ttm_bo.c 44.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/**************************************************************************
 *
 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 **************************************************************************/
/*
 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
 */

#include "ttm/ttm_module.h"
#include "ttm/ttm_bo_driver.h"
#include "ttm/ttm_placement.h"
#include <linux/jiffies.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/module.h>
40
#include <asm/atomic.h>
41 42 43 44 45 46 47

#define TTM_ASSERT_LOCKED(param)
#define TTM_DEBUG(fmt, arg...)
#define TTM_BO_HASH_ORDER 13

static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
48 49 50 51 52 53 54
static void ttm_bo_global_kobj_release(struct kobject *kobj);

static struct attribute ttm_bo_count = {
	.name = "bo_count",
	.mode = S_IRUGO
};

55 56 57 58 59 60 61 62 63 64 65 66
static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
{
	int i;

	for (i = 0; i <= TTM_PL_PRIV5; i++)
		if (flags & (1 << i)) {
			*mem_type = i;
			return 0;
		}
	return -EINVAL;
}

67
static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
68
{
69 70
	struct ttm_mem_type_manager *man = &bdev->man[mem_type];

71 72 73 74
	printk(KERN_ERR TTM_PFX "    has_type: %d\n", man->has_type);
	printk(KERN_ERR TTM_PFX "    use_type: %d\n", man->use_type);
	printk(KERN_ERR TTM_PFX "    flags: 0x%08X\n", man->flags);
	printk(KERN_ERR TTM_PFX "    gpu_offset: 0x%08lX\n", man->gpu_offset);
75
	printk(KERN_ERR TTM_PFX "    size: %llu\n", man->size);
76 77 78 79
	printk(KERN_ERR TTM_PFX "    available_caching: 0x%08X\n",
		man->available_caching);
	printk(KERN_ERR TTM_PFX "    default_caching: 0x%08X\n",
		man->default_caching);
80 81
	if (mem_type != TTM_PL_SYSTEM)
		(*man->func->debug)(man, TTM_PFX);
82 83 84 85 86 87 88
}

static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
					struct ttm_placement *placement)
{
	int i, ret, mem_type;

89
	printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n",
90 91 92 93 94 95 96 97 98
		bo, bo->mem.num_pages, bo->mem.size >> 10,
		bo->mem.size >> 20);
	for (i = 0; i < placement->num_placement; i++) {
		ret = ttm_mem_type_from_flags(placement->placement[i],
						&mem_type);
		if (ret)
			return;
		printk(KERN_ERR TTM_PFX "  placement[%d]=0x%08X (%d)\n",
			i, placement->placement[i], mem_type);
99
		ttm_mem_type_debug(bo->bdev, mem_type);
100 101 102
	}
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
static ssize_t ttm_bo_global_show(struct kobject *kobj,
				  struct attribute *attr,
				  char *buffer)
{
	struct ttm_bo_global *glob =
		container_of(kobj, struct ttm_bo_global, kobj);

	return snprintf(buffer, PAGE_SIZE, "%lu\n",
			(unsigned long) atomic_read(&glob->bo_count));
}

static struct attribute *ttm_bo_global_attrs[] = {
	&ttm_bo_count,
	NULL
};

119
static const struct sysfs_ops ttm_bo_global_ops = {
120 121 122 123 124 125 126 127 128
	.show = &ttm_bo_global_show
};

static struct kobj_type ttm_bo_glob_kobj_type  = {
	.release = &ttm_bo_global_kobj_release,
	.sysfs_ops = &ttm_bo_global_ops,
	.default_attrs = ttm_bo_global_attrs
};

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

static inline uint32_t ttm_bo_type_flags(unsigned type)
{
	return 1 << (type);
}

static void ttm_bo_release_list(struct kref *list_kref)
{
	struct ttm_buffer_object *bo =
	    container_of(list_kref, struct ttm_buffer_object, list_kref);
	struct ttm_bo_device *bdev = bo->bdev;

	BUG_ON(atomic_read(&bo->list_kref.refcount));
	BUG_ON(atomic_read(&bo->kref.refcount));
	BUG_ON(atomic_read(&bo->cpu_writers));
	BUG_ON(bo->sync_obj != NULL);
	BUG_ON(bo->mem.mm_node != NULL);
	BUG_ON(!list_empty(&bo->lru));
	BUG_ON(!list_empty(&bo->ddestroy));

	if (bo->ttm)
		ttm_tt_destroy(bo->ttm);
151
	atomic_dec(&bo->glob->bo_count);
152 153 154
	if (bo->destroy)
		bo->destroy(bo);
	else {
155
		ttm_mem_global_free(bdev->glob->mem_glob, bo->acc_size);
156 157 158 159 160 161 162
		kfree(bo);
	}
}

int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
{
	if (interruptible) {
163
		return wait_event_interruptible(bo->event_queue,
164 165 166
					       atomic_read(&bo->reserved) == 0);
	} else {
		wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
167
		return 0;
168 169
	}
}
170
EXPORT_SYMBOL(ttm_bo_wait_unreserved);
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

static void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
{
	struct ttm_bo_device *bdev = bo->bdev;
	struct ttm_mem_type_manager *man;

	BUG_ON(!atomic_read(&bo->reserved));

	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {

		BUG_ON(!list_empty(&bo->lru));

		man = &bdev->man[bo->mem.mem_type];
		list_add_tail(&bo->lru, &man->lru);
		kref_get(&bo->list_kref);

		if (bo->ttm != NULL) {
188
			list_add_tail(&bo->swap, &bo->glob->swap_lru);
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
			kref_get(&bo->list_kref);
		}
	}
}

/**
 * Call with the lru_lock held.
 */

static int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
{
	int put_count = 0;

	if (!list_empty(&bo->swap)) {
		list_del_init(&bo->swap);
		++put_count;
	}
	if (!list_empty(&bo->lru)) {
		list_del_init(&bo->lru);
		++put_count;
	}

	/*
	 * TODO: Add a driver hook to delete from
	 * driver-specific LRU's here.
	 */

	return put_count;
}

int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
			  bool interruptible,
			  bool no_wait, bool use_sequence, uint32_t sequence)
{
223
	struct ttm_bo_global *glob = bo->glob;
224 225 226 227 228 229 230 231 232 233 234
	int ret;

	while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
		if (use_sequence && bo->seq_valid &&
			(sequence - bo->val_seq < (1 << 31))) {
			return -EAGAIN;
		}

		if (no_wait)
			return -EBUSY;

235
		spin_unlock(&glob->lru_lock);
236
		ret = ttm_bo_wait_unreserved(bo, interruptible);
237
		spin_lock(&glob->lru_lock);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

		if (unlikely(ret))
			return ret;
	}

	if (use_sequence) {
		bo->val_seq = sequence;
		bo->seq_valid = true;
	} else {
		bo->seq_valid = false;
	}

	return 0;
}
EXPORT_SYMBOL(ttm_bo_reserve);

static void ttm_bo_ref_bug(struct kref *list_kref)
{
	BUG();
}

int ttm_bo_reserve(struct ttm_buffer_object *bo,
		   bool interruptible,
		   bool no_wait, bool use_sequence, uint32_t sequence)
{
263
	struct ttm_bo_global *glob = bo->glob;
264 265 266
	int put_count = 0;
	int ret;

