ttm_bo_util.c 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/**************************************************************************
 *
 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 **************************************************************************/
/*
 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
 */

#include "ttm/ttm_bo_driver.h"
#include "ttm/ttm_placement.h"
#include <linux/io.h>
#include <linux/highmem.h>
#include <linux/wait.h>
36
#include <linux/slab.h>
37 38 39 40 41 42 43 44
#include <linux/vmalloc.h>
#include <linux/module.h>

void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
{
	struct ttm_mem_reg *old_mem = &bo->mem;

	if (old_mem->mm_node) {
45
		spin_lock(&bo->glob->lru_lock);
46
		drm_mm_put_block(old_mem->mm_node);
47
		spin_unlock(&bo->glob->lru_lock);
48 49 50 51 52
	}
	old_mem->mm_node = NULL;
}

int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
53 54
		    bool evict, bool no_wait_reserve,
		    bool no_wait_gpu, struct ttm_mem_reg *new_mem)
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
{
	struct ttm_tt *ttm = bo->ttm;
	struct ttm_mem_reg *old_mem = &bo->mem;
	int ret;

	if (old_mem->mem_type != TTM_PL_SYSTEM) {
		ttm_tt_unbind(ttm);
		ttm_bo_free_old_node(bo);
		ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
				TTM_PL_MASK_MEM);
		old_mem->mem_type = TTM_PL_SYSTEM;
	}

	ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
	if (unlikely(ret != 0))
		return ret;

	if (new_mem->mem_type != TTM_PL_SYSTEM) {
		ret = ttm_tt_bind(ttm, new_mem);
		if (unlikely(ret != 0))
			return ret;
	}

	*old_mem = *new_mem;
	new_mem->mm_node = NULL;
80

81 82 83 84
	return 0;
}
EXPORT_SYMBOL(ttm_bo_move_ttm);

85 86 87 88
int ttm_mem_io_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
{
	int ret;

89 90 91
	if (!mem->bus.io_reserved) {
		mem->bus.io_reserved = true;
		ret = bdev->driver->io_mem_reserve(bdev, mem);
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
		if (unlikely(ret != 0))
			return ret;
	}
	return 0;
}

void ttm_mem_io_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
{
	if (bdev->driver->io_mem_reserve) {
		if (mem->bus.io_reserved) {
			mem->bus.io_reserved = false;
			bdev->driver->io_mem_free(bdev, mem);
		}
	}
}

108 109 110 111 112 113 114
int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
			void **virtual)
{
	int ret;
	void *addr;

	*virtual = NULL;
115
	ret = ttm_mem_io_reserve(bdev, mem);
116
	if (ret || !mem->bus.is_iomem)
117 118
		return ret;

119 120 121
	if (mem->bus.addr) {
		addr = mem->bus.addr;
	} else {
122
		if (mem->placement & TTM_PL_FLAG_WC)
123
			addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size);
124
		else
125 126 127
			addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size);
		if (!addr) {
			ttm_mem_io_free(bdev, mem);
128
			return -ENOMEM;
129
		}
130 131 132 133 134 135 136 137 138 139 140 141
	}
	*virtual = addr;
	return 0;
}

void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
			 void *virtual)
{
	struct ttm_mem_type_manager *man;

	man = &bdev->man[mem->mem_type];

142
	if (virtual && mem->bus.addr == NULL)
143
		iounmap(virtual);
144
	ttm_mem_io_free(bdev, mem);
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
}

static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
{
	uint32_t *dstP =
	    (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
	uint32_t *srcP =
	    (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));

	int i;
	for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
		iowrite32(ioread32(srcP++), dstP++);
	return 0;
}

static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
161 162
				unsigned long page,
				pgprot_t prot)
163 164 165 166 167 168 169 170
{
	struct page *d = ttm_tt_get_page(ttm, page);
	void *dst;

	if (!d)
		return -ENOMEM;

	src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
171 172 173 174

#ifdef CONFIG_X86
	dst = kmap_atomic_prot(d, KM_USER0, prot);
#else
175
	if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
176 177 178 179
		dst = vmap(&d, 1, 0, prot);
	else
		dst = kmap(d);
#endif
180 181 182 183
	if (!dst)
		return -ENOMEM;

	memcpy_fromio(dst, src, PAGE_SIZE);
184 185 186 187

#ifdef CONFIG_X86
	kunmap_atomic(dst, KM_USER0);
#else
188
	if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
189 190 191 192 193
		vunmap(dst);
	else
		kunmap(d);
#endif

