i40e_txrx.c 56.4 KB
Newer Older
1 2 3
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
J
Jesse Brandeburg 已提交
4
 * Copyright(c) 2013 - 2014 Intel Corporation.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
15 16 17
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
18 19 20 21 22 23 24 25 26
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

27
#include <linux/prefetch.h>
28
#include <net/busy_poll.h>
29

30
#include "i40evf.h"
31
#include "i40e_prototype.h"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)

/**
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
54
		dev_kfree_skb_any(tx_buffer->skb);
55 56 57 58 59 60 61 62 63 64 65
		if (dma_unmap_len(tx_buffer, len))
			dma_unmap_single(ring->dev,
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
					 DMA_TO_DEVICE);
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
	}
66 67 68 69

	if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
		kfree(tx_buffer->raw_buf);

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
	dma_unmap_len_set(tx_buffer, len, 0);
	/* tx_buffer must be completely set up in the transmit path */
}

/**
 * i40evf_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
						  tx_ring->queue_index));
}

/**
 * i40evf_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40evf_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

J
Jesse Brandeburg 已提交
129
/**
130 131
 * i40evf_get_tx_pending - how many Tx descriptors not processed
 * @tx_ring: the ring of descriptors
J
Jesse Brandeburg 已提交
132
 *
133 134
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
J
Jesse Brandeburg 已提交
135
 **/
136
u32 i40evf_get_tx_pending(struct i40e_ring *ring)
J
Jesse Brandeburg 已提交
137
{
138
	u32 head, tail;
J
Jesse Brandeburg 已提交
139

140 141 142 143 144 145 146 147
	head = i40e_get_head(ring);
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
J
Jesse Brandeburg 已提交
148 149
}

150 151
#define WB_STRIDE 0x3

152 153 154 155 156 157 158 159 160 161 162
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 * @tx_ring:  tx ring to clean
 * @budget:   how many cleans we're allowed
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
163
	struct i40e_tx_desc *tx_head;
164 165 166 167 168 169 170 171
	struct i40e_tx_desc *tx_desc;
	unsigned int total_packets = 0;
	unsigned int total_bytes = 0;

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
	i -= tx_ring->count;

172 173
	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));

174 175 176 177 178 179 180 181 182 183
	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

		/* prevent any other reads prior to eop_desc */
		read_barrier_depends();

184 185
		/* we have caught up to head, no work left to do */
		if (tx_head == tx_desc)
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
			break;

		/* clear next_to_watch to prevent false hangs */
		tx_buf->next_to_watch = NULL;

		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;

		/* free the skb */
		dev_kfree_skb_any(tx_buf->skb);

		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);

		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);

		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {

			tx_buf++;
			tx_desc++;
			i++;
			if (unlikely(!i)) {
				i -= tx_ring->count;
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

240 241
		prefetch(tx_desc);

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
	tx_ring->next_to_clean = i;
	u64_stats_update_begin(&tx_ring->syncp);
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->syncp);
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;

	netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
						      tx_ring->queue_index),
				  total_packets, total_bytes);

#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		   !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

275
	return !!budget;
276 277
}

278
/**
279
 * i40evf_force_wb -Arm hardware to do a wb on noncache aligned descriptors
280 281 282 283
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
284
static void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
285
{
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
	u16 flags = q_vector->tx.ring[0].flags;

	if (flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		u32 val;

		if (q_vector->arm_wb_state)
			return;

		val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK;

		wr32(&vsi->back->hw,
		     I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
					  vsi->base_vector - 1),
		     val);
		q_vector->arm_wb_state = true;
	} else {
		u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
			  I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
			  I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
			  I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK;
			  /* allow 00 to be written to the index */

		wr32(&vsi->back->hw,
		     I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
					  vsi->base_vector - 1), val);
	}
312 313
}

314 315 316 317
/**
 * i40e_set_new_dynamic_itr - Find new ITR level
 * @rc: structure containing ring performance data
 *
318 319
 * Returns true if ITR changed, false if not
 *
320 321 322 323 324 325 326 327
 * Stores a new ITR value based on packets and byte counts during
 * the last interrupt.  The advantage of per interrupt computation
 * is faster updates and more accurate ITR for the current traffic
 * pattern.  Constants in this function were computed based on
 * theoretical maximum wire speed and thresholds were set based on
 * testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 **/
328
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
329 330
{
	enum i40e_latency_range new_latency_range = rc->latency_range;
331
	struct i40e_q_vector *qv = rc->ring->q_vector;
332 333
	u32 new_itr = rc->itr;
	int bytes_per_int;
334
	int usecs;
335 336

	if (rc->total_packets == 0 || !rc->itr)
337
		return false;
338 339

	/* simple throttlerate management
340
	 *   0-10MB/s   lowest (50000 ints/s)
341
	 *  10-20MB/s   low    (20000 ints/s)
342 343
	 *  20-1249MB/s bulk   (18000 ints/s)
	 *  > 40000 Rx packets per second (8000 ints/s)
344 345 346 347
	 *
	 * The math works out because the divisor is in 10^(-6) which
	 * turns the bytes/us input value into MB/s values, but
	 * make sure to use usecs, as the register values written
348 349
	 * are in 2 usec increments in the ITR registers, and make sure
	 * to use the smoothed values that the countdown timer gives us.
350
	 */
351
	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
352
	bytes_per_int = rc->total_bytes / usecs;
353

