perf_event.c 18.8 KB
Newer Older
1 2 3 4 5 6
#undef DEBUG

/*
 * ARM performance counter support.
 *
 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7
 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8
 *
9 10 11 12 13 14 15 16
 * This code is based on the sparc64 perf event code, which is in turn based
 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
 * code.
 */
#define pr_fmt(fmt) "hw perfevents: " fmt

#include <linux/interrupt.h>
#include <linux/kernel.h>
17
#include <linux/module.h>
18
#include <linux/perf_event.h>
19
#include <linux/platform_device.h>
20 21 22 23 24 25 26 27 28 29 30 31 32
#include <linux/spinlock.h>
#include <linux/uaccess.h>

#include <asm/cputype.h>
#include <asm/irq.h>
#include <asm/irq_regs.h>
#include <asm/pmu.h>
#include <asm/stacktrace.h>

/*
 * Hardware lock to serialize accesses to PMU registers. Needed for the
 * read/modify/write sequences.
 */
33
static DEFINE_RAW_SPINLOCK(pmu_lock);
34 35

/*
36
 * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
37 38
 * another platform that supports more, we need to increase this to be the
 * largest of all platforms.
39 40 41 42
 *
 * ARMv7 supports up to 32 events:
 *  cycle counter CCNT + 31 events counters CNT0..30.
 *  Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
43
 */
44
#define ARMPMU_MAX_HWEVENTS		32
45 46 47 48

/* The events for a given CPU. */
struct cpu_hw_events {
	/*
49
	 * The events that are active on the CPU for the given index.
50 51 52 53 54 55 56 57 58
	 */
	struct perf_event	*events[ARMPMU_MAX_HWEVENTS];

	/*
	 * A 1 bit for an index indicates that the counter is being used for
	 * an event. A 0 means that the counter can be used.
	 */
	unsigned long		used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
};
59
static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
60

61
struct arm_pmu {
62
	enum arm_perf_pmu_ids id;
63
	cpumask_t	active_irqs;
64
	const char	*name;
65 66 67 68 69
	irqreturn_t	(*handle_irq)(int irq_num, void *dev);
	void		(*enable)(struct hw_perf_event *evt, int idx);
	void		(*disable)(struct hw_perf_event *evt, int idx);
	int		(*get_event_idx)(struct cpu_hw_events *cpuc,
					 struct hw_perf_event *hwc);
70 71
	int		(*set_event_filter)(struct hw_perf_event *evt,
					    struct perf_event_attr *attr);
72 73 74 75
	u32		(*read_counter)(int idx);
	void		(*write_counter)(int idx, u32 val);
	void		(*start)(void);
	void		(*stop)(void);
76
	void		(*reset)(void *);
77 78 79 80 81
	const unsigned	(*cache_map)[PERF_COUNT_HW_CACHE_MAX]
				    [PERF_COUNT_HW_CACHE_OP_MAX]
				    [PERF_COUNT_HW_CACHE_RESULT_MAX];
	const unsigned	(*event_map)[PERF_COUNT_HW_MAX];
	u32		raw_event_mask;
82
	int		num_events;
83 84
	atomic_t	active_events;
	struct mutex	reserve_mutex;
85
	u64		max_period;
86
	struct platform_device	*plat_device;
87 88 89
};

/* Set at runtime when we know what CPU type we are. */
90
static struct arm_pmu *armpmu;
91

92 93 94 95 96 97 98 99 100 101 102 103
enum arm_perf_pmu_ids
armpmu_get_pmu_id(void)
{
	int id = -ENODEV;

	if (armpmu != NULL)
		id = armpmu->id;

	return id;
}
EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);

104 105 106 107 108 109 110 111 112 113 114 115
int
armpmu_get_max_events(void)
{
	int max_events = 0;

	if (armpmu != NULL)
		max_events = armpmu->num_events;

	return max_events;
}
EXPORT_SYMBOL_GPL(armpmu_get_max_events);

116 117 118 119 120 121
int perf_num_counters(void)
{
	return armpmu_get_max_events();
}
EXPORT_SYMBOL_GPL(perf_num_counters);

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
#define HW_OP_UNSUPPORTED		0xFFFF

