perf_event.c 17.4 KB
Newer Older
1 2 3 4 5 6
#undef DEBUG

/*
 * ARM performance counter support.
 *
 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7
 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8
 *
9 10 11 12 13 14 15 16
 * This code is based on the sparc64 perf event code, which is in turn based
 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
 * code.
 */
#define pr_fmt(fmt) "hw perfevents: " fmt

#include <linux/interrupt.h>
#include <linux/kernel.h>
17
#include <linux/module.h>
18
#include <linux/perf_event.h>
19
#include <linux/platform_device.h>
20 21 22 23 24 25 26 27 28
#include <linux/spinlock.h>
#include <linux/uaccess.h>

#include <asm/cputype.h>
#include <asm/irq.h>
#include <asm/irq_regs.h>
#include <asm/pmu.h>
#include <asm/stacktrace.h>

29
static struct platform_device *pmu_device;
30 31 32 33 34

/*
 * Hardware lock to serialize accesses to PMU registers. Needed for the
 * read/modify/write sequences.
 */
35
static DEFINE_RAW_SPINLOCK(pmu_lock);
36 37 38 39 40

/*
 * ARMv6 supports a maximum of 3 events, starting from index 1. If we add
 * another platform that supports more, we need to increase this to be the
 * largest of all platforms.
41 42 43 44
 *
 * ARMv7 supports up to 32 events:
 *  cycle counter CCNT + 31 events counters CNT0..30.
 *  Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
45
 */
46
#define ARMPMU_MAX_HWEVENTS		33
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

/* The events for a given CPU. */
struct cpu_hw_events {
	/*
	 * The events that are active on the CPU for the given index. Index 0
	 * is reserved.
	 */
	struct perf_event	*events[ARMPMU_MAX_HWEVENTS];

	/*
	 * A 1 bit for an index indicates that the counter is being used for
	 * an event. A 0 means that the counter can be used.
	 */
	unsigned long		used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];

	/*
	 * A 1 bit for an index indicates that the counter is actively being
	 * used.
	 */
	unsigned long		active_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
};
68
static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
69

70
struct arm_pmu {
71
	enum arm_perf_pmu_ids id;
72
	const char	*name;
73 74 75 76 77 78 79 80 81
	irqreturn_t	(*handle_irq)(int irq_num, void *dev);
	void		(*enable)(struct hw_perf_event *evt, int idx);
	void		(*disable)(struct hw_perf_event *evt, int idx);
	int		(*get_event_idx)(struct cpu_hw_events *cpuc,
					 struct hw_perf_event *hwc);
	u32		(*read_counter)(int idx);
	void		(*write_counter)(int idx, u32 val);
	void		(*start)(void);
	void		(*stop)(void);
82
	void		(*reset)(void *);
83 84 85 86 87
	const unsigned	(*cache_map)[PERF_COUNT_HW_CACHE_MAX]
				    [PERF_COUNT_HW_CACHE_OP_MAX]
				    [PERF_COUNT_HW_CACHE_RESULT_MAX];
	const unsigned	(*event_map)[PERF_COUNT_HW_MAX];
	u32		raw_event_mask;
88 89 90 91 92 93 94
	int		num_events;
	u64		max_period;
};

/* Set at runtime when we know what CPU type we are. */
static const struct arm_pmu *armpmu;

95 96 97 98 99 100 101 102 103 104 105 106
enum arm_perf_pmu_ids
armpmu_get_pmu_id(void)
{
	int id = -ENODEV;

	if (armpmu != NULL)
		id = armpmu->id;

	return id;
}
EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);

107 108 109 110 111 112 113 114 115 116 117 118
int
armpmu_get_max_events(void)
{
	int max_events = 0;

	if (armpmu != NULL)
		max_events = armpmu->num_events;

	return max_events;
}
EXPORT_SYMBOL_GPL(armpmu_get_max_events);

119 120 121 122 123 124
int perf_num_counters(void)
{
	return armpmu_get_max_events();
}
EXPORT_SYMBOL_GPL(perf_num_counters);