267
	spin_lock(&glob->lru_lock);
268 269 270 271
	ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
				    sequence);
	if (likely(ret == 0))
		put_count = ttm_bo_del_from_lru(bo);
272
	spin_unlock(&glob->lru_lock);
273 274 275 276 277 278 279 280 281

	while (put_count--)
		kref_put(&bo->list_kref, ttm_bo_ref_bug);

	return ret;
}

void ttm_bo_unreserve(struct ttm_buffer_object *bo)
{
282
	struct ttm_bo_global *glob = bo->glob;
283

284
	spin_lock(&glob->lru_lock);
285 286 287
	ttm_bo_add_to_lru(bo);
	atomic_set(&bo->reserved, 0);
	wake_up_all(&bo->event_queue);
288
	spin_unlock(&glob->lru_lock);
289 290 291 292 293 294 295 296 297
}
EXPORT_SYMBOL(ttm_bo_unreserve);

/*
 * Call bo->mutex locked.
 */
static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
{
	struct ttm_bo_device *bdev = bo->bdev;
298
	struct ttm_bo_global *glob = bo->glob;
299 300 301 302 303 304
	int ret = 0;
	uint32_t page_flags = 0;

	TTM_ASSERT_LOCKED(&bo->mutex);
	bo->ttm = NULL;

D
Dave Airlie 已提交
305 306 307
	if (bdev->need_dma32)
		page_flags |= TTM_PAGE_FLAG_DMA32;

308 309 310 311 312 313
	switch (bo->type) {
	case ttm_bo_type_device:
		if (zero_alloc)
			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
	case ttm_bo_type_kernel:
		bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
314
					page_flags, glob->dummy_read_page);
315 316 317 318 319 320
		if (unlikely(bo->ttm == NULL))
			ret = -ENOMEM;
		break;
	case ttm_bo_type_user:
		bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
					page_flags | TTM_PAGE_FLAG_USER,
321
					glob->dummy_read_page);
D
Dave Airlie 已提交
322
		if (unlikely(bo->ttm == NULL)) {
323
			ret = -ENOMEM;
D
Dave Airlie 已提交
324 325
			break;
		}
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

		ret = ttm_tt_set_user(bo->ttm, current,
				      bo->buffer_start, bo->num_pages);
		if (unlikely(ret != 0))
			ttm_tt_destroy(bo->ttm);
		break;
	default:
		printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
		ret = -EINVAL;
		break;
	}

	return ret;
}

static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
				  struct ttm_mem_reg *mem,
343 344
				  bool evict, bool interruptible,
				  bool no_wait_reserve, bool no_wait_gpu)
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
{
	struct ttm_bo_device *bdev = bo->bdev;
	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
	int ret = 0;

	if (old_is_pci || new_is_pci ||
	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0))
		ttm_bo_unmap_virtual(bo);

	/*
	 * Create and bind a ttm if required.
	 */

	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && (bo->ttm == NULL)) {
		ret = ttm_bo_add_ttm(bo, false);
		if (ret)
			goto out_err;

		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
		if (ret)
368
			goto out_err;
369 370 371 372 373 374 375 376

		if (mem->mem_type != TTM_PL_SYSTEM) {
			ret = ttm_tt_bind(bo->ttm, mem);
			if (ret)
				goto out_err;
		}

		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
377
			bo->mem = *mem;
378 379 380 381 382 383
			mem->mm_node = NULL;
			goto moved;
		}

	}

384 385 386
	if (bdev->driver->move_notify)
		bdev->driver->move_notify(bo, mem);

387 388
	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
389
		ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
390 391
	else if (bdev->driver->move)
		ret = bdev->driver->move(bo, evict, interruptible,
392
					 no_wait_reserve, no_wait_gpu, mem);
393
	else
394
		ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
395 396 397 398 399 400 401 402 403 404 405 406 407 408

	if (ret)
		goto out_err;

moved:
	if (bo->evicted) {
		ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
		if (ret)
			printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
		bo->evicted = false;
	}

	if (bo->mem.mm_node) {
		spin_lock(&bo->lock);
409
		bo->offset = (bo->mem.start << PAGE_SHIFT) +
410 411 412
		    bdev->man[bo->mem.mem_type].gpu_offset;
		bo->cur_placement = bo->mem.placement;
		spin_unlock(&bo->lock);
413 414
	} else
		bo->offset = 0;
415 416 417 418 419 420 421 422 423 424 425 426 427 428

	return 0;

out_err:
	new_man = &bdev->man[bo->mem.mem_type];
	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
		ttm_tt_unbind(bo->ttm);
		ttm_tt_destroy(bo->ttm);
		bo->ttm = NULL;
	}

	return ret;
}

429
/**
430
 * Call bo::reserved.
431
 * Will release GPU memory type usage on destruction.
432 433 434
 * This is the place to put in driver specific hooks to release
 * driver private resources.
 * Will release the bo::reserved lock.
435 436 437 438 439 440 441 442 443 444
 */

static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
{
	if (bo->ttm) {
		ttm_tt_unbind(bo->ttm);
		ttm_tt_destroy(bo->ttm);
		bo->ttm = NULL;
	}

445
	ttm_bo_mem_put(bo, &bo->mem);
446 447

	atomic_set(&bo->reserved, 0);
448 449 450 451 452

	/*
	 * Make processes trying to reserve really pick it up.
	 */
	smp_mb__after_atomic_dec();
453 454 455
	wake_up_all(&bo->event_queue);
}

456
static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
457 458
{
	struct ttm_bo_device *bdev = bo->bdev;
459
	struct ttm_bo_global *glob = bo->glob;
460 461 462 463
	struct ttm_bo_driver *driver;
	void *sync_obj;
	void *sync_obj_arg;
	int put_count;
464 465 466
	int ret;

	spin_lock(&bo->lock);
467
	(void) ttm_bo_wait(bo, false, false, true);
468 469
	if (!bo->sync_obj) {

470
		spin_lock(&glob->lru_lock);
T
Thomas Hellstrom 已提交
471

472
		/**
473 474
		 * Lock inversion between bo::reserve and bo::lock here,
		 * but that's OK, since we're only trylocking.
475 476
		 */

477
		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
478

479 480
		if (unlikely(ret == -EBUSY))
			goto queue;
481

482
		spin_unlock(&bo->lock);
483
		put_count = ttm_bo_del_from_lru(bo);
484

485
		spin_unlock(&glob->lru_lock);
486
		ttm_bo_cleanup_memtype_use(bo);
487 488

		while (put_count--)
T
Thomas Hellstrom 已提交
489
			kref_put(&bo->list_kref, ttm_bo_ref_bug);
490

