deadline.c 59.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Deadline Scheduling Class (SCHED_DEADLINE)
 *
 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
 *
 * Tasks that periodically executes their instances for less than their
 * runtime won't miss any of their deadlines.
 * Tasks that are not periodic or sporadic or that tries to execute more
 * than their reserved bandwidth will be slowed down (and may potentially
 * miss some of their deadlines), and won't affect any other task.
 *
 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13
 *                    Juri Lelli <juri.lelli@gmail.com>,
14 15 16 17 18
 *                    Michael Trimarchi <michael@amarulasolutions.com>,
 *                    Fabio Checconi <fchecconi@gmail.com>
 */
#include "sched.h"

19 20
#include <linux/slab.h>

21 22
struct dl_bandwidth def_dl_bandwidth;

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
{
	return container_of(dl_se, struct task_struct, dl);
}

static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
{
	return container_of(dl_rq, struct rq, dl);
}

static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
{
	struct task_struct *p = dl_task_of(dl_se);
	struct rq *rq = task_rq(p);

	return &rq->dl;
}

static inline int on_dl_rq(struct sched_dl_entity *dl_se)
{
	return !RB_EMPTY_NODE(&dl_se->rb_node);
}

46 47 48 49 50 51 52 53
static inline
void add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
{
	u64 old = dl_rq->running_bw;

	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
	dl_rq->running_bw += dl_bw;
	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
54
	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
55 56 57 58 59 60 61 62 63 64 65 66 67 68
}

static inline
void sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
{
	u64 old = dl_rq->running_bw;

	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
	dl_rq->running_bw -= dl_bw;
	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
	if (dl_rq->running_bw > old)
		dl_rq->running_bw = 0;
}

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
static inline
void add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
{
	u64 old = dl_rq->this_bw;

	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
	dl_rq->this_bw += dl_bw;
	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
}

static inline
void sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
{
	u64 old = dl_rq->this_bw;

	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
	dl_rq->this_bw -= dl_bw;
	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
	if (dl_rq->this_bw > old)
		dl_rq->this_bw = 0;
	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
}

92 93
void dl_change_utilization(struct task_struct *p, u64 new_bw)
{
94
	struct rq *rq;
95

96
	if (task_on_rq_queued(p))
97 98
		return;

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	rq = task_rq(p);
	if (p->dl.dl_non_contending) {
		sub_running_bw(p->dl.dl_bw, &rq->dl);
		p->dl.dl_non_contending = 0;
		/*
		 * If the timer handler is currently running and the
		 * timer cannot be cancelled, inactive_task_timer()
		 * will see that dl_not_contending is not set, and
		 * will not touch the rq's active utilization,
		 * so we are still safe.
		 */
		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
			put_task_struct(p);
	}
	sub_rq_bw(p->dl.dl_bw, &rq->dl);
	add_rq_bw(new_bw, &rq->dl);
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
}

/*
 * The utilization of a task cannot be immediately removed from
 * the rq active utilization (running_bw) when the task blocks.
 * Instead, we have to wait for the so called "0-lag time".
 *
 * If a task blocks before the "0-lag time", a timer (the inactive
 * timer) is armed, and running_bw is decreased when the timer
 * fires.
 *
 * If the task wakes up again before the inactive timer fires,
 * the timer is cancelled, whereas if the task wakes up after the
 * inactive timer fired (and running_bw has been decreased) the
 * task's utilization has to be added to running_bw again.
 * A flag in the deadline scheduling entity (dl_non_contending)
 * is used to avoid race conditions between the inactive timer handler
 * and task wakeups.
 *
 * The following diagram shows how running_bw is updated. A task is
 * "ACTIVE" when its utilization contributes to running_bw; an
 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
 * time already passed, which does not contribute to running_bw anymore.
 *                              +------------------+
 *             wakeup           |    ACTIVE        |
 *          +------------------>+   contending     |
 *          | add_running_bw    |                  |
 *          |                   +----+------+------+
 *          |                        |      ^
 *          |                dequeue |      |
 * +--------+-------+                |      |
 * |                |   t >= 0-lag   |      | wakeup
 * |    INACTIVE    |<---------------+      |
 * |                | sub_running_bw |      |
 * +--------+-------+                |      |
 *          ^                        |      |
 *          |              t < 0-lag |      |
 *          |                        |      |
 *          |                        V      |
 *          |                   +----+------+------+
 *          | sub_running_bw    |    ACTIVE        |
 *          +-------------------+                  |
 *            inactive timer    |  non contending  |
 *            fired             +------------------+
 *
 * The task_non_contending() function is invoked when a task
 * blocks, and checks if the 0-lag time already passed or
 * not (in the first case, it directly updates running_bw;
 * in the second case, it arms the inactive timer).
 *
 * The task_contending() function is invoked when a task wakes
 * up, and checks if the task is still in the "ACTIVE non contending"
 * state or not (in the second case, it updates running_bw).
 */
static void task_non_contending(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;
	struct hrtimer *timer = &dl_se->inactive_timer;
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
	struct rq *rq = rq_of_dl_rq(dl_rq);
	s64 zerolag_time;