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
#define HW_OP_UNSUPPORTED		0xFFFF

#define C(_x) \
	PERF_COUNT_HW_CACHE_##_x

#define CACHE_OP_UNSUPPORTED		0xFFFF

static int
armpmu_map_cache_event(u64 config)
{
	unsigned int cache_type, cache_op, cache_result, ret;

	cache_type = (config >>  0) & 0xff;
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
		return -EINVAL;

	cache_op = (config >>  8) & 0xff;
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
		return -EINVAL;

	cache_result = (config >> 16) & 0xff;
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

149
	ret = (int)(*armpmu->cache_map)[cache_type][cache_op][cache_result];
150 151 152 153 154 155 156

	if (ret == CACHE_OP_UNSUPPORTED)
		return -ENOENT;

	return ret;
}

157 158 159 160 161 162 163 164 165 166 167 168 169
static int
armpmu_map_event(u64 config)
{
	int mapping = (*armpmu->event_map)[config];
	return mapping == HW_OP_UNSUPPORTED ? -EOPNOTSUPP : mapping;
}

static int
armpmu_map_raw_event(u64 config)
{
	return (int)(config & armpmu->raw_event_mask);
}

170 171 172 173 174
static int
armpmu_event_set_period(struct perf_event *event,
			struct hw_perf_event *hwc,
			int idx)
{
175
	s64 left = local64_read(&hwc->period_left);
176 177 178 179 180
	s64 period = hwc->sample_period;
	int ret = 0;

	if (unlikely(left <= -period)) {
		left = period;
181
		local64_set(&hwc->period_left, left);
182 183 184 185 186 187
		hwc->last_period = period;
		ret = 1;
	}

	if (unlikely(left <= 0)) {
		left += period;
188
		local64_set(&hwc->period_left, left);
189 190 191 192 193 194 195
		hwc->last_period = period;
		ret = 1;
	}

	if (left > (s64)armpmu->max_period)
		left = armpmu->max_period;

196
	local64_set(&hwc->prev_count, (u64)-left);
197 198 199 200 201 202 203 204 205 206 207

	armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);

	perf_event_update_userpage(event);

	return ret;
}

static u64
armpmu_event_update(struct perf_event *event,
		    struct hw_perf_event *hwc,
208
		    int idx, int overflow)
209
{
210
	u64 delta, prev_raw_count, new_raw_count;
211 212

again:
213
	prev_raw_count = local64_read(&hwc->prev_count);
214 215
	new_raw_count = armpmu->read_counter(idx);

216
	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
217 218 219
			     new_raw_count) != prev_raw_count)
		goto again;

220 221 222 223
	new_raw_count &= armpmu->max_period;
	prev_raw_count &= armpmu->max_period;

	if (overflow)
224
		delta = armpmu->max_period - prev_raw_count + new_raw_count + 1;
225 226
	else
		delta = new_raw_count - prev_raw_count;
227

228 229
	local64_add(delta, &event->count);
	local64_sub(delta, &hwc->period_left);
230 231 232 233 234

	return new_raw_count;
}

static void
P
Peter Zijlstra 已提交
235
armpmu_read(struct perf_event *event)
236 237 238
{
	struct hw_perf_event *hwc = &event->hw;

P
Peter Zijlstra 已提交
239 240 241
	/* Don't read disabled counters! */
	if (hwc->idx < 0)
		return;
242

243
	armpmu_event_update(event, hwc, hwc->idx, 0);
244 245 246
}

static void
P
Peter Zijlstra 已提交
247
armpmu_stop(struct perf_event *event, int flags)
248 249 250
{
	struct hw_perf_event *hwc = &event->hw;

P
Peter Zijlstra 已提交
251
	if (!armpmu)
252 253
		return;

