19 C +/- 1)
cpu2: MSR_IA32_THERM_STATUS: 0x88540000 (21 C +/- 1)
cpu3: MSR_IA32_THERM_STATUS: 0x884e0000 (27 C +/- 1)
 ...
L
Len Brown 已提交
131 132
.fi
The \fBmax efficiency\fP frequency, a.k.a. Low Frequency Mode, is the frequency
133 134 135
available at the minimum package voltage.  The \fBTSC frequency\fP is the base
frequency of the processor -- this should match the brand string
in /proc/cpuinfo.  This base frequency
L
Len Brown 已提交
136 137
should be sustainable on all CPUs indefinitely, given nominal power and cooling.
The remaining rows show what maximum turbo frequency is possible
138 139
depending on the number of idle cores.  Note that not all information is
available on all processors.
L
Len Brown 已提交
140 141 142 143 144 145 146
.SH FORK EXAMPLE
If turbostat is invoked with a command, it will fork that command
and output the statistics gathered when the command exits.
eg. Here a cycle soaker is run on 1 CPU (see %c0) for a few seconds
until ^C while the other CPUs are mostly idle:

.nf
147
root@ivy: turbostat cat /dev/zero > /dev/null
L
Len Brown 已提交
148
^C
149 150 151 152 153 154 155 156 157 158 159 160
    Core     CPU Avg_MHz   %Busy Bzy_MHz TSC_MHz     SMI  CPU%c1  CPU%c3  CPU%c6  CPU%c7 CoreTmp  PkgTmp Pkg%pc2 Pkg%pc3 Pkg%pc6 Pkg%pc7 PkgWatt CorWatt GFXWatt 
       -       -     496   12.75    3886    3492       0   13.16    0.04   74.04    0.00      36      36    0.00    0.00    0.00    0.00   23.15   17.65    0.00
       0       0      22    0.57    3830    3492       0    0.83    0.02   98.59    0.00      27      36    0.00    0.00    0.00    0.00   23.15   17.65    0.00
       0       4       9    0.24    3829    3492       0    1.15
       1       1       4    0.09    3783    3492       0   99.91    0.00    0.00    0.00      36
       1       5    3880   99.82    3888    3492       0    0.18
       2       2      17    0.44    3813    3492       0    0.77    0.04   98.75    0.00      28
       2       6      12    0.32    3823    3492       0    0.89
       3       3      16    0.43    3844    3492       0    0.63    0.11   98.84    0.00      30
       3       7       4    0.11    3827    3492       0    0.94
30.372243 sec

L
Len Brown 已提交
161
.fi
162
Above the cycle soaker drives cpu5 up its 3.8 GHz turbo limit
L
Len Brown 已提交
163 164
while the other processors are generally in various states of idle.

165 166
Note that cpu1 and cpu5 are HT siblings within core1.
As cpu5 is very busy, it prevents its sibling, cpu1,
167
from entering a c-state deeper than c1.
L
Len Brown 已提交
168

169 170 171 172 173 174 175
Note that the Avg_MHz column reflects the total number of cycles executed
divided by the measurement interval.  If the %Busy column is 100%,
then the processor was running at that speed the entire interval.
The Avg_MHz multiplied by the %Busy results in the Bzy_MHz --
which is the average frequency while the processor was executing --
not including any non-busy idle time.

L
Len Brown 已提交
176 177 178 179
.SH NOTES

.B "turbostat "
must be run as root.
180 181 182 183 184
Alternatively, non-root users can be enabled to run turbostat this way:

# setcap cap_sys_rawio=ep ./turbostat

# chmod +r /dev/cpu/*/msr
L
Len Brown 已提交
185 186 187 188 189 190 191 192

.B "turbostat "
reads hardware counters, but doesn't write them.
So it will not interfere with the OS or other programs, including
multiple invocations of itself.

\fBturbostat \fP
may work poorly on Linux-2.6.20 through 2.6.29,
193
as \fBacpi-cpufreq \fPperiodically cleared the APERF and MPERF MSRs
L
Len Brown 已提交
194 195
in those kernels.

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
AVG_MHz = APERF_delta/measurement_interval.  This is the actual
number of elapsed cycles divided by the entire sample interval --
including idle time.  Note that this calculation is resiliant
to systems lacking a non-stop TSC.

TSC_MHz = TSC_delta/measurement_interval.
On a system with an invariant TSC, this value will be constant
and will closely match the base frequency value shown
in the brand string in /proc/cpuinfo.  On a system where
the TSC stops in idle, TSC_MHz will drop
below the processor's base frequency.

%Busy = MPERF_delta/TSC_delta

Bzy_MHz = TSC_delta/APERF_delta/MPERF_delta/measurement_interval

Note that these calculations depend on TSC_delta, so they
are not reliable during intervals when TSC_MHz is not running at the base frequency.

Turbostat data collection is not atomic.
Extremely short measurement intervals (much less than 1 second),
or system activity that prevents turbostat from being able
to run on all CPUS to quickly collect data, will result in
inconsistent results.
220

L
Len Brown 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
The APERF, MPERF MSRs are defined to count non-halted cycles.
Although it is not guaranteed by the architecture, turbostat assumes
that they count at TSC rate, which is true on all processors tested to date.

.SH REFERENCES
"Intel® Turbo Boost Technology
in Intel® Core™ Microarchitecture (Nehalem) Based Processors"
http://download.intel.com/design/processor/applnots/320354.pdf

"Intel® 64 and IA-32 Architectures Software Developer's Manual
Volume 3B: System Programming Guide"
http://www.intel.com/products/processor/manuals/

.SH FILES
.ta
.nf
/dev/cpu/*/msr
.fi

.SH "SEE ALSO"
msr(4), vmstat(8)
.PP
L
Len Brown 已提交
243
.SH AUTHOR
L
Len Brown 已提交
244 245
.nf
Written by Len Brown <len.brown@intel.com>