491 492 493
		return;
	} else {
		spin_lock(&glob->lru_lock);
494
	}
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
queue:
	sync_obj = bo->sync_obj;
	sync_obj_arg = bo->sync_obj_arg;
	driver = bdev->driver;

	kref_get(&bo->list_kref);
	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
	spin_unlock(&glob->lru_lock);
	spin_unlock(&bo->lock);

	if (sync_obj)
		driver->sync_obj_flush(sync_obj, sync_obj_arg);
	schedule_delayed_work(&bdev->wq,
			      ((HZ / 100) < 1) ? 1 : HZ / 100);
}

/**
 * function ttm_bo_cleanup_refs
 * If bo idle, remove from delayed- and lru lists, and unref.
 * If not idle, do nothing.
 *
 * @interruptible         Any sleeps should occur interruptibly.
 * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
 * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
 */

static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
			       bool interruptible,
			       bool no_wait_reserve,
			       bool no_wait_gpu)
{
	struct ttm_bo_global *glob = bo->glob;
	int put_count;
	int ret = 0;

retry:
	spin_lock(&bo->lock);
	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
	spin_unlock(&bo->lock);

	if (unlikely(ret != 0))
		return ret;

538
	spin_lock(&glob->lru_lock);
539 540
	ret = ttm_bo_reserve_locked(bo, interruptible,
				    no_wait_reserve, false, 0);
541

542
	if (unlikely(ret != 0) || list_empty(&bo->ddestroy)) {
543
		spin_unlock(&glob->lru_lock);
544 545
		return ret;
	}
546

547 548 549 550 551 552 553
	/**
	 * We can re-check for sync object without taking
	 * the bo::lock since setting the sync object requires
	 * also bo::reserved. A busy object at this point may
	 * be caused by another thread recently starting an accelerated
	 * eviction.
	 */
554

555 556 557
	if (unlikely(bo->sync_obj)) {
		atomic_set(&bo->reserved, 0);
		wake_up_all(&bo->event_queue);
558
		spin_unlock(&glob->lru_lock);
559
		goto retry;
560 561
	}

562 563 564 565 566 567 568 569 570 571 572
	put_count = ttm_bo_del_from_lru(bo);
	list_del_init(&bo->ddestroy);
	++put_count;

	spin_unlock(&glob->lru_lock);
	ttm_bo_cleanup_memtype_use(bo);

	while (put_count--)
		kref_put(&bo->list_kref, ttm_bo_ref_bug);

	return 0;
573 574 575 576 577 578 579 580 581
}

/**
 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
 * encountered buffers.
 */

static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
{
582
	struct ttm_bo_global *glob = bdev->glob;
583 584
	struct ttm_buffer_object *entry = NULL;
	int ret = 0;
585

586
	spin_lock(&glob->lru_lock);
587 588 589 590 591 592 593 594 595 596 597 598 599
	if (list_empty(&bdev->ddestroy))
		goto out_unlock;

	entry = list_first_entry(&bdev->ddestroy,
		struct ttm_buffer_object, ddestroy);
	kref_get(&entry->list_kref);

	for (;;) {
		struct ttm_buffer_object *nentry = NULL;

		if (entry->ddestroy.next != &bdev->ddestroy) {
			nentry = list_first_entry(&entry->ddestroy,
				struct ttm_buffer_object, ddestroy);
600 601 602
			kref_get(&nentry->list_kref);
		}

603
		spin_unlock(&glob->lru_lock);
604 605
		ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
					  !remove_all);
606
		kref_put(&entry->list_kref, ttm_bo_release_list);
607 608 609 610
		entry = nentry;

		if (ret || !entry)
			goto out;
611

612
		spin_lock(&glob->lru_lock);
613
		if (list_empty(&entry->ddestroy))
614 615 616
			break;
	}

617 618 619 620 621
out_unlock:
	spin_unlock(&glob->lru_lock);
out:
	if (entry)
		kref_put(&entry->list_kref, ttm_bo_release_list);
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
	return ret;
}

static void ttm_bo_delayed_workqueue(struct work_struct *work)
{
	struct ttm_bo_device *bdev =
	    container_of(work, struct ttm_bo_device, wq.work);

	if (ttm_bo_delayed_delete(bdev, false)) {
		schedule_delayed_work(&bdev->wq,
				      ((HZ / 100) < 1) ? 1 : HZ / 100);
	}
}

static void ttm_bo_release(struct kref *kref)
{
	struct ttm_buffer_object *bo =
	    container_of(kref, struct ttm_buffer_object, kref);
	struct ttm_bo_device *bdev = bo->bdev;

	if (likely(bo->vm_node != NULL)) {
		rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
		drm_mm_put_block(bo->vm_node);
		bo->vm_node = NULL;
	}
	write_unlock(&bdev->vm_lock);
648
	ttm_bo_cleanup_refs_or_queue(bo);
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
	kref_put(&bo->list_kref, ttm_bo_release_list);
	write_lock(&bdev->vm_lock);
}

void ttm_bo_unref(struct ttm_buffer_object **p_bo)
{
	struct ttm_buffer_object *bo = *p_bo;
	struct ttm_bo_device *bdev = bo->bdev;

	*p_bo = NULL;
	write_lock(&bdev->vm_lock);
	kref_put(&bo->kref, ttm_bo_release);
	write_unlock(&bdev->vm_lock);
}
EXPORT_SYMBOL(ttm_bo_unref);

665 666 667 668 669 670 671 672 673 674 675 676 677 678
int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
{
	return cancel_delayed_work_sync(&bdev->wq);
}
EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);

void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
{
	if (resched)
		schedule_delayed_work(&bdev->wq,
				      ((HZ / 100) < 1) ? 1 : HZ / 100);
}
EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);

679
static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
680
			bool no_wait_reserve, bool no_wait_gpu)
681 682 683
{
	struct ttm_bo_device *bdev = bo->bdev;
	struct ttm_mem_reg evict_mem;
684 685
	struct ttm_placement placement;
	int ret = 0;
686 687

	spin_lock(&bo->lock);
688
	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
689 690
	spin_unlock(&bo->lock);

691
	if (unlikely(ret != 0)) {
692
		if (ret != -ERESTARTSYS) {
693 694 695 696
			printk(KERN_ERR TTM_PFX
			       "Failed to expire sync object before "
			       "buffer eviction.\n");
		}
697 698 699 700 701 702 703
		goto out;
	}

	BUG_ON(!atomic_read(&bo->reserved));

	evict_mem = bo->mem;
	evict_mem.mm_node = NULL;
704
	evict_mem.bus.io_reserved = false;
705