#define C(_x) \
	PERF_COUNT_HW_CACHE_##_x

#define CACHE_OP_UNSUPPORTED		0xFFFF

static int
armpmu_map_cache_event(u64 config)
{
	unsigned int cache_type, cache_op, cache_result, ret;

	cache_type = (config >>  0) & 0xff;
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
		return -EINVAL;

	cache_op = (config >>  8) & 0xff;
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
		return -EINVAL;

	cache_result = (config >> 16) & 0xff;
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

146
	ret = (int)(*armpmu->cache_map)[cache_type][cache_op][cache_result];
147 148 149 150 151 152 153

	if (ret == CACHE_OP_UNSUPPORTED)
		return -ENOENT;

	return ret;
}

154 155 156 157 158 159 160 161 162 163 164 165 166
static int
armpmu_map_event(u64 config)
{
	int mapping = (*armpmu->event_map)[config];
	return mapping == HW_OP_UNSUPPORTED ? -EOPNOTSUPP : mapping;
}

static int
armpmu_map_raw_event(u64 config)
{
	return (int)(config & armpmu->raw_event_mask);
}

167 168 169 170 171
static int
armpmu_event_set_period(struct perf_event *event,
			struct hw_perf_event *hwc,
			int idx)
{
172
	s64 left = local64_read(&hwc->period_left);
173 174 175 176 177
	s64 period = hwc->sample_period;
	int ret = 0;

	if (unlikely(left <= -period)) {
		left = period;
178
		local64_set(&hwc->period_left, left);
179 180 181 182 183 184
		hwc->last_period = period;
		ret = 1;
	}

	if (unlikely(left <= 0)) {
		left += period;
185
		local64_set(&hwc->period_left, left);
186 187 188 189 190 191 192
		hwc->last_period = period;
		ret = 1;
	}

	if (left > (s64)armpmu->max_period)
		left = armpmu->max_period;

193
	local64_set(&hwc->prev_count, (u64)-left);
194 195 196 197 198 199 200 201 202 203 204

	armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);

	perf_event_update_userpage(event);

	return ret;
}

static u64
armpmu_event_update(struct perf_event *event,
		    struct hw_perf_event *hwc,
205
		    int idx, int overflow)
206
{
207
	u64 delta, prev_raw_count, new_raw_count;
208 209

again:
210
	prev_raw_count = local64_read(&hwc->prev_count);
211 212
	new_raw_count = armpmu->read_counter(idx);

213
	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
214 215 216
			     new_raw_count) != prev_raw_count)
		goto again;

217 218 219 220
	new_raw_count &= armpmu->max_period;
	prev_raw_count &= armpmu->max_period;

	if (overflow)
221
		delta = armpmu->max_period - prev_raw_count + new_raw_count + 1;
222 223
	else
		delta = new_raw_count - prev_raw_count;
224

225 226
	local64_add(delta, &event->count);
	local64_sub(delta, &hwc->period_left);
227 228 229 230 231

	return new_raw_count;
}

static void
P
Peter Zijlstra 已提交
232
armpmu_read(struct perf_event *event)
233 234 235
{
	struct hw_perf_event *hwc = &event->hw;

P
Peter Zijlstra 已提交
236 237 238
	/* Don't read disabled counters! */
	if (hwc->idx < 0)
		return;
239

240
	armpmu_event_update(event, hwc, hwc->idx, 0);
241 242 243
}

static void
P
Peter Zijlstra 已提交
244
armpmu_stop(struct perf_event *event, int flags)
245 246 247
{
	struct hw_perf_event *hwc = &event->hw;

P
Peter Zijlstra 已提交
248 249 250 251 252 253 254
	/*
	 * ARM pmu always has to update the counter, so ignore
	 * PERF_EF_UPDATE, see comments in armpmu_start().
	 */
	if (!(hwc->state & PERF_HES_STOPPED)) {
		armpmu->disable(hwc, hwc->idx);
		barrier(); /* why? */
255
		armpmu_event_update(event, hwc, hwc->idx, 0);
P
Peter Zijlstra 已提交
256 257
		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
	}
258 259 260
}

static void
P
Peter Zijlstra 已提交
261
armpmu_start(struct perf_event *event, int flags)
262 263 264
{
	struct hw_perf_event *hwc = &event->hw;