194 195 196 197
	return 0;
}

static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
198 199
				unsigned long page,
				pgprot_t prot)
200 201 202 203 204 205 206 207
{
	struct page *s = ttm_tt_get_page(ttm, page);
	void *src;

	if (!s)
		return -ENOMEM;

	dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
208 209 210
#ifdef CONFIG_X86
	src = kmap_atomic_prot(s, KM_USER0, prot);
#else
211
	if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
212 213 214 215
		src = vmap(&s, 1, 0, prot);
	else
		src = kmap(s);
#endif
216 217 218 219
	if (!src)
		return -ENOMEM;

	memcpy_toio(dst, src, PAGE_SIZE);
220 221 222 223

#ifdef CONFIG_X86
	kunmap_atomic(src, KM_USER0);
#else
224
	if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
225 226 227 228 229
		vunmap(src);
	else
		kunmap(s);
#endif

230 231 232 233
	return 0;
}

int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
234 235
		       bool evict, bool no_wait_reserve, bool no_wait_gpu,
		       struct ttm_mem_reg *new_mem)
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
{
	struct ttm_bo_device *bdev = bo->bdev;
	struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
	struct ttm_tt *ttm = bo->ttm;
	struct ttm_mem_reg *old_mem = &bo->mem;
	struct ttm_mem_reg old_copy = *old_mem;
	void *old_iomap;
	void *new_iomap;
	int ret;
	unsigned long i;
	unsigned long page;
	unsigned long add = 0;
	int dir;

	ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap);
	if (ret)
		return ret;
	ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap);
	if (ret)
		goto out;

	if (old_iomap == NULL && new_iomap == NULL)
		goto out2;
	if (old_iomap == NULL && ttm == NULL)
		goto out2;

	add = 0;
	dir = 1;

	if ((old_mem->mem_type == new_mem->mem_type) &&
	    (new_mem->mm_node->start <
	     old_mem->mm_node->start + old_mem->mm_node->size)) {
		dir = -1;
		add = new_mem->num_pages - 1;
	}

	for (i = 0; i < new_mem->num_pages; ++i) {
		page = i * dir + add;
274 275 276 277 278 279 280 281 282 283 284
		if (old_iomap == NULL) {
			pgprot_t prot = ttm_io_prot(old_mem->placement,
						    PAGE_KERNEL);
			ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
						   prot);
		} else if (new_iomap == NULL) {
			pgprot_t prot = ttm_io_prot(new_mem->placement,
						    PAGE_KERNEL);
			ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
						   prot);
		} else
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
			ret = ttm_copy_io_page(new_iomap, old_iomap, page);
		if (ret)
			goto out1;
	}
	mb();
out2:
	ttm_bo_free_old_node(bo);

	*old_mem = *new_mem;
	new_mem->mm_node = NULL;

	if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && (ttm != NULL)) {
		ttm_tt_unbind(ttm);
		ttm_tt_destroy(ttm);
		bo->ttm = NULL;
	}

out1:
	ttm_mem_reg_iounmap(bdev, new_mem, new_iomap);
out:
	ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap);
	return ret;
}
EXPORT_SYMBOL(ttm_bo_move_memcpy);

static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
{
	kfree(bo);
}

/**
 * ttm_buffer_object_transfer
 *
 * @bo: A pointer to a struct ttm_buffer_object.
 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
 * holding the data of @bo with the old placement.
 *
 * This is a utility function that may be called after an accelerated move
 * has been scheduled. A new buffer object is created as a placeholder for
 * the old data while it's being copied. When that buffer object is idle,
 * it can be destroyed, releasing the space of the old placement.
 * Returns:
 * !0: Failure.
 */

static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
				      struct ttm_buffer_object **new_obj)
{
	struct ttm_buffer_object *fbo;
	struct ttm_bo_device *bdev = bo->bdev;
	struct ttm_bo_driver *driver = bdev->driver;

	fbo = kzalloc(sizeof(*fbo), GFP_KERNEL);
	if (!fbo)
		return -ENOMEM;

