amd_iommu.c 28.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
#include <linux/scatterlist.h>
#include <linux/iommu-helper.h>
#include <asm/proto.h>
26
#include <asm/iommu.h>
27
#include <asm/amd_iommu_types.h>
28
#include <asm/amd_iommu.h>
29 30 31

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

32 33
#define EXIT_LOOP_COUNT 10000000

34 35
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

36 37 38
/*
 * general struct to manage commands send to an IOMMU
 */
39
struct iommu_cmd {
40 41 42
	u32 data[4];
};

43 44 45
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e);

46
/* returns !0 if the IOMMU is caching non-present entries in its TLB */
47 48 49 50 51
static int iommu_has_npcache(struct amd_iommu *iommu)
{
	return iommu->cap & IOMMU_CAP_NPCACHE;
}

52 53 54 55 56 57 58 59 60 61
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
62
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
{
	u32 tail, head;
	u8 *target;

	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	target = (iommu->cmd_buf + tail);
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

79 80 81 82
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
83
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
84 85 86 87 88 89 90 91 92 93 94
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

95 96 97 98 99 100 101
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
102 103 104
static int iommu_completion_wait(struct amd_iommu *iommu)
{
	int ret;
105
	struct iommu_cmd cmd;
106 107
	volatile u64 ready = 0;
	unsigned long ready_phys = virt_to_phys(&ready);
108
	unsigned long i = 0;
109 110 111

	memset(&cmd, 0, sizeof(cmd));
	cmd.data[0] = LOW_U32(ready_phys) | CMD_COMPL_WAIT_STORE_MASK;
112
	cmd.data[1] = upper_32_bits(ready_phys);
113 114 115 116 117 118 119 120 121 122
	cmd.data[2] = 1; /* value written to 'ready' */
	CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);

	iommu->need_sync = 0;

	ret = iommu_queue_command(iommu, &cmd);

	if (ret)
		return ret;

123 124
	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
125
		cpu_relax();
126 127 128 129
	}

	if (unlikely((i == EXIT_LOOP_COUNT) && printk_ratelimit()))
		printk(KERN_WARNING "AMD IOMMU: Completion wait loop failed\n");
130 131 132 133

	return 0;
}

134 135 136
/*
 * Command send function for invalidating a device table entry
 */
137 138
static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
{
139
	struct iommu_cmd cmd;
140 141 142 143 144 145 146 147 148 149 150 151

	BUG_ON(iommu == NULL);

	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

	iommu->need_sync = 1;

	return iommu_queue_command(iommu, &cmd);
}

152 153 154
/*
 * Generic command send function for invalidaing TLB entries
 */
155 156 157
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
158
	struct iommu_cmd cmd;
159 160 161 162 163 164

	memset(&cmd, 0, sizeof(cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(&cmd, CMD_INV_IOMMU_PAGES);
	cmd.data[1] |= domid;
	cmd.data[2] = LOW_U32(address);
165
	cmd.data[3] = upper_32_bits(address);
166
	if (s) /* size bit - we flush more than one 4kb page */
167
		cmd.data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
168
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
169 170 171 172 173 174 175
		cmd.data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;

	iommu->need_sync = 1;

	return iommu_queue_command(iommu, &cmd);
}

176 177 178 179 180
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
181 182 183
static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
		u64 address, size_t size)
{
184
	int s = 0;
185
	unsigned pages = iommu_num_pages(address, size);
186 187 188

	address &= PAGE_MASK;

189 190 191 192 193 194 195
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
196 197
	}

198 199
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);

200 201
	return 0;
}
202

203 204 205 206 207 208 209 210 211 212 213 214 215 216
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
static int iommu_map(struct protection_domain *dom,
		     unsigned long bus_addr,
		     unsigned long phys_addr,
		     int prot)
{
	u64 __pte, *pte, *page;

	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(bus_addr);

	/* only support 512GB address spaces for now */
	if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
		return -EINVAL;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!page)
			return -ENOMEM;
		*pte = IOMMU_L2_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!page)
			return -ENOMEM;
		*pte = IOMMU_L1_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];

	if (IOMMU_PTE_PRESENT(*pte))
		return -EBUSY;

	__pte = phys_addr | IOMMU_PTE_P;
	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

	*pte = __pte;

	return 0;
}

267 268 269 270
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
271 272 273 274 275 276 277 278 279 280 281 282 283 284
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

285 286 287 288 289 290
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

307 308 309 310
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
		ret = iommu_map(&dma_dom->domain, addr, addr, e->prot);
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
	}

	return 0;
}

333 334 335
/*
 * Inits the unity mappings required for a specific device
 */
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