354
	switch (new_latency_range) {
355 356 357 358 359 360 361 362 363 364 365
	case I40E_LOWEST_LATENCY:
		if (bytes_per_int > 10)
			new_latency_range = I40E_LOW_LATENCY;
		break;
	case I40E_LOW_LATENCY:
		if (bytes_per_int > 20)
			new_latency_range = I40E_BULK_LATENCY;
		else if (bytes_per_int <= 10)
			new_latency_range = I40E_LOWEST_LATENCY;
		break;
	case I40E_BULK_LATENCY:
366
	case I40E_ULTRA_LATENCY:
367 368 369
	default:
		if (bytes_per_int <= 20)
			new_latency_range = I40E_LOW_LATENCY;
370 371
		break;
	}
372 373 374 375 376 377 378 379 380 381 382 383

	/* this is to adjust RX more aggressively when streaming small
	 * packets.  The value of 40000 was picked as it is just beyond
	 * what the hardware can receive per second if in low latency
	 * mode.
	 */
#define RX_ULTRA_PACKET_RATE 40000

	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
	    (&qv->rx == rc))
		new_latency_range = I40E_ULTRA_LATENCY;

384
	rc->latency_range = new_latency_range;
385 386 387

	switch (new_latency_range) {
	case I40E_LOWEST_LATENCY:
388
		new_itr = I40E_ITR_50K;
389 390 391 392 393
		break;
	case I40E_LOW_LATENCY:
		new_itr = I40E_ITR_20K;
		break;
	case I40E_BULK_LATENCY:
394 395 396
		new_itr = I40E_ITR_18K;
		break;
	case I40E_ULTRA_LATENCY:
397 398 399 400 401 402 403 404
		new_itr = I40E_ITR_8K;
		break;
	default:
		break;
	}

	rc->total_bytes = 0;
	rc->total_packets = 0;
405 406 407 408 409 410 411

	if (new_itr != rc->itr) {
		rc->itr = new_itr;
		return true;
	}

	return false;
412 413
}

414
/*
415 416 417 418 419 420 421 422 423 424 425 426 427
 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

428 429
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
430 431 432 433 434 435 436
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
437 438 439 440
	/* add u32 for head writeback, align after this takes care of
	 * guaranteeing this is at least one cache line in size
	 */
	tx_ring->size += sizeof(u32);
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40evf_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	struct i40e_rx_buffer *rx_bi;
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

475 476 477 478 479 480 481 482 483 484 485 486
	if (ring_is_ps_enabled(rx_ring)) {
		int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;

		rx_bi = &rx_ring->rx_bi[0];
		if (rx_bi->hdr_buf) {
			dma_free_coherent(dev,
					  bufsz,
					  rx_bi->hdr_buf,
					  rx_bi->dma);
			for (i = 0; i < rx_ring->count; i++) {
				rx_bi = &rx_ring->rx_bi[i];
				rx_bi->dma = 0;
487
				rx_bi->hdr_buf = NULL;
488 489 490
			}
		}
	}
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		rx_bi = &rx_ring->rx_bi[i];
		if (rx_bi->dma) {
			dma_unmap_single(dev,
					 rx_bi->dma,
					 rx_ring->rx_buf_len,
					 DMA_FROM_DEVICE);
			rx_bi->dma = 0;
		}
		if (rx_bi->skb) {
			dev_kfree_skb(rx_bi->skb);
			rx_bi->skb = NULL;
		}
		if (rx_bi->page) {
			if (rx_bi->page_dma) {
				dma_unmap_page(dev,
					       rx_bi->page_dma,
					       PAGE_SIZE / 2,
					       DMA_FROM_DEVICE);
				rx_bi->page_dma = 0;
			}
			__free_page(rx_bi->page);
			rx_bi->page = NULL;
			rx_bi->page_offset = 0;
		}
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40evf_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40evf_clean_rx_ring(rx_ring);
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
/**
 * i40evf_alloc_rx_headers - allocate rx header buffers
 * @rx_ring: ring to alloc buffers
 *
 * Allocate rx header buffers for the entire ring. As these are static,
 * this is only called when setting up a new ring.
 **/
void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	struct i40e_rx_buffer *rx_bi;
	dma_addr_t dma;
	void *buffer;
	int buf_size;
	int i;

	if (rx_ring->rx_bi[0].hdr_buf)
		return;
	/* Make sure the buffers don't cross cache line boundaries. */
	buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
	buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
				    &dma, GFP_KERNEL);
	if (!buffer)
		return;
	for (i = 0; i < rx_ring->count; i++) {
		rx_bi = &rx_ring->rx_bi[i];
		rx_bi->dma = dma + (i * buf_size);
		rx_bi->hdr_buf = buffer + (i * buf_size);
	}
}

579 580 581 582 583 584 585 586 587 588 589
/**
 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int bi_size;

590 591
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
592 593 594 595 596
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

597
	u64_stats_init(&rx_ring->syncp);
598

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
	/* Round up to nearest 4K */
	rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
		? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
		: rx_ring->count * sizeof(union i40e_32byte_rx_desc);
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