	*fbo = *bo;

	/**
	 * Fix up members that we shouldn't copy directly:
	 * TODO: Explicit member copy would probably be better here.
	 */

	spin_lock_init(&fbo->lock);
	init_waitqueue_head(&fbo->event_queue);
	INIT_LIST_HEAD(&fbo->ddestroy);
	INIT_LIST_HEAD(&fbo->lru);
	INIT_LIST_HEAD(&fbo->swap);
	fbo->vm_node = NULL;

	fbo->sync_obj = driver->sync_obj_ref(bo->sync_obj);
	kref_init(&fbo->list_kref);
	kref_init(&fbo->kref);
	fbo->destroy = &ttm_transfered_destroy;

	*new_obj = fbo;
	return 0;
}

pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
{
#if defined(__i386__) || defined(__x86_64__)
	if (caching_flags & TTM_PL_FLAG_WC)
		tmp = pgprot_writecombine(tmp);
	else if (boot_cpu_data.x86 > 3)
		tmp = pgprot_noncached(tmp);

#elif defined(__powerpc__)
	if (!(caching_flags & TTM_PL_FLAG_CACHED)) {
		pgprot_val(tmp) |= _PAGE_NO_CACHE;
		if (caching_flags & TTM_PL_FLAG_UNCACHED)
			pgprot_val(tmp) |= _PAGE_GUARDED;
	}
#endif
#if defined(__ia64__)
	if (caching_flags & TTM_PL_FLAG_WC)
		tmp = pgprot_writecombine(tmp);
	else
		tmp = pgprot_noncached(tmp);
#endif
#if defined(__sparc__)
	if (!(caching_flags & TTM_PL_FLAG_CACHED))
		tmp = pgprot_noncached(tmp);
#endif
	return tmp;
}
391
EXPORT_SYMBOL(ttm_io_prot);
392 393

static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
394 395
			  unsigned long offset,
			  unsigned long size,
396 397 398 399
			  struct ttm_bo_kmap_obj *map)
{
	struct ttm_mem_reg *mem = &bo->mem;

400
	if (bo->mem.bus.addr) {
401
		map->bo_kmap_type = ttm_bo_map_premapped;
402
		map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
403 404 405
	} else {
		map->bo_kmap_type = ttm_bo_map_iomap;
		if (mem->placement & TTM_PL_FLAG_WC)
406 407
			map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset,
						  size);
408
		else
409 410
			map->virtual = ioremap_nocache(bo->mem.bus.base + bo->mem.bus.offset + offset,
						       size);
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
	}
	return (!map->virtual) ? -ENOMEM : 0;
}

static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
			   unsigned long start_page,
			   unsigned long num_pages,
			   struct ttm_bo_kmap_obj *map)
{
	struct ttm_mem_reg *mem = &bo->mem; pgprot_t prot;
	struct ttm_tt *ttm = bo->ttm;
	struct page *d;
	int i;

	BUG_ON(!ttm);
	if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
		/*
		 * We're mapping a single page, and the desired
		 * page protection is consistent with the bo.
		 */

		map->bo_kmap_type = ttm_bo_map_kmap;
		map->page = ttm_tt_get_page(ttm, start_page);
		map->virtual = kmap(map->page);
	} else {
	    /*
	     * Populate the part we're mapping;
	     */
		for (i = start_page; i < start_page + num_pages; ++i) {
			d = ttm_tt_get_page(ttm, i);
			if (!d)
				return -ENOMEM;
		}

		/*
		 * We need to use vmap to get the desired page protection
447
		 * or to make the buffer object look contiguous.
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
		 */
		prot = (mem->placement & TTM_PL_FLAG_CACHED) ?
			PAGE_KERNEL :
			ttm_io_prot(mem->placement, PAGE_KERNEL);
		map->bo_kmap_type = ttm_bo_map_vmap;
		map->virtual = vmap(ttm->pages + start_page, num_pages,
				    0, prot);
	}
	return (!map->virtual) ? -ENOMEM : 0;
}

int ttm_bo_kmap(struct ttm_buffer_object *bo,
		unsigned long start_page, unsigned long num_pages,
		struct ttm_bo_kmap_obj *map)
{
463
	unsigned long offset, size;
464 465 466 467
	int ret;