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272
	/*
	 * ARM pmu always has to reprogram the period, so ignore
	 * PERF_EF_RELOAD, see the comment below.
	 */
	if (flags & PERF_EF_RELOAD)
		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));

	hwc->state = 0;
273 274
	/*
	 * Set the period again. Some counters can't be stopped, so when we
P
Peter Zijlstra 已提交
275
	 * were stopped we simply disabled the IRQ source and the counter
276 277 278 279 280 281 282 283
	 * may have been left counting. If we don't do this step then we may
	 * get an interrupt too soon or *way* too late if the overflow has
	 * happened since disabling.
	 */
	armpmu_event_set_period(event, hwc, hwc->idx);
	armpmu->enable(hwc, hwc->idx);
}

P
Peter Zijlstra 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
static void
armpmu_del(struct perf_event *event, int flags)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	int idx = hwc->idx;

	WARN_ON(idx < 0);

	armpmu_stop(event, PERF_EF_UPDATE);
	cpuc->events[idx] = NULL;
	clear_bit(idx, cpuc->used_mask);

	perf_event_update_userpage(event);
}

300
static int
P
Peter Zijlstra 已提交
301
armpmu_add(struct perf_event *event, int flags)
302 303 304 305 306 307
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	int idx;
	int err = 0;

P
Peter Zijlstra 已提交
308
	perf_pmu_disable(event->pmu);
309

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
	/* If we don't have a space for the counter then finish early. */
	idx = armpmu->get_event_idx(cpuc, hwc);
	if (idx < 0) {
		err = idx;
		goto out;
	}

	/*
	 * If there is an event in the counter we are going to use then make
	 * sure it is disabled.
	 */
	event->hw.idx = idx;
	armpmu->disable(hwc, idx);
	cpuc->events[idx] = event;

P
Peter Zijlstra 已提交
325 326 327
	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
	if (flags & PERF_EF_START)
		armpmu_start(event, PERF_EF_RELOAD);
328 329 330 331 332

	/* Propagate our changes to the userspace mapping. */
	perf_event_update_userpage(event);

out:
P
Peter Zijlstra 已提交
333
	perf_pmu_enable(event->pmu);
334 335 336
	return err;
}

337
static struct pmu pmu;
338 339 340 341 342 343

static int
validate_event(struct cpu_hw_events *cpuc,
	       struct perf_event *event)
{
	struct hw_perf_event fake_event = event->hw;
344
	struct pmu *leader_pmu = event->group_leader->pmu;
345

346
	if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
347
		return 1;
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373

	return armpmu->get_event_idx(cpuc, &fake_event) >= 0;
}

static int
validate_group(struct perf_event *event)
{
	struct perf_event *sibling, *leader = event->group_leader;
	struct cpu_hw_events fake_pmu;

	memset(&fake_pmu, 0, sizeof(fake_pmu));

	if (!validate_event(&fake_pmu, leader))
		return -ENOSPC;

	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
		if (!validate_event(&fake_pmu, sibling))
			return -ENOSPC;
	}

	if (!validate_event(&fake_pmu, event))
		return -ENOSPC;

	return 0;
}

374 375
static irqreturn_t armpmu_platform_irq(int irq, void *dev)
{
376 377
	struct platform_device *plat_device = armpmu->plat_device;
	struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
378 379 380 381

	return plat->handle_irq(irq, dev, armpmu->handle_irq);
}

382 383 384 385
static void
armpmu_release_hardware(void)
{
	int i, irq, irqs;
386
	struct platform_device *pmu_device = armpmu->plat_device;
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

	irqs = min(pmu_device->num_resources, num_possible_cpus());

	for (i = 0; i < irqs; ++i) {
		if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
			continue;
		irq = platform_get_irq(pmu_device, i);
		if (irq >= 0)
			free_irq(irq, NULL);
	}

	armpmu->stop();
	release_pmu(ARM_PMU_DEVICE_CPU);
}

402 403 404
static int
armpmu_reserve_hardware(void)
{
405 406
	struct arm_pmu_platdata *plat;
	irq_handler_t handle_irq;
407
	int i, err, irq, irqs;
408
	struct platform_device *pmu_device = armpmu->plat_device;
409

410 411
	err = reserve_pmu(ARM_PMU_DEVICE_CPU);
	if (err) {
412
		pr_warning("unable to reserve pmu\n");
413
		return err;
414 415
	}