/**
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
 * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
 **/
void i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
{
	u16 i = rx_ring->next_to_use;
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
		return;

	while (cleaned_count--) {
		rx_desc = I40E_RX_DESC(rx_ring, i);
		bi = &rx_ring->rx_bi[i];

		if (bi->skb) /* desc is in use */
			goto no_buffers;
		if (!bi->page) {
			bi->page = alloc_page(GFP_ATOMIC);
			if (!bi->page) {
				rx_ring->rx_stats.alloc_page_failed++;
				goto no_buffers;
			}
		}

		if (!bi->page_dma) {
			/* use a half page if we're re-using */
			bi->page_offset ^= PAGE_SIZE / 2;
			bi->page_dma = dma_map_page(rx_ring->dev,
						    bi->page,
						    bi->page_offset,
						    PAGE_SIZE / 2,
						    DMA_FROM_DEVICE);
			if (dma_mapping_error(rx_ring->dev,
					      bi->page_dma)) {
				rx_ring->rx_stats.alloc_page_failed++;
				bi->page_dma = 0;
				goto no_buffers;
			}
		}

		dma_sync_single_range_for_device(rx_ring->dev,
						 bi->dma,
						 0,
						 rx_ring->rx_hdr_len,
						 DMA_FROM_DEVICE);
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
		rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
		i++;
		if (i == rx_ring->count)
			i = 0;
	}

no_buffers:
	if (rx_ring->next_to_use != i)
		i40e_release_rx_desc(rx_ring, i);
}

/**
 * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
707 708 709
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
 **/
710
void i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
{
	u16 i = rx_ring->next_to_use;
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;
	struct sk_buff *skb;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
		return;

	while (cleaned_count--) {
		rx_desc = I40E_RX_DESC(rx_ring, i);
		bi = &rx_ring->rx_bi[i];
		skb = bi->skb;

		if (!skb) {
			skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
							rx_ring->rx_buf_len);
			if (!skb) {
				rx_ring->rx_stats.alloc_buff_failed++;
				goto no_buffers;
			}
			/* initialize queue mapping */
			skb_record_rx_queue(skb, rx_ring->queue_index);
			bi->skb = skb;
		}

		if (!bi->dma) {
			bi->dma = dma_map_single(rx_ring->dev,
						 skb->data,
						 rx_ring->rx_buf_len,
						 DMA_FROM_DEVICE);
			if (dma_mapping_error(rx_ring->dev, bi->dma)) {
				rx_ring->rx_stats.alloc_buff_failed++;
				bi->dma = 0;
				goto no_buffers;
			}
		}

750 751
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
		rx_desc->read.hdr_addr = 0;
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
		i++;
		if (i == rx_ring->count)
			i = 0;
	}

no_buffers:
	if (rx_ring->next_to_use != i)
		i40e_release_rx_desc(rx_ring, i);
}

/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;

	if (vlan_tag & VLAN_VID_MASK)
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

776
	napi_gro_receive(&q_vector->napi, skb);
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
 * @rx_status: status value of last descriptor in packet
 * @rx_error: error value of last descriptor in packet
 * @rx_ptype: ptype value of last descriptor in packet
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
				    u32 rx_status,
				    u32 rx_error,
				    u16 rx_ptype)
{
793 794
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
	bool ipv4 = false, ipv6 = false;
795 796 797
	bool ipv4_tunnel, ipv6_tunnel;
	__wsum rx_udp_csum;
	struct iphdr *iph;
798
	__sum16 csum;
799

800 801 802 803
	ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
		     (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
	ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
		     (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
804 805 806 807

	skb->ip_summed = CHECKSUM_NONE;

	/* Rx csum enabled and ip headers found? */
808 809 810 811
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
812
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
813 814 815 816
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
817 818
		return;

819 820 821 822 823 824 825 826
	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
		ipv4 = true;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
		ipv6 = true;

	if (ipv4 &&
827 828
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
829 830
		goto checksum_fail;

J
Jesse Brandeburg 已提交
831
	/* likely incorrect csum if alternate IP extension headers found */
832
	if (ipv6 &&
833
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
834
		/* don't increment checksum err here, non-fatal err */
835 836
		return;

837
	/* there was some L4 error, count error and punt packet to the stack */
838
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
839 840 841 842 843 844
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
845
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
846 847
		return;

848 849 850 851 852 853
	/* If VXLAN traffic has an outer UDPv4 checksum we need to check
	 * it in the driver, hardware does not do it for us.
	 * Since L3L4P bit was set we assume a valid IHL value (>=5)
	 * so the total length of IPv4 header is IHL*4 bytes
	 * The UDP_0 bit *may* bet set if the *inner* header is UDP
	 */
854
	if (ipv4_tunnel) {
855 856 857 858 859 860 861 862 863
		skb->transport_header = skb->mac_header +
					sizeof(struct ethhdr) +
					(ip_hdr(skb)->ihl * 4);

		/* Add 4 bytes for VLAN tagged packets */
		skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
					  skb->protocol == htons(ETH_P_8021AD))
					  ? VLAN_HLEN : 0;

864 865 866 867 868 869 870 871
		if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
		    (udp_hdr(skb)->check != 0)) {
			rx_udp_csum = udp_csum(skb);
			iph = ip_hdr(skb);
			csum = csum_tcpudp_magic(iph->saddr, iph->daddr,
						 (skb->len -
						  skb_transport_offset(skb)),
						 IPPROTO_UDP, rx_udp_csum);
872

873 874 875 876
			if (udp_hdr(skb)->check != csum)
				goto checksum_fail;