	BUG_ON(!list_empty(&bo->swap));
	map->virtual = NULL;
468
	map->bo = bo;
469 470 471 472 473 474 475 476
	if (num_pages > bo->num_pages)
		return -EINVAL;
	if (start_page > bo->num_pages)
		return -EINVAL;
#if 0
	if (num_pages > 1 && !DRM_SUSER(DRM_CURPROC))
		return -EPERM;
#endif
477
	ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
478 479
	if (ret)
		return ret;
480
	if (!bo->mem.bus.is_iomem) {
481 482
		return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
	} else {
483 484 485
		offset = start_page << PAGE_SHIFT;
		size = num_pages << PAGE_SHIFT;
		return ttm_bo_ioremap(bo, offset, size, map);
486 487 488 489 490 491 492 493 494 495 496
	}
}
EXPORT_SYMBOL(ttm_bo_kmap);

void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
{
	if (!map->virtual)
		return;
	switch (map->bo_kmap_type) {
	case ttm_bo_map_iomap:
		iounmap(map->virtual);
497
		ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
		break;
	case ttm_bo_map_vmap:
		vunmap(map->virtual);
		break;
	case ttm_bo_map_kmap:
		kunmap(map->page);
		break;
	case ttm_bo_map_premapped:
		break;
	default:
		BUG();
	}
	map->virtual = NULL;
	map->page = NULL;
}
EXPORT_SYMBOL(ttm_bo_kunmap);

int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
			      void *sync_obj,
			      void *sync_obj_arg,
518 519
			      bool evict, bool no_wait_reserve,
			      bool no_wait_gpu,
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
			      struct ttm_mem_reg *new_mem)
{
	struct ttm_bo_device *bdev = bo->bdev;
	struct ttm_bo_driver *driver = bdev->driver;
	struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
	struct ttm_mem_reg *old_mem = &bo->mem;
	int ret;
	struct ttm_buffer_object *ghost_obj;
	void *tmp_obj = NULL;

	spin_lock(&bo->lock);
	if (bo->sync_obj) {
		tmp_obj = bo->sync_obj;
		bo->sync_obj = NULL;
	}
	bo->sync_obj = driver->sync_obj_ref(sync_obj);
	bo->sync_obj_arg = sync_obj_arg;
	if (evict) {
		ret = ttm_bo_wait(bo, false, false, false);
		spin_unlock(&bo->lock);
540 541
		if (tmp_obj)
			driver->sync_obj_unref(&tmp_obj);
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
		if (ret)
			return ret;

		ttm_bo_free_old_node(bo);
		if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
		    (bo->ttm != NULL)) {
			ttm_tt_unbind(bo->ttm);
			ttm_tt_destroy(bo->ttm);
			bo->ttm = NULL;
		}
	} else {
		/**
		 * This should help pipeline ordinary buffer moves.
		 *
		 * Hang old buffer memory on a new buffer object,
		 * and leave it to be released when the GPU
		 * operation has completed.
		 */

		set_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
		spin_unlock(&bo->lock);
563 564
		if (tmp_obj)
			driver->sync_obj_unref(&tmp_obj);
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586

		ret = ttm_buffer_object_transfer(bo, &ghost_obj);
		if (ret)
			return ret;

		/**
		 * If we're not moving to fixed memory, the TTM object
		 * needs to stay alive. Otherwhise hang it on the ghost
		 * bo to be unbound and destroyed.
		 */

		if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED))
			ghost_obj->ttm = NULL;
		else
			bo->ttm = NULL;

		ttm_bo_unreserve(ghost_obj);
		ttm_bo_unref(&ghost_obj);
	}

	*old_mem = *new_mem;
	new_mem->mm_node = NULL;
587

588 589 590
	return 0;
}
EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);