416 417 418 419 420 421
	plat = dev_get_platdata(&pmu_device->dev);
	if (plat && plat->handle_irq)
		handle_irq = armpmu_platform_irq;
	else
		handle_irq = armpmu->handle_irq;

422
	irqs = min(pmu_device->num_resources, num_possible_cpus());
423
	if (irqs < 1) {
424 425 426 427
		pr_err("no irqs for PMUs defined\n");
		return -ENODEV;
	}

428
	for (i = 0; i < irqs; ++i) {
429
		err = 0;
430 431 432 433
		irq = platform_get_irq(pmu_device, i);
		if (irq < 0)
			continue;

434 435 436
		/*
		 * If we have a single PMU interrupt that we can't shift,
		 * assume that we're running on a uniprocessor machine and
437
		 * continue. Otherwise, continue without this interrupt.
438
		 */
439 440 441 442
		if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
			pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
				    irq, i);
			continue;
443 444
		}

445
		err = request_irq(irq, handle_irq,
446
				  IRQF_DISABLED | IRQF_NOBALANCING,
447
				  "arm-pmu", NULL);
448
		if (err) {
449 450
			pr_err("unable to request IRQ%d for ARM PMU counters\n",
				irq);
451 452
			armpmu_release_hardware();
			return err;
453 454
		}

455
		cpumask_set_cpu(i, &armpmu->active_irqs);
456
	}
457

458
	return 0;
459 460 461 462 463
}

static void
hw_perf_event_destroy(struct perf_event *event)
{
464 465 466 467
	atomic_t *active_events	 = &armpmu->active_events;
	struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;

	if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
468
		armpmu_release_hardware();
469
		mutex_unlock(pmu_reserve_mutex);
470 471 472
	}
}

473 474 475 476 477 478 479
static int
event_requires_mode_exclusion(struct perf_event_attr *attr)
{
	return attr->exclude_idle || attr->exclude_user ||
	       attr->exclude_kernel || attr->exclude_hv;
}

480 481 482 483 484 485 486 487
static int
__hw_perf_event_init(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	int mapping, err;

	/* Decode the generic type into an ARM event identifier. */
	if (PERF_TYPE_HARDWARE == event->attr.type) {
488
		mapping = armpmu_map_event(event->attr.config);
489 490 491
	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
		mapping = armpmu_map_cache_event(event->attr.config);
	} else if (PERF_TYPE_RAW == event->attr.type) {
492
		mapping = armpmu_map_raw_event(event->attr.config);
493 494 495 496 497 498 499 500 501 502 503
	} else {
		pr_debug("event type %x not supported\n", event->attr.type);
		return -EOPNOTSUPP;
	}

	if (mapping < 0) {
		pr_debug("event %x:%llx not supported\n", event->attr.type,
			 event->attr.config);
		return mapping;
	}

504 505 506 507 508 509 510 511 512 513 514
	/*
	 * We don't assign an index until we actually place the event onto
	 * hardware. Use -1 to signify that we haven't decided where to put it
	 * yet. For SMP systems, each core has it's own PMU so we can't do any
	 * clever allocation or constraints checking at this point.
	 */
	hwc->idx		= -1;
	hwc->config_base	= 0;
	hwc->config		= 0;
	hwc->event_base		= 0;

515 516 517
	/*
	 * Check whether we need to exclude the counter from certain modes.
	 */
518 519 520
	if ((!armpmu->set_event_filter ||
	     armpmu->set_event_filter(hwc, &event->attr)) &&
	     event_requires_mode_exclusion(&event->attr)) {
521 522 523 524 525 526
		pr_debug("ARM performance counters do not support "
			 "mode exclusion\n");
		return -EPERM;
	}

	/*
527
	 * Store the event encoding into the config_base field.
528
	 */
529
	hwc->config_base	    |= (unsigned long)mapping;
530 531 532 533

	if (!hwc->sample_period) {
		hwc->sample_period  = armpmu->max_period;
		hwc->last_period    = hwc->sample_period;
534
		local64_set(&hwc->period_left, hwc->sample_period);
535 536 537 538 539 540 541 542 543 544 545 546
	}

	err = 0;
	if (event->group_leader != event) {
		err = validate_group(event);
		if (err)
			return -EINVAL;
	}

	return err;
}

547
static int armpmu_event_init(struct perf_event *event)
548 549
{
	int err = 0;
550
	atomic_t *active_events = &armpmu->active_events;
551