706 707 708 709
	placement.fpfn = 0;
	placement.lpfn = 0;
	placement.num_placement = 0;
	placement.num_busy_placement = 0;
710 711
	bdev->driver->evict_flags(bo, &placement);
	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
712
				no_wait_reserve, no_wait_gpu);
713
	if (ret) {
714
		if (ret != -ERESTARTSYS) {
715 716 717
			printk(KERN_ERR TTM_PFX
			       "Failed to find memory space for "
			       "buffer 0x%p eviction.\n", bo);
718 719
			ttm_bo_mem_space_debug(bo, &placement);
		}
720 721 722 723
		goto out;
	}

	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
724
				     no_wait_reserve, no_wait_gpu);
725
	if (ret) {
726
		if (ret != -ERESTARTSYS)
727
			printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
728
		ttm_bo_mem_put(bo, &evict_mem);
729 730
		goto out;
	}
731 732 733 734 735 736 737
	bo->evicted = true;
out:
	return ret;
}

static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
				uint32_t mem_type,
738 739
				bool interruptible, bool no_wait_reserve,
				bool no_wait_gpu)
740 741 742 743 744
{
	struct ttm_bo_global *glob = bdev->glob;
	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
	struct ttm_buffer_object *bo;
	int ret, put_count = 0;
745

746
retry:
747
	spin_lock(&glob->lru_lock);
748 749 750 751 752
	if (list_empty(&man->lru)) {
		spin_unlock(&glob->lru_lock);
		return -EBUSY;
	}

753 754
	bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
	kref_get(&bo->list_kref);
755

756 757 758 759 760 761 762 763 764 765 766 767
	if (!list_empty(&bo->ddestroy)) {
		spin_unlock(&glob->lru_lock);
		ret = ttm_bo_cleanup_refs(bo, interruptible,
					  no_wait_reserve, no_wait_gpu);
		kref_put(&bo->list_kref, ttm_bo_release_list);

		if (likely(ret == 0 || ret == -ERESTARTSYS))
			return ret;

		goto retry;
	}

768
	ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
769 770 771

	if (unlikely(ret == -EBUSY)) {
		spin_unlock(&glob->lru_lock);
772
		if (likely(!no_wait_gpu))
773 774 775 776 777 778 779 780 781 782 783 784 785 786
			ret = ttm_bo_wait_unreserved(bo, interruptible);

		kref_put(&bo->list_kref, ttm_bo_release_list);

		/**
		 * We *need* to retry after releasing the lru lock.
		 */

		if (unlikely(ret != 0))
			return ret;
		goto retry;
	}

	put_count = ttm_bo_del_from_lru(bo);
787
	spin_unlock(&glob->lru_lock);
788 789 790

	BUG_ON(ret != 0);

791 792
	while (put_count--)
		kref_put(&bo->list_kref, ttm_bo_ref_bug);
793

794
	ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
795
	ttm_bo_unreserve(bo);
796

797
	kref_put(&bo->list_kref, ttm_bo_release_list);
798 799 800
	return ret;
}

801 802
void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
{
803
	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
804

805 806
	if (mem->mm_node)
		(*man->func->put_node)(man, mem);
807 808 809
}
EXPORT_SYMBOL(ttm_bo_mem_put);

810 811 812 813
/**
 * Repeatedly evict memory from the LRU for @mem_type until we create enough
 * space, or we've evicted everything and there isn't enough space.
 */
814 815 816 817
static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
					uint32_t mem_type,
					struct ttm_placement *placement,
					struct ttm_mem_reg *mem,
818 819 820
					bool interruptible,
					bool no_wait_reserve,
					bool no_wait_gpu)
821
{
822
	struct ttm_bo_device *bdev = bo->bdev;
823 824 825 826
	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
	int ret;

	do {
827
		ret = (*man->func->get_node)(man, bo, placement, mem);
828 829
		if (unlikely(ret != 0))
			return ret;
830
		if (mem->mm_node)
831
			break;
832
		ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
833
						no_wait_reserve, no_wait_gpu);
834 835 836
		if (unlikely(ret != 0))
			return ret;
	} while (1);
837
	if (mem->mm_node == NULL)
838 839 840 841 842
		return -ENOMEM;
	mem->mem_type = mem_type;
	return 0;
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
				      uint32_t cur_placement,
				      uint32_t proposed_placement)
{
	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;

	/**
	 * Keep current caching if possible.
	 */

	if ((cur_placement & caching) != 0)
		result |= (cur_placement & caching);
	else if ((man->default_caching & caching) != 0)
		result |= man->default_caching;
	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
		result |= TTM_PL_FLAG_CACHED;
	else if ((TTM_PL_FLAG_WC & caching) != 0)
		result |= TTM_PL_FLAG_WC;
	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
		result |= TTM_PL_FLAG_UNCACHED;

	return result;
}

868 869 870
static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
				 bool disallow_fixed,
				 uint32_t mem_type,
871 872
				 uint32_t proposed_placement,
				 uint32_t *masked_placement)
873 874 875 876 877 878
{
	uint32_t cur_flags = ttm_bo_type_flags(mem_type);

	if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed)
		return false;

879
	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
880 881
		return false;

882
	if ((proposed_placement & man->available_caching) == 0)
883 884
		return false;

885 886 887
	cur_flags |= (proposed_placement & man->available_caching);

	*masked_placement = cur_flags;
888 889 890 891 892 893 894 895 896 897 898 899
	return true;
}

/**
 * Creates space for memory region @mem according to its type.
 *
 * This function first searches for free space in compatible memory types in
 * the priority order defined by the driver.  If free space isn't found, then
 * ttm_bo_mem_force_space is attempted in priority order to evict and find
 * space.
 */
int ttm_bo_mem_space(struct ttm_buffer_object *bo,
900 901
			struct ttm_placement *placement,
			struct ttm_mem_reg *mem,
902 903
			bool interruptible, bool no_wait_reserve,
			bool no_wait_gpu)
904 905 906 907 908 909 910
{
	struct ttm_bo_device *bdev = bo->bdev;
	struct ttm_mem_type_manager *man;
	uint32_t mem_type = TTM_PL_SYSTEM;
	uint32_t cur_flags = 0;
	bool type_found = false;
	bool type_ok = false;
911
	bool has_erestartsys = false;
912
	int i, ret;
913 914

	mem->mm_node = NULL;
915
	for (i = 0; i < placement->num_placement; ++i) {
916 917 918 919
		ret = ttm_mem_type_from_flags(placement->placement[i],
						&mem_type);
		if (ret)
			return ret;
920 921 922
		man = &bdev->man[mem_type];

		type_ok = ttm_bo_mt_compatible(man,
923 924 925 926
						bo->type == ttm_bo_type_user,
						mem_type,
						placement->placement[i],
						&cur_flags);
927 928 929 930

		if (!type_ok)
			continue;

931 932
		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
						  cur_flags);
933 934 935 936 937 938
		/*
		 * Use the access and other non-mapping-related flag bits from
		 * the memory placement flags to the current flags
		 */
		ttm_flag_masked(&cur_flags, placement->placement[i],
				~TTM_PL_MASK_MEMTYPE);
939