P
Peter Zijlstra 已提交
254 255 256 257 258 259 260
	/*
	 * ARM pmu always has to update the counter, so ignore
	 * PERF_EF_UPDATE, see comments in armpmu_start().
	 */
	if (!(hwc->state & PERF_HES_STOPPED)) {
		armpmu->disable(hwc, hwc->idx);
		barrier(); /* why? */
261
		armpmu_event_update(event, hwc, hwc->idx, 0);
P
Peter Zijlstra 已提交
262 263
		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
	}
264 265 266
}

static void
P
Peter Zijlstra 已提交
267
armpmu_start(struct perf_event *event, int flags)
268 269 270
{
	struct hw_perf_event *hwc = &event->hw;

P
Peter Zijlstra 已提交
271 272 273 274 275 276 277 278 279 280 281
	if (!armpmu)
		return;

	/*
	 * ARM pmu always has to reprogram the period, so ignore
	 * PERF_EF_RELOAD, see the comment below.
	 */
	if (flags & PERF_EF_RELOAD)
		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));

	hwc->state = 0;
282 283
	/*
	 * Set the period again. Some counters can't be stopped, so when we
P
Peter Zijlstra 已提交
284
	 * were stopped we simply disabled the IRQ source and the counter
285 286 287 288 289 290 291 292
	 * may have been left counting. If we don't do this step then we may
	 * get an interrupt too soon or *way* too late if the overflow has
	 * happened since disabling.
	 */
	armpmu_event_set_period(event, hwc, hwc->idx);
	armpmu->enable(hwc, hwc->idx);
}

P
Peter Zijlstra 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
static void
armpmu_del(struct perf_event *event, int flags)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	int idx = hwc->idx;

	WARN_ON(idx < 0);

	clear_bit(idx, cpuc->active_mask);
	armpmu_stop(event, PERF_EF_UPDATE);
	cpuc->events[idx] = NULL;
	clear_bit(idx, cpuc->used_mask);

	perf_event_update_userpage(event);
}

310
static int
P
Peter Zijlstra 已提交
311
armpmu_add(struct perf_event *event, int flags)
312 313 314 315 316 317
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
	int idx;
	int err = 0;

P
Peter Zijlstra 已提交
318
	perf_pmu_disable(event->pmu);
319

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
	/* If we don't have a space for the counter then finish early. */
	idx = armpmu->get_event_idx(cpuc, hwc);
	if (idx < 0) {
		err = idx;
		goto out;
	}

	/*
	 * If there is an event in the counter we are going to use then make
	 * sure it is disabled.
	 */
	event->hw.idx = idx;
	armpmu->disable(hwc, idx);
	cpuc->events[idx] = event;
	set_bit(idx, cpuc->active_mask);

P
Peter Zijlstra 已提交
336 337 338
	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
	if (flags & PERF_EF_START)
		armpmu_start(event, PERF_EF_RELOAD);
339 340 341 342 343

	/* Propagate our changes to the userspace mapping. */
	perf_event_update_userpage(event);

out:
P
Peter Zijlstra 已提交
344
	perf_pmu_enable(event->pmu);
345 346 347
	return err;
}

348
static struct pmu pmu;
349 350 351 352 353 354 355

static int
validate_event(struct cpu_hw_events *cpuc,
	       struct perf_event *event)
{
	struct hw_perf_event fake_event = event->hw;

356 357
	if (event->pmu != &pmu || event->state <= PERF_EVENT_STATE_OFF)
		return 1;
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383

	return armpmu->get_event_idx(cpuc, &fake_event) >= 0;
}

static int
validate_group(struct perf_event *event)
{
	struct perf_event *sibling, *leader = event->group_leader;
	struct cpu_hw_events fake_pmu;

	memset(&fake_pmu, 0, sizeof(fake_pmu));

	if (!validate_event(&fake_pmu, leader))
		return -ENOSPC;

	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
		if (!validate_event(&fake_pmu, sibling))
			return -ENOSPC;
	}

	if (!validate_event(&fake_pmu, event))
		return -ENOSPC;

	return 0;
}

384 385 386 387 388 389 390
static irqreturn_t armpmu_platform_irq(int irq, void *dev)
{
	struct arm_pmu_platdata *plat = dev_get_platdata(&pmu_device->dev);

	return plat->handle_irq(irq, dev, armpmu->handle_irq);
}

391 392 393
static int
armpmu_reserve_hardware(void)
{
394 395
	struct arm_pmu_platdata *plat;
	irq_handler_t handle_irq;
396
	int i, err = -ENODEV, irq;
397