		} /* else its GRE and so no outer UDP header */
877 878 879
	}

	skb->ip_summed = CHECKSUM_UNNECESSARY;
880
	skb->csum_level = ipv4_tunnel || ipv6_tunnel;
881 882 883 884 885

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
}

/**
 * i40e_rx_hash - returns the hash value from the Rx descriptor
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline u32 i40e_rx_hash(struct i40e_ring *ring,
			       union i40e_rx_desc *rx_desc)
{
	const __le64 rss_mask =
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

	if ((ring->netdev->features & NETIF_F_RXHASH) &&
	    (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
		return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
	else
		return 0;
}

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
/**
 * i40e_ptype_to_hash - get a hash type
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

930
/**
931
 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
932 933 934 935 936
 * @rx_ring:  rx ring to clean
 * @budget:   how many cleans we're allowed
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
937
static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
938 939 940 941
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
	u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
942
	const int current_node = numa_mem_id();
943 944 945 946
	struct i40e_vsi *vsi = rx_ring->vsi;
	u16 i = rx_ring->next_to_clean;
	union i40e_rx_desc *rx_desc;
	u32 rx_error, rx_status;
947
	u8 rx_ptype;
948 949
	u64 qword;

950
	do {
951 952 953
		struct i40e_rx_buffer *rx_bi;
		struct sk_buff *skb;
		u16 vlan_tag;
954 955 956 957 958 959 960 961 962 963 964 965
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
			i40evf_alloc_rx_buffers_ps(rx_ring, cleaned_count);
			cleaned_count = 0;
		}

		i = rx_ring->next_to_clean;
		rx_desc = I40E_RX_DESC(rx_ring, i);
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
			I40E_RXD_QW1_STATUS_SHIFT;

966
		if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
967 968 969 970 971 972
			break;

		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * DD bit is set.
		 */
973
		dma_rmb();
974 975
		rx_bi = &rx_ring->rx_bi[i];
		skb = rx_bi->skb;
976 977 978
		if (likely(!skb)) {
			skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
							rx_ring->rx_hdr_len);
979
			if (!skb) {
980
				rx_ring->rx_stats.alloc_buff_failed++;
981 982 983
				break;
			}

984 985 986 987 988 989 990 991 992
			/* initialize queue mapping */
			skb_record_rx_queue(skb, rx_ring->queue_index);
			/* we are reusing so sync this buffer for CPU use */
			dma_sync_single_range_for_cpu(rx_ring->dev,
						      rx_bi->dma,
						      0,
						      rx_ring->rx_hdr_len,
						      DMA_FROM_DEVICE);
		}
993 994 995 996 997 998 999 1000 1001
		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
		rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
				I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
		rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
			 I40E_RXD_QW1_LENGTH_SPH_SHIFT;

		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
			   I40E_RXD_QW1_ERROR_SHIFT;
1002 1003
		rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
		rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1004 1005 1006

		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;
1007
		prefetch(rx_bi->page);
1008
		rx_bi->skb = NULL;
1009 1010 1011
		cleaned_count++;
		if (rx_hbo || rx_sph) {
			int len;
J
Jesse Brandeburg 已提交
1012

1013 1014 1015
			if (rx_hbo)
				len = I40E_RX_HDR_SIZE;
			else
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
				len = rx_header_len;
			memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
		} else if (skb->len == 0) {
			int len;

			len = (rx_packet_len > skb_headlen(skb) ?
				skb_headlen(skb) : rx_packet_len);
			memcpy(__skb_put(skb, len),
			       rx_bi->page + rx_bi->page_offset,
			       len);
			rx_bi->page_offset += len;
			rx_packet_len -= len;
1028 1029 1030
		}

		/* Get the rest of the data if this was a header split */
1031
		if (rx_packet_len) {
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
					   rx_bi->page,
					   rx_bi->page_offset,
					   rx_packet_len);

			skb->len += rx_packet_len;
			skb->data_len += rx_packet_len;
			skb->truesize += rx_packet_len;

			if ((page_count(rx_bi->page) == 1) &&
			    (page_to_nid(rx_bi->page) == current_node))
				get_page(rx_bi->page);
			else
				rx_bi->page = NULL;

			dma_unmap_page(rx_ring->dev,
				       rx_bi->page_dma,
				       PAGE_SIZE / 2,
				       DMA_FROM_DEVICE);
			rx_bi->page_dma = 0;
		}
1053
		I40E_RX_INCREMENT(rx_ring, i);
1054 1055

		if (unlikely(
1056
		    !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1057 1058 1059
			struct i40e_rx_buffer *next_buffer;

			next_buffer = &rx_ring->rx_bi[i];
1060
			next_buffer->skb = skb;
1061
			rx_ring->rx_stats.non_eop_descs++;
1062
			continue;
1063 1064 1065
		}

		/* ERR_MASK will only have valid bits if EOP set */
1066
		if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1067
			dev_kfree_skb_any(skb);
1068
			continue;
1069 1070
		}

1071 1072
		skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
			     i40e_ptype_to_hash(rx_ptype));
1073 1074 1075 1076 1077 1078 1079 1080
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		skb->protocol = eth_type_trans(skb, rx_ring->netdev);

		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);

1081
		vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1082 1083
			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
			 : 0;
1084 1085 1086 1087 1088 1089
#ifdef I40E_FCOE
		if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
			dev_kfree_skb_any(skb);
			continue;
		}
#endif
1090 1091 1092 1093
		i40e_receive_skb(rx_ring, skb, vlan_tag);

		rx_desc->wb.qword1.status_error_len = 0;