552 553 554 555 556 557 558 559 560 561
	switch (event->attr.type) {
	case PERF_TYPE_RAW:
	case PERF_TYPE_HARDWARE:
	case PERF_TYPE_HW_CACHE:
		break;

	default:
		return -ENOENT;
	}

562 563
	event->destroy = hw_perf_event_destroy;

564 565 566
	if (!atomic_inc_not_zero(active_events)) {
		mutex_lock(&armpmu->reserve_mutex);
		if (atomic_read(active_events) == 0)
567 568 569
			err = armpmu_reserve_hardware();

		if (!err)
570 571
			atomic_inc(active_events);
		mutex_unlock(&armpmu->reserve_mutex);
572 573 574
	}

	if (err)
575
		return err;
576 577 578 579 580

	err = __hw_perf_event_init(event);
	if (err)
		hw_perf_event_destroy(event);

581
	return err;
582 583
}

P
Peter Zijlstra 已提交
584
static void armpmu_enable(struct pmu *pmu)
585 586
{
	/* Enable all of the perf events on hardware. */
587
	int idx, enabled = 0;
588 589
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);

590
	for (idx = 0; idx < armpmu->num_events; ++idx) {
591 592 593 594 595 596
		struct perf_event *event = cpuc->events[idx];

		if (!event)
			continue;

		armpmu->enable(&event->hw, idx);
597
		enabled = 1;
598 599
	}

600 601
	if (enabled)
		armpmu->start();
602 603
}

P
Peter Zijlstra 已提交
604
static void armpmu_disable(struct pmu *pmu)
605
{
606
	armpmu->stop();
607 608
}

P
Peter Zijlstra 已提交
609
static struct pmu pmu = {
P
Peter Zijlstra 已提交
610 611 612 613 614 615 616 617
	.pmu_enable	= armpmu_enable,
	.pmu_disable	= armpmu_disable,
	.event_init	= armpmu_event_init,
	.add		= armpmu_add,
	.del		= armpmu_del,
	.start		= armpmu_start,
	.stop		= armpmu_stop,
	.read		= armpmu_read,
P
Peter Zijlstra 已提交
618 619
};

620 621 622 623 624 625
static void __init armpmu_init(struct arm_pmu *armpmu)
{
	atomic_set(&armpmu->active_events, 0);
	mutex_init(&armpmu->reserve_mutex);
}

626 627 628 629
/* Include the PMU-specific implementations. */
#include "perf_event_xscale.c"
#include "perf_event_v6.c"
#include "perf_event_v7.c"
630

631 632 633 634 635 636 637 638 639 640 641 642 643
/*
 * Ensure the PMU has sane values out of reset.
 * This requires SMP to be available, so exists as a separate initcall.
 */
static int __init
armpmu_reset(void)
{
	if (armpmu && armpmu->reset)
		return on_each_cpu(armpmu->reset, NULL, 1);
	return 0;
}
arch_initcall(armpmu_reset);

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
/*
 * PMU platform driver and devicetree bindings.
 */
static struct of_device_id armpmu_of_device_ids[] = {
	{.compatible = "arm,cortex-a9-pmu"},
	{.compatible = "arm,cortex-a8-pmu"},
	{.compatible = "arm,arm1136-pmu"},
	{.compatible = "arm,arm1176-pmu"},
	{},
};

static struct platform_device_id armpmu_plat_device_ids[] = {
	{.name = "arm-pmu"},
	{},
};

static int __devinit armpmu_device_probe(struct platform_device *pdev)
{
662
	armpmu->plat_device = pdev;
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	return 0;
}

static struct platform_driver armpmu_driver = {
	.driver		= {
		.name	= "arm-pmu",
		.of_match_table = armpmu_of_device_ids,
	},
	.probe		= armpmu_device_probe,
	.id_table	= armpmu_plat_device_ids,
};

static int __init register_pmu_driver(void)
{
	return platform_driver_register(&armpmu_driver);
}
device_initcall(register_pmu_driver);

/*
 * CPU PMU identification and registration.
 */
684 685 686 687 688 689 690
static int __init
init_hw_perf_events(void)
{
	unsigned long cpuid = read_cpuid_id();
	unsigned long implementor = (cpuid & 0xFF000000) >> 24;
	unsigned long part_number = (cpuid & 0xFFF0);