353 354 355 356 357 358 359 360 361
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
362 363 364 365 366 367
static unsigned long dma_mask_to_pages(unsigned long mask)
{
	return (mask >> PAGE_SHIFT) +
		(PAGE_ALIGN(mask & ~PAGE_MASK) >> PAGE_SHIFT);
}

368 369 370 371 372
/*
 * The address allocator core function.
 *
 * called with domain->lock held
 */
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
					     unsigned int pages)
{
	unsigned long limit = dma_mask_to_pages(*dev->dma_mask);
	unsigned long address;
	unsigned long size = dom->aperture_size >> PAGE_SHIFT;
	unsigned long boundary_size;

	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;
	limit = limit < size ? limit : size;

	if (dom->next_bit >= limit)
		dom->next_bit = 0;

	address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
			0 , boundary_size, 0);
	if (address == -1)
		address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
				0, boundary_size, 0);

	if (likely(address != -1)) {
		dom->next_bit = address + pages;
		address <<= PAGE_SHIFT;
	} else
		address = bad_dma_address;

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

406 407 408 409 410
/*
 * The address free function.
 *
 * called with domain->lock held
 */
411 412 413 414 415 416 417 418
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
	address >>= PAGE_SHIFT;
	iommu_area_free(dom->bitmap, address, pages);
}

419 420 421 422 423 424 425 426 427 428
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

446 447 448 449
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	set_bit_string(dom->bitmap, start_page, pages);
}

static void dma_ops_free_pagetable(struct dma_ops_domain *dma_dom)
{
	int i, j;
	u64 *p1, *p2, *p3;

	p1 = dma_dom->domain.pt_root;

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
		for (j = 0; j < 512; ++i) {
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
}

490 491 492 493
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
494 495 496 497 498 499 500 501 502 503 504 505 506 507
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

	dma_ops_free_pagetable(dom);

	kfree(dom->pte_pages);

	kfree(dom->bitmap);

	kfree(dom);
}

508 509 510 511 512
/*
 * Allocates a new protection domain usable for the dma_ops functions.
 * It also intializes the page table and the address allocator data
 * structures required for the dma_ops interface
 */
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
						   unsigned order)
{
	struct dma_ops_domain *dma_dom;
	unsigned i, num_pte_pages;
	u64 *l2_pde;
	u64 address;

	/*
	 * Currently the DMA aperture must be between 32 MB and 1GB in size
	 */
	if ((order < 25) || (order > 30))
		return NULL;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;
	dma_dom->aperture_size = (1ULL << order);
	dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
				  GFP_KERNEL);
	if (!dma_dom->bitmap)
		goto free_dma_dom;
	/*
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
	 */
	dma_dom->bitmap[0] = 1;
	dma_dom->next_bit = 0;

553
	/* Intialize the exclusion range if necessary */
554 555 556
	if (iommu->exclusion_start &&
	    iommu->exclusion_start < dma_dom->aperture_size) {
		unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
557 558
		int pages = iommu_num_pages(iommu->exclusion_start,
					    iommu->exclusion_length);
559 560 561
		dma_ops_reserve_addresses(dma_dom, startpage, pages);
	}

562 563 564 565 566
	/*
	 * At the last step, build the page tables so we don't need to
	 * allocate page table pages in the dma_ops mapping/unmapping
	 * path.
	 */
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
	num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
	dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
			GFP_KERNEL);
	if (!dma_dom->pte_pages)
		goto free_dma_dom;

	l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
	if (l2_pde == NULL)
		goto free_dma_dom;

	dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));

	for (i = 0; i < num_pte_pages; ++i) {
		dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!dma_dom->pte_pages[i])
			goto free_dma_dom;
		address = virt_to_phys(dma_dom->pte_pages[i]);
		l2_pde[i] = IOMMU_L1_PDE(address);
	}

	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

595 596 597 598
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
599 600 601 602 603 604 605 606 607 608 609 610
static struct protection_domain *domain_for_device(u16 devid)
{
	struct protection_domain *dom;
	unsigned long flags;

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
	dom = amd_iommu_pd_table[devid];
	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

611 612 613 614
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
static void set_device_domain(struct amd_iommu *iommu,
			      struct protection_domain *domain,
			      u16 devid)
{
	unsigned long flags;

	u64 pte_root = virt_to_phys(domain->pt_root);

	pte_root |= (domain->mode & 0x07) << 9;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | 2;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	amd_iommu_dev_table[devid].data[0] = pte_root;
	amd_iommu_dev_table[devid].data[1] = pte_root >> 32;
	amd_iommu_dev_table[devid].data[2] = domain->id;

	amd_iommu_pd_table[devid] = domain;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	iommu_queue_inv_dev_entry(iommu, devid);

	iommu->need_sync = 1;
}

639 640 641 642 643 644 645 646 647 648 649 650 651
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
652 653 654 655 656 657 658 659 660 661 662 663
static int get_device_resources(struct device *dev,
				struct amd_iommu **iommu,
				struct protection_domain **domain,
				u16 *bdf)
{
	struct dma_ops_domain *dma_dom;
	struct pci_dev *pcidev;
	u16 _bdf;