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	} while (likely(total_rx_packets < budget));

	u64_stats_update_begin(&rx_ring->syncp);
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
	u64_stats_update_end(&rx_ring->syncp);
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

	return total_rx_packets;
}

/**
 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
 * @rx_ring:  rx ring to clean
 * @budget:   how many cleans we're allowed
 *
 * Returns number of packets cleaned
 **/
static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
	struct i40e_vsi *vsi = rx_ring->vsi;
	union i40e_rx_desc *rx_desc;
	u32 rx_error, rx_status;
	u16 rx_packet_len;
	u8 rx_ptype;
	u64 qword;
	u16 i;

	do {
		struct i40e_rx_buffer *rx_bi;
		struct sk_buff *skb;
		u16 vlan_tag;
1129 1130
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1131
			i40evf_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
1132 1133 1134
			cleaned_count = 0;
		}

1135 1136
		i = rx_ring->next_to_clean;
		rx_desc = I40E_RX_DESC(rx_ring, i);
1137 1138
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1139 1140
			I40E_RXD_QW1_STATUS_SHIFT;

1141
		if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1142 1143 1144 1145 1146 1147
			break;

		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * DD bit is set.
		 */
1148
		dma_rmb();
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

		rx_bi = &rx_ring->rx_bi[i];
		skb = rx_bi->skb;
		prefetch(skb->data);

		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;

		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
			   I40E_RXD_QW1_ERROR_SHIFT;
1159
		rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;
		rx_bi->skb = NULL;
		cleaned_count++;

		/* Get the header and possibly the whole packet
		 * If this is an skb from previous receive dma will be 0
		 */
		skb_put(skb, rx_packet_len);
		dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
				 DMA_FROM_DEVICE);
		rx_bi->dma = 0;

		I40E_RX_INCREMENT(rx_ring, i);

		if (unlikely(
1177
		    !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1178 1179 1180 1181 1182
			rx_ring->rx_stats.non_eop_descs++;
			continue;
		}

		/* ERR_MASK will only have valid bits if EOP set */
1183
		if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
			dev_kfree_skb_any(skb);
			continue;
		}

		skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
			     i40e_ptype_to_hash(rx_ptype));
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		skb->protocol = eth_type_trans(skb, rx_ring->netdev);

		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);

1198
		vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1199 1200 1201 1202 1203 1204
			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
			 : 0;
		i40e_receive_skb(rx_ring, skb, vlan_tag);

		rx_desc->wb.qword1.status_error_len = 0;
	} while (likely(total_rx_packets < budget));
1205 1206 1207 1208 1209 1210 1211 1212

	u64_stats_update_begin(&rx_ring->syncp);
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
	u64_stats_update_end(&rx_ring->syncp);
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

1213
	return total_rx_packets;
1214 1215
}

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
static u32 i40e_buildreg_itr(const int type, const u16 itr)
{
	u32 val;

	val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
	      I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
	      (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
	      (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_VFINT_DYN_CTLN1

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
1241 1242
	bool rx = false, tx = false;
	u32 rxval, txval;
1243 1244 1245
	int vector;

	vector = (q_vector->v_idx + vsi->base_vector);
1246 1247 1248 1249

	/* avoid dynamic calculation if in countdown mode OR if
	 * all dynamic is disabled
	 */
1250 1251
	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);

1252 1253 1254 1255 1256 1257
	if (q_vector->itr_countdown > 0 ||
	    (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
	     !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
		goto enable_int;
	}

1258
	if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1259 1260
		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1261 1262
	}
	if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
	}
	if (rx || tx) {
		/* get the higher of the two ITR adjustments and
		 * use the same value for both ITR registers
		 * when in adaptive mode (Rx and/or Tx)
		 */
		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);

		q_vector->tx.itr = q_vector->rx.itr = itr;
		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
		tx = true;
		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
		rx = true;
1278
	}
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

	/* only need to enable the interrupt once, but need
	 * to possibly update both ITR values
	 */
	if (rx) {
		/* set the INTENA_MSK_MASK so that this first write
		 * won't actually enable the interrupt, instead just
		 * updating the ITR (it's bit 31 PF and VF)
		 */
		rxval |= BIT(31);
		/* don't check _DOWN because interrupt isn't being enabled */
		wr32(hw, INTREG(vector - 1), rxval);
	}

1293
enable_int:
1294 1295
	if (!test_bit(__I40E_DOWN, &vsi->state))
		wr32(hw, INTREG(vector - 1), txval);
1296 1297 1298 1299 1300 1301

	if (q_vector->itr_countdown)
		q_vector->itr_countdown--;
	else
		q_vector->itr_countdown = ITR_COUNTDOWN_START;

1302 1303
}

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
/**
 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40evf_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
	struct i40e_ring *ring;
	bool clean_complete = true;
1320
	bool arm_wb = false;
1321
	int budget_per_ring;
1322
	int work_done = 0;
1323 1324 1325 1326 1327 1328 1329 1330 1331

	if (test_bit(__I40E_DOWN, &vsi->state)) {
		napi_complete(napi);
		return 0;
	}

	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
1332
	i40e_for_each_ring(ring, q_vector->tx) {
1333
		clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1334
		arm_wb |= ring->arm_wb;
1335
		ring->arm_wb = false;
1336
	}
1337