398 399
	pmu_device = reserve_pmu(ARM_PMU_DEVICE_CPU);
	if (IS_ERR(pmu_device)) {
400
		pr_warning("unable to reserve pmu\n");
401
		return PTR_ERR(pmu_device);
402 403
	}

404
	init_pmu(ARM_PMU_DEVICE_CPU);
405

406 407 408 409 410 411
	plat = dev_get_platdata(&pmu_device->dev);
	if (plat && plat->handle_irq)
		handle_irq = armpmu_platform_irq;
	else
		handle_irq = armpmu->handle_irq;

412
	if (pmu_device->num_resources < 1) {
413 414 415 416
		pr_err("no irqs for PMUs defined\n");
		return -ENODEV;
	}

417 418 419 420 421
	for (i = 0; i < pmu_device->num_resources; ++i) {
		irq = platform_get_irq(pmu_device, i);
		if (irq < 0)
			continue;

422
		err = request_irq(irq, handle_irq,
423 424
				  IRQF_DISABLED | IRQF_NOBALANCING,
				  "armpmu", NULL);
425
		if (err) {
426 427
			pr_warning("unable to request IRQ%d for ARM perf "
				"counters\n", irq);
428 429 430 431 432
			break;
		}
	}

	if (err) {
433 434 435 436 437 438 439
		for (i = i - 1; i >= 0; --i) {
			irq = platform_get_irq(pmu_device, i);
			if (irq >= 0)
				free_irq(irq, NULL);
		}
		release_pmu(pmu_device);
		pmu_device = NULL;
440 441 442 443 444 445 446 447
	}

	return err;
}

static void
armpmu_release_hardware(void)
{
448
	int i, irq;
449

450 451 452 453 454
	for (i = pmu_device->num_resources - 1; i >= 0; --i) {
		irq = platform_get_irq(pmu_device, i);
		if (irq >= 0)
			free_irq(irq, NULL);
	}
455 456
	armpmu->stop();

457 458
	release_pmu(pmu_device);
	pmu_device = NULL;
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
}

static atomic_t active_events = ATOMIC_INIT(0);
static DEFINE_MUTEX(pmu_reserve_mutex);

static void
hw_perf_event_destroy(struct perf_event *event)
{
	if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) {
		armpmu_release_hardware();
		mutex_unlock(&pmu_reserve_mutex);
	}
}

static int
__hw_perf_event_init(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	int mapping, err;

	/* Decode the generic type into an ARM event identifier. */
	if (PERF_TYPE_HARDWARE == event->attr.type) {
481
		mapping = armpmu_map_event(event->attr.config);
482 483 484
	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
		mapping = armpmu_map_cache_event(event->attr.config);
	} else if (PERF_TYPE_RAW == event->attr.type) {
485
		mapping = armpmu_map_raw_event(event->attr.config);
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	} else {
		pr_debug("event type %x not supported\n", event->attr.type);
		return -EOPNOTSUPP;
	}

	if (mapping < 0) {
		pr_debug("event %x:%llx not supported\n", event->attr.type,
			 event->attr.config);
		return mapping;
	}

	/*
	 * Check whether we need to exclude the counter from certain modes.
	 * The ARM performance counters are on all of the time so if someone
	 * has asked us for some excludes then we have to fail.
	 */
	if (event->attr.exclude_kernel || event->attr.exclude_user ||
	    event->attr.exclude_hv || event->attr.exclude_idle) {
		pr_debug("ARM performance counters do not support "
			 "mode exclusion\n");
		return -EPERM;
	}