691
	/* ARM Ltd CPUs. */
692 693 694 695 696
	if (0x41 == implementor) {
		switch (part_number) {
		case 0xB360:	/* ARM1136 */
		case 0xB560:	/* ARM1156 */
		case 0xB760:	/* ARM1176 */
697
			armpmu = armv6pmu_init();
698 699
			break;
		case 0xB020:	/* ARM11mpcore */
700
			armpmu = armv6mpcore_pmu_init();
701
			break;
702
		case 0xC080:	/* Cortex-A8 */
703
			armpmu = armv7_a8_pmu_init();
704 705
			break;
		case 0xC090:	/* Cortex-A9 */
706
			armpmu = armv7_a9_pmu_init();
707
			break;
708 709 710
		case 0xC050:	/* Cortex-A5 */
			armpmu = armv7_a5_pmu_init();
			break;
711 712 713
		case 0xC0F0:	/* Cortex-A15 */
			armpmu = armv7_a15_pmu_init();
			break;
714 715 716 717 718 719
		}
	/* Intel CPUs [xscale]. */
	} else if (0x69 == implementor) {
		part_number = (cpuid >> 13) & 0x7;
		switch (part_number) {
		case 1:
720
			armpmu = xscale1pmu_init();
721 722
			break;
		case 2:
723
			armpmu = xscale2pmu_init();
724
			break;
725 726 727
		}
	}

728
	if (armpmu) {
729
		pr_info("enabled with %s PMU driver, %d counters available\n",
730
			armpmu->name, armpmu->num_events);
731
		armpmu_init(armpmu);
732
		perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
733 734 735
	} else {
		pr_info("no hardware support available\n");
	}
736 737 738

	return 0;
}
739
early_initcall(init_hw_perf_events);
740 741 742 743 744 745 746 747 748 749 750 751 752 753

/*
 * Callchain handling code.
 */

/*
 * The registers we're interested in are at the end of the variable
 * length saved register structure. The fp points at the end of this
 * structure so the address of this struct is:
 * (struct frame_tail *)(xxx->fp)-1
 *
 * This code has been adapted from the ARM OProfile support.
 */
struct frame_tail {
754 755 756
	struct frame_tail __user *fp;
	unsigned long sp;
	unsigned long lr;
757 758 759 760 761 762
} __attribute__((packed));

/*
 * Get the return address for a single stackframe and return a pointer to the
 * next frame tail.
 */
763 764
static struct frame_tail __user *
user_backtrace(struct frame_tail __user *tail,
765 766 767 768 769 770 771 772 773 774
	       struct perf_callchain_entry *entry)
{
	struct frame_tail buftail;

	/* Also check accessibility of one struct frame_tail beyond */
	if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
		return NULL;
	if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
		return NULL;

775
	perf_callchain_store(entry, buftail.lr);
776 777 778 779 780

	/*
	 * Frame pointers should strictly progress back up the stack
	 * (towards higher addresses).
	 */
781
	if (tail + 1 >= buftail.fp)
782 783 784 785 786
		return NULL;

	return buftail.fp - 1;
}

787 788
void
perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
789
{
790
	struct frame_tail __user *tail;
791 792


793
	tail = (struct frame_tail __user *)regs->ARM_fp - 1;
794

795 796
	while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
	       tail && !((unsigned long)tail & 0x3))
797 798 799 800 801 802 803 804 805 806 807 808 809
		tail = user_backtrace(tail, entry);
}

/*
 * Gets called by walk_stackframe() for every stackframe. This will be called
 * whist unwinding the stackframe and is like a subroutine return so we use
 * the PC.
 */
static int
callchain_trace(struct stackframe *fr,
		void *data)
{
	struct perf_callchain_entry *entry = data;
810
	perf_callchain_store(entry, fr->pc);
811 812 813
	return 0;
}

814 815
void
perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
816 817 818 819 820 821 822 823 824
{
	struct stackframe fr;

	fr.fp = regs->ARM_fp;
	fr.sp = regs->ARM_sp;
	fr.lr = regs->ARM_lr;
	fr.pc = regs->ARM_pc;
	walk_stackframe(&fr, callchain_trace, entry);
}