1338 1339 1340 1341
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

1342 1343 1344 1345 1346
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);

1347
	i40e_for_each_ring(ring, q_vector->rx) {
1348 1349
		int cleaned;

1350 1351 1352 1353
		if (ring_is_ps_enabled(ring))
			cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
		else
			cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1354 1355

		work_done += cleaned;
1356 1357 1358
		/* if we didn't clean as many as budgeted, we must be done */
		clean_complete &= (budget_per_ring != cleaned);
	}
1359 1360

	/* If work not completed, return budget and polling will return */
1361
	if (!clean_complete) {
1362
tx_only:
1363 1364
		if (arm_wb) {
			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1365
			i40evf_force_wb(vsi, q_vector);
1366
		}
1367
		return budget;
1368
	}
1369

1370 1371 1372
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

1373
	/* Work is done so exit the polling mode and re-enable the interrupt */
1374
	napi_complete_done(napi, work_done);
1375
	i40e_update_enable_itr(vsi, q_vector);
1376 1377 1378 1379
	return 0;
}

/**
1380
 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
1391 1392 1393
static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
					       struct i40e_ring *tx_ring,
					       u32 *flags)
1394 1395 1396 1397
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

1411
	/* if we have a HW VLAN tag being added, default to the HW one */
1412 1413
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1414 1415 1416 1417
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
	} else if (protocol == htons(ETH_P_8021Q)) {
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
1418

1419 1420 1421 1422 1423 1424 1425 1426 1427
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

1428
out:
1429 1430 1431 1432 1433 1434 1435 1436 1437
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
 * @tx_ring:  ptr to the ring to send
 * @skb:      ptr to the skb we're sending
 * @hdr_len:  ptr to the size of the packet header
1438
 * @cd_type_cmd_tso_mss: Quad Word 1
1439 1440 1441 1442
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1443
		    u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
1444 1445
{
	u32 cd_cmd, cd_tso_len, cd_mss;
1446
	struct ipv6hdr *ipv6h;
1447 1448 1449 1450 1451 1452 1453 1454
	struct tcphdr *tcph;
	struct iphdr *iph;
	u32 l4len;
	int err;

	if (!skb_is_gso(skb))
		return 0;

1455 1456 1457
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
1458

1459 1460 1461 1462
	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);

	if (iph->version == 4) {
1463 1464 1465 1466 1467
		tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
						 0, IPPROTO_TCP, 0);
1468
	} else if (ipv6h->version == 6) {
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
		tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
		ipv6h->payload_len = 0;
		tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
					       0, IPPROTO_TCP, 0);
	}

	l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
	*hdr_len = (skb->encapsulation
		    ? (skb_inner_transport_header(skb) - skb->data)
		    : skb_transport_offset(skb)) + l4len;

	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
	cd_mss = skb_shinfo(skb)->gso_size;
	*cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				((u64)cd_tso_len <<
				 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
	return 1;
}

/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
1494
 * @tx_flags: pointer to Tx flags currently set
1495 1496 1497 1498
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
 * @cd_tunneling: ptr to context desc bits
 **/
1499
static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1500 1501 1502 1503 1504 1505 1506 1507 1508
				u32 *td_cmd, u32 *td_offset,
				struct i40e_ring *tx_ring,
				u32 *cd_tunneling)
{
	struct ipv6hdr *this_ipv6_hdr;
	unsigned int this_tcp_hdrlen;
	struct iphdr *this_ip_hdr;
	u32 network_hdr_len;
	u8 l4_hdr = 0;
1509 1510
	struct udphdr *oudph;
	struct iphdr *oiph;
1511
	u32 l4_tunnel = 0;
1512 1513

	if (skb->encapsulation) {
1514 1515
		switch (ip_hdr(skb)->protocol) {
		case IPPROTO_UDP:
1516 1517
			oudph = udp_hdr(skb);
			oiph = ip_hdr(skb);
1518
			l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
1519
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1520 1521 1522 1523
			break;
		default:
			return;
		}
1524 1525 1526 1527 1528
		network_hdr_len = skb_inner_network_header_len(skb);
		this_ip_hdr = inner_ip_hdr(skb);
		this_ipv6_hdr = inner_ipv6_hdr(skb);
		this_tcp_hdrlen = inner_tcp_hdrlen(skb);

1529 1530
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
			if (*tx_flags & I40E_TX_FLAGS_TSO) {
1531 1532 1533 1534 1535 1536
				*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
				ip_hdr(skb)->check = 0;
			} else {
				*cd_tunneling |=
					 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
			}
1537
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1538
			*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1539
			if (*tx_flags & I40E_TX_FLAGS_TSO)
1540 1541 1542 1543 1544
				ip_hdr(skb)->check = 0;
		}

		/* Now set the ctx descriptor fields */
		*cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1545 1546
				   I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT      |
				   l4_tunnel                             |
1547 1548 1549
				   ((skb_inner_network_offset(skb) -
					skb_transport_offset(skb)) >> 1) <<
				   I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1550
		if (this_ip_hdr->version == 6) {
1551 1552
			*tx_flags &= ~I40E_TX_FLAGS_IPV4;
			*tx_flags |= I40E_TX_FLAGS_IPV6;
1553 1554
		}