940 941 942 943 944
		if (mem_type == TTM_PL_SYSTEM)
			break;

		if (man->has_type && man->use_type) {
			type_found = true;
945
			ret = (*man->func->get_node)(man, bo, placement, mem);
946 947
			if (unlikely(ret))
				return ret;
948
		}
949
		if (mem->mm_node)
950 951 952
			break;
	}

953
	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
954 955 956 957 958 959 960 961
		mem->mem_type = mem_type;
		mem->placement = cur_flags;
		return 0;
	}

	if (!type_found)
		return -EINVAL;

962 963
	for (i = 0; i < placement->num_busy_placement; ++i) {
		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
964 965 966
						&mem_type);
		if (ret)
			return ret;
967 968 969 970
		man = &bdev->man[mem_type];
		if (!man->has_type)
			continue;
		if (!ttm_bo_mt_compatible(man,
971 972
						bo->type == ttm_bo_type_user,
						mem_type,
973
						placement->busy_placement[i],
974
						&cur_flags))
975 976
			continue;

977 978
		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
						  cur_flags);
979 980 981 982
		/*
		 * Use the access and other non-mapping-related flag bits from
		 * the memory placement flags to the current flags
		 */
983
		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
984
				~TTM_PL_MASK_MEMTYPE);
985

986 987 988 989 990 991 992 993

		if (mem_type == TTM_PL_SYSTEM) {
			mem->mem_type = mem_type;
			mem->placement = cur_flags;
			mem->mm_node = NULL;
			return 0;
		}

994
		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
995
						interruptible, no_wait_reserve, no_wait_gpu);
996 997 998 999
		if (ret == 0 && mem->mm_node) {
			mem->placement = cur_flags;
			return 0;
		}
1000 1001
		if (ret == -ERESTARTSYS)
			has_erestartsys = true;
1002
	}
1003
	ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1004 1005 1006 1007 1008 1009 1010 1011 1012
	return ret;
}
EXPORT_SYMBOL(ttm_bo_mem_space);

int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
{
	if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
		return -EBUSY;

1013 1014
	return wait_event_interruptible(bo->event_queue,
					atomic_read(&bo->cpu_writers) == 0);
1015
}
1016
EXPORT_SYMBOL(ttm_bo_wait_cpu);
1017 1018

int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1019
			struct ttm_placement *placement,
1020 1021
			bool interruptible, bool no_wait_reserve,
			bool no_wait_gpu)
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
{
	int ret = 0;
	struct ttm_mem_reg mem;

	BUG_ON(!atomic_read(&bo->reserved));

	/*
	 * FIXME: It's possible to pipeline buffer moves.
	 * Have the driver move function wait for idle when necessary,
	 * instead of doing it here.
	 */
	spin_lock(&bo->lock);
1034
	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1035 1036 1037 1038 1039 1040
	spin_unlock(&bo->lock);
	if (ret)
		return ret;
	mem.num_pages = bo->num_pages;
	mem.size = mem.num_pages << PAGE_SHIFT;
	mem.page_alignment = bo->mem.page_alignment;
1041
	mem.bus.io_reserved = false;
1042 1043 1044
	/*
	 * Determine where to move the buffer.
	 */
1045
	ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1046 1047
	if (ret)
		goto out_unlock;
1048
	ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1049
out_unlock:
1050 1051
	if (ret && mem.mm_node)
		ttm_bo_mem_put(bo, &mem);
1052 1053 1054
	return ret;
}

1055
static int ttm_bo_mem_compat(struct ttm_placement *placement,
1056 1057
			     struct ttm_mem_reg *mem)
{
1058
	int i;
1059

1060 1061 1062
	if (mem->mm_node && placement->lpfn != 0 &&
	    (mem->start < placement->fpfn ||
	     mem->start + mem->num_pages > placement->lpfn))
1063
		return -1;
1064 1065 1066 1067 1068 1069 1070 1071 1072

	for (i = 0; i < placement->num_placement; i++) {
		if ((placement->placement[i] & mem->placement &
			TTM_PL_MASK_CACHING) &&
			(placement->placement[i] & mem->placement &
			TTM_PL_MASK_MEM))
			return i;
	}
	return -1;
1073 1074
}

1075 1076
int ttm_bo_validate(struct ttm_buffer_object *bo,
			struct ttm_placement *placement,
1077 1078
			bool interruptible, bool no_wait_reserve,
			bool no_wait_gpu)
1079 1080 1081 1082
{
	int ret;

	BUG_ON(!atomic_read(&bo->reserved));
1083 1084 1085 1086 1087
	/* Check that range is valid */
	if (placement->lpfn || placement->fpfn)
		if (placement->fpfn > placement->lpfn ||
			(placement->lpfn - placement->fpfn) < bo->num_pages)
			return -EINVAL;
1088 1089 1090
	/*
	 * Check whether we need to move buffer.
	 */
1091 1092
	ret = ttm_bo_mem_compat(placement, &bo->mem);
	if (ret < 0) {
1093
		ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1094
		if (ret)
1095
			return ret;
1096 1097 1098 1099 1100 1101 1102
	} else {
		/*
		 * Use the access and other non-mapping-related flag bits from
		 * the compatible memory placement flags to the active flags
		 */
		ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
				~TTM_PL_MASK_MEMTYPE);
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	}
	/*
	 * We might need to add a TTM.
	 */
	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
		ret = ttm_bo_add_ttm(bo, true);
		if (ret)
			return ret;
	}
	return 0;
}
1114
EXPORT_SYMBOL(ttm_bo_validate);
1115

1116 1117
int ttm_bo_check_placement(struct ttm_buffer_object *bo,
				struct ttm_placement *placement)
1118
{
1119
	int i;
1120

1121 1122 1123 1124 1125 1126
	if (placement->fpfn || placement->lpfn) {
		if (bo->mem.num_pages > (placement->lpfn - placement->fpfn)) {
			printk(KERN_ERR TTM_PFX "Page number range to small "
				"Need %lu pages, range is [%u, %u]\n",
				bo->mem.num_pages, placement->fpfn,
				placement->lpfn);
1127 1128
			return -EINVAL;
		}
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	}
	for (i = 0; i < placement->num_placement; i++) {
		if (!capable(CAP_SYS_ADMIN)) {
			if (placement->placement[i] & TTM_PL_FLAG_NO_EVICT) {
				printk(KERN_ERR TTM_PFX "Need to be root to "
					"modify NO_EVICT status.\n");
				return -EINVAL;
			}
		}
	}
	for (i = 0; i < placement->num_busy_placement; i++) {
		if (!capable(CAP_SYS_ADMIN)) {
			if (placement->busy_placement[i] & TTM_PL_FLAG_NO_EVICT) {
				printk(KERN_ERR TTM_PFX "Need to be root to "
					"modify NO_EVICT status.\n");
				return -EINVAL;
			}
1146 1147 1148 1149 1150
		}
	}
	return 0;
}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
int ttm_bo_init(struct ttm_bo_device *bdev,
		struct ttm_buffer_object *bo,
		unsigned long size,
		enum ttm_bo_type type,
		struct ttm_placement *placement,
		uint32_t page_alignment,
		unsigned long buffer_start,
		bool interruptible,
		struct file *persistant_swap_storage,
		size_t acc_size,
		void (*destroy) (struct ttm_buffer_object *))
1162
{
1163
	int ret = 0;
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	unsigned long num_pages;