	/*
	 * We don't assign an index until we actually place the event onto
	 * hardware. Use -1 to signify that we haven't decided where to put it
	 * yet. For SMP systems, each core has it's own PMU so we can't do any
	 * clever allocation or constraints checking at this point.
	 */
	hwc->idx = -1;

	/*
	 * Store the event encoding into the config_base field. config and
	 * event_base are unused as the only 2 things we need to know are
	 * the event mapping and the counter to use. The counter to use is
	 * also the indx and the config_base is the event type.
	 */
	hwc->config_base	    = (unsigned long)mapping;
	hwc->config		    = 0;
	hwc->event_base		    = 0;

	if (!hwc->sample_period) {
		hwc->sample_period  = armpmu->max_period;
		hwc->last_period    = hwc->sample_period;
530
		local64_set(&hwc->period_left, hwc->sample_period);
531 532 533 534 535 536 537 538 539 540 541 542
	}

	err = 0;
	if (event->group_leader != event) {
		err = validate_group(event);
		if (err)
			return -EINVAL;
	}

	return err;
}

543
static int armpmu_event_init(struct perf_event *event)
544 545 546
{
	int err = 0;

547 548 549 550 551 552 553 554 555 556
	switch (event->attr.type) {
	case PERF_TYPE_RAW:
	case PERF_TYPE_HARDWARE:
	case PERF_TYPE_HW_CACHE:
		break;

	default:
		return -ENOENT;
	}

557
	if (!armpmu)
558
		return -ENODEV;
559 560 561 562

	event->destroy = hw_perf_event_destroy;

	if (!atomic_inc_not_zero(&active_events)) {
563
		if (atomic_read(&active_events) > armpmu->num_events) {
564
			atomic_dec(&active_events);
565
			return -ENOSPC;
566 567 568 569 570 571 572 573 574 575 576 577 578
		}

		mutex_lock(&pmu_reserve_mutex);
		if (atomic_read(&active_events) == 0) {
			err = armpmu_reserve_hardware();
		}

		if (!err)
			atomic_inc(&active_events);
		mutex_unlock(&pmu_reserve_mutex);
	}

	if (err)
579
		return err;
580 581 582 583 584

	err = __hw_perf_event_init(event);
	if (err)
		hw_perf_event_destroy(event);

585
	return err;
586 587
}

P
Peter Zijlstra 已提交
588
static void armpmu_enable(struct pmu *pmu)
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
{
	/* Enable all of the perf events on hardware. */
	int idx;
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);

	if (!armpmu)
		return;

	for (idx = 0; idx <= armpmu->num_events; ++idx) {
		struct perf_event *event = cpuc->events[idx];

		if (!event)
			continue;

		armpmu->enable(&event->hw, idx);
	}

	armpmu->start();
}

P
Peter Zijlstra 已提交
609
static void armpmu_disable(struct pmu *pmu)
610 611 612 613 614
{
	if (armpmu)
		armpmu->stop();
}

P
Peter Zijlstra 已提交
615
static struct pmu pmu = {
P
Peter Zijlstra 已提交
616 617 618 619 620 621 622 623
	.pmu_enable	= armpmu_enable,
	.pmu_disable	= armpmu_disable,
	.event_init	= armpmu_event_init,
	.add		= armpmu_add,
	.del		= armpmu_del,
	.start		= armpmu_start,
	.stop		= armpmu_stop,
	.read		= armpmu_read,
P
Peter Zijlstra 已提交
624 625
};

626 627 628 629
/* Include the PMU-specific implementations. */
#include "perf_event_xscale.c"
#include "perf_event_v6.c"
#include "perf_event_v7.c"
630

631 632 633 634 635 636 637 638 639 640 641 642 643
/*
 * Ensure the PMU has sane values out of reset.
 * This requires SMP to be available, so exists as a separate initcall.
 */
static int __init
armpmu_reset(void)
{
	if (armpmu && armpmu->reset)
		return on_each_cpu(armpmu->reset, NULL, 1);
	return 0;
}
arch_initcall(armpmu_reset);