1555

1556 1557 1558 1559 1560 1561 1562 1563 1564
		if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
		    (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING)        &&
		    (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
			oudph->check = ~csum_tcpudp_magic(oiph->saddr,
					oiph->daddr,
					(skb->len - skb_transport_offset(skb)),
					IPPROTO_UDP, 0);
			*cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
		}
1565 1566 1567 1568 1569 1570 1571 1572
	} else {
		network_hdr_len = skb_network_header_len(skb);
		this_ip_hdr = ip_hdr(skb);
		this_ipv6_hdr = ipv6_hdr(skb);
		this_tcp_hdrlen = tcp_hdrlen(skb);
	}

	/* Enable IP checksum offloads */
1573
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1574 1575 1576 1577
		l4_hdr = this_ip_hdr->protocol;
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
1578
		if (*tx_flags & I40E_TX_FLAGS_TSO) {
1579 1580 1581 1582 1583 1584 1585 1586
			*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
			this_ip_hdr->check = 0;
		} else {
			*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
		}
		/* Now set the td_offset for IP header length */
		*td_offset = (network_hdr_len >> 2) <<
			      I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1587
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
		l4_hdr = this_ipv6_hdr->nexthdr;
		*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
		/* Now set the td_offset for IP header length */
		*td_offset = (network_hdr_len >> 2) <<
			      I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
	}
	/* words in MACLEN + dwords in IPLEN + dwords in L4Len */
	*td_offset |= (skb_network_offset(skb) >> 1) <<
		       I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

	/* Enable L4 checksum offloads */
	switch (l4_hdr) {
	case IPPROTO_TCP:
		/* enable checksum offloads */
		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		*td_offset |= (this_tcp_hdrlen >> 2) <<
			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		*td_offset |= (sizeof(struct sctphdr) >> 2) <<
			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		*td_offset |= (sizeof(struct udphdr) >> 2) <<
			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
		break;
	default:
		break;
	}
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
	int i = tx_ring->next_to_use;

1637 1638
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
		return;

	/* grab the next descriptor */
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1650
	context_desc->rsvd = cpu_to_le16(0);
1651 1652 1653
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

1654 1655 1656 1657 1658 1659 1660 1661 1662
 /**
 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
 * @skb:      send buffer
 * @tx_flags: collected send information
 *
 * Note: Our HW can't scatter-gather more than 8 fragments to build
 * a packet on the wire and so we need to figure out the cases where we
 * need to linearize the skb.
 **/
1663
static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
{
	struct skb_frag_struct *frag;
	bool linearize = false;
	unsigned int size = 0;
	u16 num_frags;
	u16 gso_segs;

	num_frags = skb_shinfo(skb)->nr_frags;
	gso_segs = skb_shinfo(skb)->gso_segs;

	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
1675
		u16 j = 0;
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689

		if (num_frags < (I40E_MAX_BUFFER_TXD))
			goto linearize_chk_done;
		/* try the simple math, if we have too many frags per segment */
		if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
		    I40E_MAX_BUFFER_TXD) {
			linearize = true;
			goto linearize_chk_done;
		}
		frag = &skb_shinfo(skb)->frags[0];
		/* we might still have more fragments per segment */
		do {
			size += skb_frag_size(frag);
			frag++; j++;
1690 1691 1692 1693 1694
			if ((size >= skb_shinfo(skb)->gso_size) &&
			    (j < I40E_MAX_BUFFER_TXD)) {
				size = (size % skb_shinfo(skb)->gso_size);
				j = (size) ? 1 : 0;
			}
1695
			if (j == I40E_MAX_BUFFER_TXD) {
1696 1697
				linearize = true;
				break;
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
			}
			num_frags--;
		} while (num_frags);
	} else {
		if (num_frags >= I40E_MAX_BUFFER_TXD)
			linearize = true;
	}

linearize_chk_done:
	return linearize;
}

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
/**
 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
static inline int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

/**
 * i40evf_maybe_stop_tx - 1st level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns 0 if stop is not needed
 **/
1740
static inline int i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1741 1742 1743 1744 1745 1746
{
	if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
		return 0;
	return __i40evf_maybe_stop_tx(tx_ring, size);
}

1747
/**
1748
 * i40evf_tx_map - Build the Tx descriptor
1749 1750 1751 1752 1753 1754 1755 1756
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
 **/
1757 1758 1759
static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
				 struct i40e_tx_buffer *first, u32 tx_flags,
				 const u8 hdr_len, u32 td_cmd, u32 td_offset)
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
	struct skb_frag_struct *frag;
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
	u16 i = tx_ring->next_to_use;
	u32 td_tag = 0;
	dma_addr_t dma;
	u16 gso_segs;
1770 1771 1772
	u16 desc_count = 0;
	bool tail_bump = true;
	bool do_rs = false;
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
		gso_segs = skb_shinfo(skb)->gso_segs;
	else
		gso_segs = 1;

	/* multiply data chunks by size of headers */
	first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
	first->gso_segs = gso_segs;
	first->skb = skb;
	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

	tx_desc = I40E_TX_DESC(tx_ring, i);
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
					   I40E_MAX_DATA_PER_TXD, td_tag);

			tx_desc++;
			i++;
1813 1814
			desc_count++;

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

			dma += I40E_MAX_DATA_PER_TXD;
			size -= I40E_MAX_DATA_PER_TXD;

			tx_desc->buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;