	size += buffer_start & ~PAGE_MASK;
	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (num_pages == 0) {
		printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
		return -EINVAL;
	}
	bo->destroy = destroy;

	spin_lock_init(&bo->lock);
	kref_init(&bo->kref);
	kref_init(&bo->list_kref);
	atomic_set(&bo->cpu_writers, 0);
	atomic_set(&bo->reserved, 1);
	init_waitqueue_head(&bo->event_queue);
	INIT_LIST_HEAD(&bo->lru);
	INIT_LIST_HEAD(&bo->ddestroy);
	INIT_LIST_HEAD(&bo->swap);
	bo->bdev = bdev;
1184
	bo->glob = bdev->glob;
1185 1186
	bo->type = type;
	bo->num_pages = num_pages;
1187
	bo->mem.size = num_pages << PAGE_SHIFT;
1188 1189 1190 1191
	bo->mem.mem_type = TTM_PL_SYSTEM;
	bo->mem.num_pages = bo->num_pages;
	bo->mem.mm_node = NULL;
	bo->mem.page_alignment = page_alignment;
1192
	bo->mem.bus.io_reserved = false;
1193 1194 1195 1196 1197 1198
	bo->buffer_start = buffer_start & PAGE_MASK;
	bo->priv_flags = 0;
	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
	bo->seq_valid = false;
	bo->persistant_swap_storage = persistant_swap_storage;
	bo->acc_size = acc_size;
1199
	atomic_inc(&bo->glob->bo_count);
1200

1201
	ret = ttm_bo_check_placement(bo, placement);
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	if (unlikely(ret != 0))
		goto out_err;

	/*
	 * For ttm_bo_type_device buffers, allocate
	 * address space from the device.
	 */
	if (bo->type == ttm_bo_type_device) {
		ret = ttm_bo_setup_vm(bo);
		if (ret)
			goto out_err;
	}

1215
	ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	if (ret)
		goto out_err;

	ttm_bo_unreserve(bo);
	return 0;

out_err:
	ttm_bo_unreserve(bo);
	ttm_bo_unref(&bo);

	return ret;
}
1228
EXPORT_SYMBOL(ttm_bo_init);
1229

1230
static inline size_t ttm_bo_size(struct ttm_bo_global *glob,
1231 1232 1233 1234 1235
				 unsigned long num_pages)
{
	size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) &
	    PAGE_MASK;

1236
	return glob->ttm_bo_size + 2 * page_array_size;
1237 1238
}

1239 1240 1241 1242 1243 1244 1245 1246 1247
int ttm_bo_create(struct ttm_bo_device *bdev,
			unsigned long size,
			enum ttm_bo_type type,
			struct ttm_placement *placement,
			uint32_t page_alignment,
			unsigned long buffer_start,
			bool interruptible,
			struct file *persistant_swap_storage,
			struct ttm_buffer_object **p_bo)
1248 1249
{
	struct ttm_buffer_object *bo;
1250
	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1251
	int ret;
1252 1253

	size_t acc_size =
1254
	    ttm_bo_size(bdev->glob, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1255
	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1256 1257 1258 1259 1260 1261
	if (unlikely(ret != 0))
		return ret;

	bo = kzalloc(sizeof(*bo), GFP_KERNEL);

	if (unlikely(bo == NULL)) {
1262
		ttm_mem_global_free(mem_glob, acc_size);
1263 1264 1265
		return -ENOMEM;
	}

1266 1267 1268
	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
				buffer_start, interruptible,
				persistant_swap_storage, acc_size, NULL);
1269 1270 1271 1272 1273 1274 1275
	if (likely(ret == 0))
		*p_bo = bo;

	return ret;
}

static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1276
					unsigned mem_type, bool allow_errors)
1277
{
1278
	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1279
	struct ttm_bo_global *glob = bdev->glob;
1280 1281 1282 1283 1284 1285
	int ret;

	/*
	 * Can't use standard list traversal since we're unlocking.
	 */

1286
	spin_lock(&glob->lru_lock);
1287
	while (!list_empty(&man->lru)) {
1288
		spin_unlock(&glob->lru_lock);
1289
		ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1290 1291 1292 1293 1294 1295 1296 1297
		if (ret) {
			if (allow_errors) {
				return ret;
			} else {
				printk(KERN_ERR TTM_PFX
					"Cleanup eviction failed\n");
			}
		}
1298
		spin_lock(&glob->lru_lock);
1299
	}
1300
	spin_unlock(&glob->lru_lock);
1301 1302 1303 1304 1305
	return 0;
}

int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
{
R
Roel Kluin 已提交
1306
	struct ttm_mem_type_manager *man;
1307 1308 1309 1310 1311 1312
	int ret = -EINVAL;

	if (mem_type >= TTM_NUM_MEM_TYPES) {
		printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
		return ret;
	}
R
Roel Kluin 已提交
1313
	man = &bdev->man[mem_type];
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

	if (!man->has_type) {
		printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
		       "memory manager type %u\n", mem_type);
		return ret;
	}

	man->use_type = false;
	man->has_type = false;

	ret = 0;
	if (mem_type > 0) {
1326
		ttm_bo_force_list_clean(bdev, mem_type, false);
1327

1328
		ret = (*man->func->takedown)(man);
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	}

	return ret;
}
EXPORT_SYMBOL(ttm_bo_clean_mm);

int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
{
	struct ttm_mem_type_manager *man = &bdev->man[mem_type];

	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
		printk(KERN_ERR TTM_PFX
		       "Illegal memory manager memory type %u.\n",
		       mem_type);
		return -EINVAL;
	}

	if (!man->has_type) {
		printk(KERN_ERR TTM_PFX
		       "Memory type %u has not been initialized.\n",
		       mem_type);
		return 0;
	}

1353
	return ttm_bo_force_list_clean(bdev, mem_type, true);
1354 1355 1356 1357
}
EXPORT_SYMBOL(ttm_bo_evict_mm);

int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1358
			unsigned long p_size)
1359 1360 1361 1362
{
	int ret = -EINVAL;
	struct ttm_mem_type_manager *man;

1363
	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1364
	man = &bdev->man[type];
1365
	BUG_ON(man->has_type);
1366 1367 1368 1369

	ret = bdev->driver->init_mem_type(bdev, type, man);
	if (ret)
		return ret;
1370
	man->bdev = bdev;
1371 1372 1373

	ret = 0;
	if (type != TTM_PL_SYSTEM) {
1374
		ret = (*man->func->init)(man, p_size);
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
		if (ret)
			return ret;
	}
	man->has_type = true;
	man->use_type = true;
	man->size = p_size;