	BUG_ON(!dev || dev->bus != &pci_bus_type || !dev->dma_mask);

	pcidev = to_pci_dev(dev);
664
	_bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
665

666
	/* device not translated by any IOMMU in the system? */
667
	if (_bdf > amd_iommu_last_bdf) {
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
		*iommu = NULL;
		*domain = NULL;
		*bdf = 0xffff;
		return 0;
	}

	*bdf = amd_iommu_alias_table[_bdf];

	*iommu = amd_iommu_rlookup_table[*bdf];
	if (*iommu == NULL)
		return 0;
	dma_dom = (*iommu)->default_dom;
	*domain = domain_for_device(*bdf);
	if (*domain == NULL) {
		*domain = &dma_dom->domain;
		set_device_domain(*iommu, *domain, *bdf);
		printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
				"device ", (*domain)->id);
		print_devid(_bdf, 1);
	}

	return 1;
}

692 693 694 695
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
				     struct dma_ops_domain *dom,
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

	pte  = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
	pte += IOMMU_PTE_L0_INDEX(address);

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

727 728 729
/*
 * The generic unmapping function for on page in the DMA address space.
 */
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
static void dma_ops_domain_unmap(struct amd_iommu *iommu,
				 struct dma_ops_domain *dom,
				 unsigned long address)
{
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

	WARN_ON(address & 0xfffULL || address > dom->aperture_size);

	pte  = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
	pte += IOMMU_PTE_L0_INDEX(address);

	WARN_ON(!*pte);

	*pte = 0ULL;
}

749 750 751 752 753 754
/*
 * This function contains common code for mapping of a physically
 * contiguous memory region into DMA address space. It is uses by all
 * mapping functions provided by this IOMMU driver.
 * Must be called with the domain lock held.
 */
755 756 757 758 759 760 761 762 763 764 765 766
static dma_addr_t __map_single(struct device *dev,
			       struct amd_iommu *iommu,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
			       int dir)
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
	dma_addr_t address, start;
	unsigned int pages;
	int i;

767
	pages = iommu_num_pages(paddr, size);
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
	paddr &= PAGE_MASK;

	address = dma_ops_alloc_addresses(dev, dma_dom, pages);
	if (unlikely(address == bad_dma_address))
		goto out;

	start = address;
	for (i = 0; i < pages; ++i) {
		dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

out:
	return address;
}

786 787 788 789
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
790 791 792 793 794 795 796 797 798 799 800 801
static void __unmap_single(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

	if ((dma_addr == 0) || (dma_addr + size > dma_dom->aperture_size))
		return;

802
	pages = iommu_num_pages(dma_addr, size);
803 804 805 806 807 808 809 810 811 812 813
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
		dma_ops_domain_unmap(iommu, dma_dom, start);
		start += PAGE_SIZE;
	}

	dma_ops_free_addresses(dma_dom, dma_addr, pages);
}

814 815 816
/*
 * The exported map_single function for dma_ops.
 */
817 818 819 820 821 822 823 824 825 826 827 828
static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
			     size_t size, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	dma_addr_t addr;

	get_device_resources(dev, &iommu, &domain, &devid);

	if (iommu == NULL || domain == NULL)
829
		/* device not handled by any AMD IOMMU */
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
		return (dma_addr_t)paddr;

	spin_lock_irqsave(&domain->lock, flags);
	addr = __map_single(dev, iommu, domain->priv, paddr, size, dir);
	if (addr == bad_dma_address)
		goto out;

	if (iommu_has_npcache(iommu))
		iommu_flush_pages(iommu, domain->id, addr, size);

	if (iommu->need_sync)
		iommu_completion_wait(iommu);

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

849 850 851
/*
 * The exported unmap_single function for dma_ops.
 */
852 853 854 855 856 857 858 859 860
static void unmap_single(struct device *dev, dma_addr_t dma_addr,
			 size_t size, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

	if (!get_device_resources(dev, &iommu, &domain, &devid))
861
		/* device not handled by any AMD IOMMU */
862 863 864 865 866 867 868 869 870 871 872 873 874 875
		return;

	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, dir);

	iommu_flush_pages(iommu, domain->id, dma_addr, size);

	if (iommu->need_sync)
		iommu_completion_wait(iommu);

	spin_unlock_irqrestore(&domain->lock, flags);
}

876 877 878 879
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
880 881 882 883 884 885 886 887 888 889 890 891 892 893
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