		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);

		tx_desc++;
		i++;
1834 1835
		desc_count++;

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

		size = skb_frag_size(frag);
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);

		tx_bi = &tx_ring->tx_bi[i];
	}

1850
#define WB_STRIDE 0x3
1851 1852 1853 1854 1855 1856 1857 1858 1859
	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

1860 1861 1862
	netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
						 tx_ring->queue_index),
						 first->bytecount);
1863
	i40evf_maybe_stop_tx(tx_ring, DESC_NEEDED);
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917

	/* Algorithm to optimize tail and RS bit setting:
	 * if xmit_more is supported
	 *	if xmit_more is true
	 *		do not update tail and do not mark RS bit.
	 *	if xmit_more is false and last xmit_more was false
	 *		if every packet spanned less than 4 desc
	 *			then set RS bit on 4th packet and update tail
	 *			on every packet
	 *		else
	 *			update tail and set RS bit on every packet.
	 *	if xmit_more is false and last_xmit_more was true
	 *		update tail and set RS bit.
	 * else (kernel < 3.18)
	 *	if every packet spanned less than 4 desc
	 *		then set RS bit on 4th packet and update tail
	 *		on every packet
	 *	else
	 *		set RS bit on EOP for every packet and update tail
	 *
	 * Optimization: wmb to be issued only in case of tail update.
	 * Also optimize the Descriptor WB path for RS bit with the same
	 * algorithm.
	 *
	 * Note: If there are less than 4 packets
	 * pending and interrupts were disabled the service task will
	 * trigger a force WB.
	 */
	if (skb->xmit_more  &&
	    !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
						    tx_ring->queue_index))) {
		tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
		tail_bump = false;
	} else if (!skb->xmit_more &&
		   !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
						       tx_ring->queue_index)) &&
		   (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
		   (tx_ring->packet_stride < WB_STRIDE) &&
		   (desc_count < WB_STRIDE)) {
		tx_ring->packet_stride++;
	} else {
		tx_ring->packet_stride = 0;
		tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
		do_rs = true;
	}
	if (do_rs)
		tx_ring->packet_stride = 0;

	tx_desc->cmd_type_offset_bsz =
			build_ctob(td_cmd, td_offset, size, td_tag) |
			cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
						  I40E_TX_DESC_CMD_EOP) <<
						  I40E_TXD_QW1_CMD_SHIFT);

1918
	/* notify HW of packet */
1919
	if (!tail_bump)
1920
		prefetchw(tx_desc + 1);
1921

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	if (tail_bump) {
		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64).
		 */
		wmb();
		writel(i, tx_ring->tail);
	}

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	return;

dma_error:
	dev_info(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

/**
1952
 * i40evf_xmit_descriptor_count - calculate number of tx descriptors needed
1953 1954 1955 1956 1957 1958 1959
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
 * there is not enough descriptors available in this ring since we need at least
 * one descriptor.
 **/
1960 1961
static inline int i40evf_xmit_descriptor_count(struct sk_buff *skb,
					       struct i40e_ring *tx_ring)
1962 1963 1964 1965 1966 1967
{
	unsigned int f;
	int count = 0;

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
1968
	 *       + 4 desc gap to avoid the cache line where head is,
1969 1970 1971 1972 1973
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1974

1975
	count += TXD_USE_COUNT(skb_headlen(skb));
1976
	if (i40evf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
		tx_ring->tx_stats.tx_busy++;
		return 0;
	}
	return count;
}

/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
	int tso;
J
Jesse Brandeburg 已提交
2002

2003 2004 2005
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

2006
	if (0 == i40evf_xmit_descriptor_count(skb, tx_ring))
2007 2008 2009
		return NETDEV_TX_BUSY;

	/* prepare the xmit flags */
2010
	if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2011 2012 2013
		goto out_drop;

	/* obtain protocol of skb */
2014
	protocol = vlan_get_protocol(skb);
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];

	/* setup IPv4/IPv6 offloads */
	if (protocol == htons(ETH_P_IP))
		tx_flags |= I40E_TX_FLAGS_IPV4;
	else if (protocol == htons(ETH_P_IPV6))
		tx_flags |= I40E_TX_FLAGS_IPV6;

2025
	tso = i40e_tso(tx_ring, skb, &hdr_len, &cd_type_cmd_tso_mss);
2026 2027 2028 2029 2030 2031

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

2032
	if (i40e_chk_linearize(skb, tx_flags)) {
2033 2034
		if (skb_linearize(skb))
			goto out_drop;
2035 2036
		tx_ring->tx_stats.tx_linearize++;
	}
2037 2038 2039 2040 2041 2042 2043 2044 2045
	skb_tx_timestamp(skb);

	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

	/* Always offload the checksum, since it's in the data descriptor */
	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		tx_flags |= I40E_TX_FLAGS_CSUM;

2046
		i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2047 2048 2049 2050 2051 2052
				    tx_ring, &cd_tunneling);
	}

	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

2053 2054
	i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
		      td_cmd, td_offset);
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072

	return NETDEV_TX_OK;

out_drop:
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40evf_adapter *adapter = netdev_priv(netdev);
2073
	struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
	if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
		if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
			return NETDEV_TX_OK;
		skb->len = I40E_MIN_TX_LEN;
		skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
	}

	return i40e_xmit_frame_ring(skb, tx_ring);
}