	INIT_LIST_HEAD(&man->lru);

	return 0;
}
EXPORT_SYMBOL(ttm_bo_init_mm);

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
static void ttm_bo_global_kobj_release(struct kobject *kobj)
{
	struct ttm_bo_global *glob =
		container_of(kobj, struct ttm_bo_global, kobj);

	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
	__free_page(glob->dummy_read_page);
	kfree(glob);
}

1398
void ttm_bo_global_release(struct drm_global_reference *ref)
1399 1400 1401 1402 1403 1404 1405 1406
{
	struct ttm_bo_global *glob = ref->object;

	kobject_del(&glob->kobj);
	kobject_put(&glob->kobj);
}
EXPORT_SYMBOL(ttm_bo_global_release);

1407
int ttm_bo_global_init(struct drm_global_reference *ref)
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
{
	struct ttm_bo_global_ref *bo_ref =
		container_of(ref, struct ttm_bo_global_ref, ref);
	struct ttm_bo_global *glob = ref->object;
	int ret;

	mutex_init(&glob->device_list_mutex);
	spin_lock_init(&glob->lru_lock);
	glob->mem_glob = bo_ref->mem_glob;
	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);

	if (unlikely(glob->dummy_read_page == NULL)) {
		ret = -ENOMEM;
		goto out_no_drp;
	}

	INIT_LIST_HEAD(&glob->swap_lru);
	INIT_LIST_HEAD(&glob->device_list);

	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
	if (unlikely(ret != 0)) {
		printk(KERN_ERR TTM_PFX
		       "Could not register buffer object swapout.\n");
		goto out_no_shrink;
	}

	glob->ttm_bo_extra_size =
		ttm_round_pot(sizeof(struct ttm_tt)) +
		ttm_round_pot(sizeof(struct ttm_backend));

	glob->ttm_bo_size = glob->ttm_bo_extra_size +
		ttm_round_pot(sizeof(struct ttm_buffer_object));

	atomic_set(&glob->bo_count, 0);

1444 1445
	ret = kobject_init_and_add(
		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
	if (unlikely(ret != 0))
		kobject_put(&glob->kobj);
	return ret;
out_no_shrink:
	__free_page(glob->dummy_read_page);
out_no_drp:
	kfree(glob);
	return ret;
}
EXPORT_SYMBOL(ttm_bo_global_init);


1458 1459 1460 1461 1462
int ttm_bo_device_release(struct ttm_bo_device *bdev)
{
	int ret = 0;
	unsigned i = TTM_NUM_MEM_TYPES;
	struct ttm_mem_type_manager *man;
1463
	struct ttm_bo_global *glob = bdev->glob;
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478

	while (i--) {
		man = &bdev->man[i];
		if (man->has_type) {
			man->use_type = false;
			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
				ret = -EBUSY;
				printk(KERN_ERR TTM_PFX
				       "DRM memory manager type %d "
				       "is not clean.\n", i);
			}
			man->has_type = false;
		}
	}

1479 1480 1481 1482
	mutex_lock(&glob->device_list_mutex);
	list_del(&bdev->device_list);
	mutex_unlock(&glob->device_list_mutex);

1483 1484 1485 1486 1487 1488
	if (!cancel_delayed_work(&bdev->wq))
		flush_scheduled_work();

	while (ttm_bo_delayed_delete(bdev, true))
		;

1489
	spin_lock(&glob->lru_lock);
1490 1491 1492 1493 1494
	if (list_empty(&bdev->ddestroy))
		TTM_DEBUG("Delayed destroy list was clean\n");

	if (list_empty(&bdev->man[0].lru))
		TTM_DEBUG("Swap list was clean\n");
1495
	spin_unlock(&glob->lru_lock);
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

	BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
	write_lock(&bdev->vm_lock);
	drm_mm_takedown(&bdev->addr_space_mm);
	write_unlock(&bdev->vm_lock);

	return ret;
}
EXPORT_SYMBOL(ttm_bo_device_release);

int ttm_bo_device_init(struct ttm_bo_device *bdev,
1507 1508
		       struct ttm_bo_global *glob,
		       struct ttm_bo_driver *driver,
D
Dave Airlie 已提交
1509
		       uint64_t file_page_offset,
D
Dave Airlie 已提交
1510
		       bool need_dma32)
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
{
	int ret = -EINVAL;

	rwlock_init(&bdev->vm_lock);
	bdev->driver = driver;

	memset(bdev->man, 0, sizeof(bdev->man));

	/*
	 * Initialize the system memory buffer type.
	 * Other types need to be driver / IOCTL initialized.
	 */
1523
	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1524
	if (unlikely(ret != 0))
1525
		goto out_no_sys;
1526 1527 1528 1529

	bdev->addr_space_rb = RB_ROOT;
	ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
	if (unlikely(ret != 0))
1530
		goto out_no_addr_mm;
1531 1532 1533 1534 1535

	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
	bdev->nice_mode = true;
	INIT_LIST_HEAD(&bdev->ddestroy);
	bdev->dev_mapping = NULL;
1536
	bdev->glob = glob;
D
Dave Airlie 已提交
1537
	bdev->need_dma32 = need_dma32;
1538

1539 1540 1541
	mutex_lock(&glob->device_list_mutex);
	list_add_tail(&bdev->device_list, &glob->device_list);
	mutex_unlock(&glob->device_list_mutex);
1542 1543

	return 0;
1544
out_no_addr_mm:
1545
	ttm_bo_clean_mm(bdev, 0);
1546
out_no_sys:
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
	return ret;
}
EXPORT_SYMBOL(ttm_bo_device_init);

/*
 * buffer object vm functions.
 */

bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
{
	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];

	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
		if (mem->mem_type == TTM_PL_SYSTEM)
			return false;

		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
			return false;

		if (mem->placement & TTM_PL_FLAG_CACHED)
			return false;
	}
	return true;
}

void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
{
	struct ttm_bo_device *bdev = bo->bdev;
	loff_t offset = (loff_t) bo->addr_space_offset;
	loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;

	if (!bdev->dev_mapping)
		return;
	unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1581
	ttm_mem_io_free(bdev, &bo->mem);
1582
}
1583
EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
{
	struct ttm_bo_device *bdev = bo->bdev;
	struct rb_node **cur = &bdev->addr_space_rb.rb_node;
	struct rb_node *parent = NULL;
	struct ttm_buffer_object *cur_bo;
	unsigned long offset = bo->vm_node->start;
	unsigned long cur_offset;

	while (*cur) {
		parent = *cur;
		cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
		cur_offset = cur_bo->vm_node->start;
		if (offset < cur_offset)
			cur = &parent->rb_left;
		else if (offset > cur_offset)
			cur = &parent->rb_right;
		else
			BUG();
	}

	rb_link_node(&bo->vm_rb, parent, cur);
	rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
}