644 645 646 647 648 649 650
static int __init
init_hw_perf_events(void)
{
	unsigned long cpuid = read_cpuid_id();
	unsigned long implementor = (cpuid & 0xFF000000) >> 24;
	unsigned long part_number = (cpuid & 0xFFF0);

651
	/* ARM Ltd CPUs. */
652 653 654 655 656
	if (0x41 == implementor) {
		switch (part_number) {
		case 0xB360:	/* ARM1136 */
		case 0xB560:	/* ARM1156 */
		case 0xB760:	/* ARM1176 */
657
			armpmu = armv6pmu_init();
658 659
			break;
		case 0xB020:	/* ARM11mpcore */
660
			armpmu = armv6mpcore_pmu_init();
661
			break;
662
		case 0xC080:	/* Cortex-A8 */
663
			armpmu = armv7_a8_pmu_init();
664 665
			break;
		case 0xC090:	/* Cortex-A9 */
666
			armpmu = armv7_a9_pmu_init();
667
			break;
668 669 670 671 672 673
		}
	/* Intel CPUs [xscale]. */
	} else if (0x69 == implementor) {
		part_number = (cpuid >> 13) & 0x7;
		switch (part_number) {
		case 1:
674
			armpmu = xscale1pmu_init();
675 676
			break;
		case 2:
677
			armpmu = xscale2pmu_init();
678
			break;
679 680 681
		}
	}

682
	if (armpmu) {
683
		pr_info("enabled with %s PMU driver, %d counters available\n",
684
			armpmu->name, armpmu->num_events);
685 686 687
	} else {
		pr_info("no hardware support available\n");
	}
688

P
Peter Zijlstra 已提交
689
	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
690

691 692
	return 0;
}
693
early_initcall(init_hw_perf_events);
694 695 696 697 698 699 700 701 702 703 704 705 706 707

/*
 * Callchain handling code.
 */

/*
 * The registers we're interested in are at the end of the variable
 * length saved register structure. The fp points at the end of this
 * structure so the address of this struct is:
 * (struct frame_tail *)(xxx->fp)-1
 *
 * This code has been adapted from the ARM OProfile support.
 */
struct frame_tail {
708 709 710
	struct frame_tail __user *fp;
	unsigned long sp;
	unsigned long lr;
711 712 713 714 715 716
} __attribute__((packed));

/*
 * Get the return address for a single stackframe and return a pointer to the
 * next frame tail.
 */
717 718
static struct frame_tail __user *
user_backtrace(struct frame_tail __user *tail,
719 720 721 722 723 724 725 726 727 728
	       struct perf_callchain_entry *entry)
{
	struct frame_tail buftail;

	/* Also check accessibility of one struct frame_tail beyond */
	if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
		return NULL;
	if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
		return NULL;

729
	perf_callchain_store(entry, buftail.lr);
730 731 732 733 734

	/*
	 * Frame pointers should strictly progress back up the stack
	 * (towards higher addresses).
	 */
735
	if (tail + 1 >= buftail.fp)
736 737 738 739 740
		return NULL;

	return buftail.fp - 1;
}

741 742
void
perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
743
{
744
	struct frame_tail __user *tail;
745 746


747
	tail = (struct frame_tail __user *)regs->ARM_fp - 1;
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762

	while (tail && !((unsigned long)tail & 0x3))
		tail = user_backtrace(tail, entry);
}

/*
 * Gets called by walk_stackframe() for every stackframe. This will be called
 * whist unwinding the stackframe and is like a subroutine return so we use
 * the PC.
 */
static int
callchain_trace(struct stackframe *fr,
		void *data)
{
	struct perf_callchain_entry *entry = data;
763
	perf_callchain_store(entry, fr->pc);
764 765 766
	return 0;
}

767 768
void
perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
769 770 771 772 773 774 775 776 777
{
	struct stackframe fr;

	fr.fp = regs->ARM_fp;
	fr.sp = regs->ARM_sp;
	fr.lr = regs->ARM_lr;
	fr.pc = regs->ARM_pc;
	walk_stackframe(&fr, callchain_trace, entry);
}