894 895 896 897
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
static int map_sg(struct device *dev, struct scatterlist *sglist,
		  int nelems, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;

	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		return map_sg_no_iommu(dev, sglist, nelems, dir);

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

		s->dma_address = __map_single(dev, iommu, domain->priv,
					      paddr, s->length, dir);

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
		if (iommu_has_npcache(iommu))
			iommu_flush_pages(iommu, domain->id, s->dma_address,
					  s->dma_length);
	}

	if (iommu->need_sync)
		iommu_completion_wait(iommu);

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
			__unmap_single(iommu, domain->priv, s->dma_address,
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

953 954 955 956
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
		     int nelems, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	struct scatterlist *s;
	u16 devid;
	int i;

	if (!get_device_resources(dev, &iommu, &domain, &devid))
		return;

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		__unmap_single(iommu, domain->priv, s->dma_address,
			       s->dma_length, dir);
		iommu_flush_pages(iommu, domain->id, s->dma_address,
				  s->dma_length);
		s->dma_address = s->dma_length = 0;
	}

	if (iommu->need_sync)
		iommu_completion_wait(iommu);

	spin_unlock_irqrestore(&domain->lock, flags);
}

986 987 988
/*
 * The exported alloc_coherent function for dma_ops.
 */
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	phys_addr_t paddr;

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
		return 0;

	memset(virt_addr, 0, size);
	paddr = virt_to_phys(virt_addr);

	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain) {
		*dma_addr = (dma_addr_t)paddr;
		return virt_addr;
	}

	spin_lock_irqsave(&domain->lock, flags);

	*dma_addr = __map_single(dev, iommu, domain->priv, paddr,
				 size, DMA_BIDIRECTIONAL);

	if (*dma_addr == bad_dma_address) {
		free_pages((unsigned long)virt_addr, get_order(size));
		virt_addr = NULL;
		goto out;
	}

	if (iommu_has_npcache(iommu))
		iommu_flush_pages(iommu, domain->id, *dma_addr, size);

	if (iommu->need_sync)
		iommu_completion_wait(iommu);

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
}

1036 1037 1038 1039 1040
/*
 * The exported free_coherent function for dma_ops.
 * FIXME: fix the generic x86 DMA layer so that it actually calls that
 *        function.
 */
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		goto free_mem;

	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
	iommu_flush_pages(iommu, domain->id, dma_addr, size);

	if (iommu->need_sync)
		iommu_completion_wait(iommu);

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

1068
/*
1069 1070
 * The function for pre-allocating protection domains.
 *
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
void prealloc_protection_domains(void)
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
	struct amd_iommu *iommu;
	int order = amd_iommu_aperture_order;
	u16 devid;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
		devid = (dev->bus->number << 8) | dev->devfn;
1085
		if (devid > amd_iommu_last_bdf)
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
			continue;
		devid = amd_iommu_alias_table[devid];
		if (domain_for_device(devid))
			continue;
		iommu = amd_iommu_rlookup_table[devid];
		if (!iommu)
			continue;
		dma_dom = dma_ops_domain_alloc(iommu, order);
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
		set_device_domain(iommu, &dma_dom->domain, devid);
		printk(KERN_INFO "AMD IOMMU: Allocated domain %d for device ",
		       dma_dom->domain.id);
		print_devid(devid, 1);
	}
}

1104 1105 1106 1107 1108 1109 1110 1111 1112
static struct dma_mapping_ops amd_iommu_dma_ops = {
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
	.map_single = map_single,
	.unmap_single = unmap_single,
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
};

1113 1114 1115
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
1116 1117 1118 1119 1120 1121
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int order = amd_iommu_aperture_order;
	int ret;

1122 1123 1124 1125 1126
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
1127 1128 1129 1130 1131 1132 1133 1134 1135
	list_for_each_entry(iommu, &amd_iommu_list, list) {
		iommu->default_dom = dma_ops_domain_alloc(iommu, order);
		if (iommu->default_dom == NULL)
			return -ENOMEM;
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

1136 1137 1138 1139
	/*
	 * If device isolation is enabled, pre-allocate the protection
	 * domains for each device.
	 */
1140 1141 1142 1143 1144 1145
	if (amd_iommu_isolate)
		prealloc_protection_domains();

	iommu_detected = 1;
	force_iommu = 1;
	bad_dma_address = 0;
I
Ingo Molnar 已提交
1146
#ifdef CONFIG_GART_IOMMU
1147 1148
	gart_iommu_aperture_disabled = 1;
	gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
1149
#endif
1150

1151
	/* Make the driver finally visible to the drivers */
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	dma_ops = &amd_iommu_dma_ops;

	return 0;

free_domains:

	list_for_each_entry(iommu, &amd_iommu_list, list) {
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}