/**
 * ttm_bo_setup_vm:
 *
 * @bo: the buffer to allocate address space for
 *
 * Allocate address space in the drm device so that applications
 * can mmap the buffer and access the contents. This only
 * applies to ttm_bo_type_device objects as others are not
 * placed in the drm device address space.
 */

static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
{
	struct ttm_bo_device *bdev = bo->bdev;
	int ret;

retry_pre_get:
	ret = drm_mm_pre_get(&bdev->addr_space_mm);
	if (unlikely(ret != 0))
		return ret;

	write_lock(&bdev->vm_lock);
	bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
					 bo->mem.num_pages, 0, 0);

	if (unlikely(bo->vm_node == NULL)) {
		ret = -ENOMEM;
		goto out_unlock;
	}

	bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
					      bo->mem.num_pages, 0);

	if (unlikely(bo->vm_node == NULL)) {
		write_unlock(&bdev->vm_lock);
		goto retry_pre_get;
	}

	ttm_bo_vm_insert_rb(bo);
	write_unlock(&bdev->vm_lock);
	bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;

	return 0;
out_unlock:
	write_unlock(&bdev->vm_lock);
	return ret;
}

int ttm_bo_wait(struct ttm_buffer_object *bo,
		bool lazy, bool interruptible, bool no_wait)
{
	struct ttm_bo_driver *driver = bo->bdev->driver;
	void *sync_obj;
	void *sync_obj_arg;
	int ret = 0;

	if (likely(bo->sync_obj == NULL))
		return 0;

	while (bo->sync_obj) {

		if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
			void *tmp_obj = bo->sync_obj;
			bo->sync_obj = NULL;
			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
			spin_unlock(&bo->lock);
			driver->sync_obj_unref(&tmp_obj);
			spin_lock(&bo->lock);
			continue;
		}

		if (no_wait)
			return -EBUSY;

		sync_obj = driver->sync_obj_ref(bo->sync_obj);
		sync_obj_arg = bo->sync_obj_arg;
		spin_unlock(&bo->lock);
		ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
					    lazy, interruptible);
		if (unlikely(ret != 0)) {
			driver->sync_obj_unref(&sync_obj);
			spin_lock(&bo->lock);
			return ret;
		}
		spin_lock(&bo->lock);
		if (likely(bo->sync_obj == sync_obj &&
			   bo->sync_obj_arg == sync_obj_arg)) {
			void *tmp_obj = bo->sync_obj;
			bo->sync_obj = NULL;
			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
				  &bo->priv_flags);
			spin_unlock(&bo->lock);
			driver->sync_obj_unref(&sync_obj);
			driver->sync_obj_unref(&tmp_obj);
			spin_lock(&bo->lock);
1705 1706 1707 1708
		} else {
			spin_unlock(&bo->lock);
			driver->sync_obj_unref(&sync_obj);
			spin_lock(&bo->lock);
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
		}
	}
	return 0;
}
EXPORT_SYMBOL(ttm_bo_wait);

int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
{
	int ret = 0;

	/*
1720
	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	 */

	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
	if (unlikely(ret != 0))
		return ret;
	spin_lock(&bo->lock);
	ret = ttm_bo_wait(bo, false, true, no_wait);
	spin_unlock(&bo->lock);
	if (likely(ret == 0))
		atomic_inc(&bo->cpu_writers);
	ttm_bo_unreserve(bo);
	return ret;
}
1734
EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1735 1736 1737 1738 1739 1740

void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
{
	if (atomic_dec_and_test(&bo->cpu_writers))
		wake_up_all(&bo->event_queue);
}
1741
EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1742 1743 1744 1745 1746 1747 1748 1749

/**
 * A buffer object shrink method that tries to swap out the first
 * buffer object on the bo_global::swap_lru list.
 */

static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
{
1750 1751
	struct ttm_bo_global *glob =
	    container_of(shrink, struct ttm_bo_global, shrink);
1752 1753 1754 1755 1756
	struct ttm_buffer_object *bo;
	int ret = -EBUSY;
	int put_count;
	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);

1757
	spin_lock(&glob->lru_lock);
1758
	while (ret == -EBUSY) {
1759 1760
		if (unlikely(list_empty(&glob->swap_lru))) {
			spin_unlock(&glob->lru_lock);
1761 1762 1763
			return -EBUSY;
		}

1764
		bo = list_first_entry(&glob->swap_lru,
1765 1766 1767
				      struct ttm_buffer_object, swap);
		kref_get(&bo->list_kref);

1768 1769 1770 1771 1772 1773 1774
		if (!list_empty(&bo->ddestroy)) {
			spin_unlock(&glob->lru_lock);
			(void) ttm_bo_cleanup_refs(bo, false, false, false);
			kref_put(&bo->list_kref, ttm_bo_release_list);
			continue;
		}

1775 1776 1777 1778 1779 1780 1781 1782
		/**
		 * Reserve buffer. Since we unlock while sleeping, we need
		 * to re-check that nobody removed us from the swap-list while
		 * we slept.
		 */

		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
		if (unlikely(ret == -EBUSY)) {
1783
			spin_unlock(&glob->lru_lock);
1784 1785
			ttm_bo_wait_unreserved(bo, false);
			kref_put(&bo->list_kref, ttm_bo_release_list);
1786
			spin_lock(&glob->lru_lock);
1787 1788 1789 1790 1791
		}
	}

	BUG_ON(ret != 0);
	put_count = ttm_bo_del_from_lru(bo);
1792
	spin_unlock(&glob->lru_lock);
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816

	while (put_count--)
		kref_put(&bo->list_kref, ttm_bo_ref_bug);

	/**
	 * Wait for GPU, then move to system cached.
	 */

	spin_lock(&bo->lock);
	ret = ttm_bo_wait(bo, false, false, false);
	spin_unlock(&bo->lock);

	if (unlikely(ret != 0))
		goto out;

	if ((bo->mem.placement & swap_placement) != swap_placement) {
		struct ttm_mem_reg evict_mem;

		evict_mem = bo->mem;
		evict_mem.mm_node = NULL;
		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
		evict_mem.mem_type = TTM_PL_SYSTEM;

		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1817
					     false, false, false);
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
		if (unlikely(ret != 0))
			goto out;
	}

	ttm_bo_unmap_virtual(bo);

	/**
	 * Swap out. Buffer will be swapped in again as soon as
	 * anyone tries to access a ttm page.
	 */

1829 1830 1831
	if (bo->bdev->driver->swap_notify)
		bo->bdev->driver->swap_notify(bo);

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	ret = ttm_tt_swapout(bo->ttm, bo->persistant_swap_storage);
out:

	/**
	 *
	 * Unreserve without putting on LRU to avoid swapping out an
	 * already swapped buffer.
	 */

	atomic_set(&bo->reserved, 0);
	wake_up_all(&bo->event_queue);
	kref_put(&bo->list_kref, ttm_bo_release_list);
	return ret;
}

void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
{
1849
	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1850 1851
		;
}
1852
EXPORT_SYMBOL(ttm_bo_swapout_all);