	/*
	 * If this is a non-deadline task that has been boosted,
	 * do nothing
	 */
	if (dl_se->dl_runtime == 0)
		return;

	WARN_ON(hrtimer_active(&dl_se->inactive_timer));
	WARN_ON(dl_se->dl_non_contending);

	zerolag_time = dl_se->deadline -
		 div64_long((dl_se->runtime * dl_se->dl_period),
			dl_se->dl_runtime);

	/*
	 * Using relative times instead of the absolute "0-lag time"
	 * allows to simplify the code
	 */
	zerolag_time -= rq_clock(rq);

	/*
	 * If the "0-lag time" already passed, decrease the active
	 * utilization now, instead of starting a timer
	 */
	if (zerolag_time < 0) {
		if (dl_task(p))
			sub_running_bw(dl_se->dl_bw, dl_rq);
206 207 208
		if (!dl_task(p) || p->state == TASK_DEAD) {
			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));

209 210
			if (p->state == TASK_DEAD)
				sub_rq_bw(p->dl.dl_bw, &rq->dl);
211 212
			raw_spin_lock(&dl_b->lock);
			__dl_clear(dl_b, p->dl.dl_bw);
213
			__dl_clear_params(p);
214 215
			raw_spin_unlock(&dl_b->lock);
		}
216 217 218 219 220 221 222 223 224

		return;
	}

	dl_se->dl_non_contending = 1;
	get_task_struct(p);
	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
}

225
static void task_contending(struct sched_dl_entity *dl_se, int flags)
226 227 228 229 230 231 232 233 234 235
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);

	/*
	 * If this is a non-deadline task that has been boosted,
	 * do nothing
	 */
	if (dl_se->dl_runtime == 0)
		return;

236 237 238
	if (flags & ENQUEUE_MIGRATED)
		add_rq_bw(dl_se->dl_bw, dl_rq);

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
	if (dl_se->dl_non_contending) {
		dl_se->dl_non_contending = 0;
		/*
		 * If the timer handler is currently running and the
		 * timer cannot be cancelled, inactive_task_timer()
		 * will see that dl_not_contending is not set, and
		 * will not touch the rq's active utilization,
		 * so we are still safe.
		 */
		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
			put_task_struct(dl_task_of(dl_se));
	} else {
		/*
		 * Since "dl_non_contending" is not set, the
		 * task's utilization has already been removed from
		 * active utilization (either when the task blocked,
		 * when the "inactive timer" fired).
		 * So, add it back.
		 */
		add_running_bw(dl_se->dl_bw, dl_rq);
	}
}

262 263 264 265 266 267 268
static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
{
	struct sched_dl_entity *dl_se = &p->dl;

	return dl_rq->rb_leftmost == &dl_se->rb_node;
}

269 270 271 272 273 274 275 276 277 278 279
void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
{
	raw_spin_lock_init(&dl_b->dl_runtime_lock);
	dl_b->dl_period = period;
	dl_b->dl_runtime = runtime;
}

void init_dl_bw(struct dl_bw *dl_b)
{
	raw_spin_lock_init(&dl_b->lock);
	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
280
	if (global_rt_runtime() == RUNTIME_INF)
281 282
		dl_b->bw = -1;
	else
283
		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
284 285 286 287
	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
	dl_b->total_bw = 0;
}

288
void init_dl_rq(struct dl_rq *dl_rq)
289 290
{
	dl_rq->rb_root = RB_ROOT;
291 292 293 294 295 296 297 298

#ifdef CONFIG_SMP
	/* zero means no -deadline tasks */
	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;

	dl_rq->dl_nr_migratory = 0;
	dl_rq->overloaded = 0;
	dl_rq->pushable_dl_tasks_root = RB_ROOT;
299 300
#else
	init_dl_bw(&dl_rq->dl_bw);
301
#endif
302 303

	dl_rq->running_bw = 0;
304
	dl_rq->this_bw = 0;
305
	init_dl_rq_bw_ratio(dl_rq);
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
}

#ifdef CONFIG_SMP

static inline int dl_overloaded(struct rq *rq)
{
	return atomic_read(&rq->rd->dlo_count);
}

static inline void dl_set_overload(struct rq *rq)
{
	if (!rq->online)
		return;

	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
	/*
	 * Must be visible before the overload count is
	 * set (as in sched_rt.c).
	 *
	 * Matched by the barrier in pull_dl_task().
	 */
	smp_wmb();
	atomic_inc(&rq->rd->dlo_count);
}

static inline void dl_clear_overload(struct rq *rq)
{
	if (!rq->online)
		return;

	atomic_dec(&rq->rd->dlo_count);
	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
}

static void update_dl_migration(struct dl_rq *dl_rq)
{
342
	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
343 344 345 346 347 348 349 350 351 352 353 354 355 356
		if (!dl_rq->overloaded) {
			dl_set_overload(rq_of_dl_rq(dl_rq));
			dl_rq->overloaded = 1;
		}
	} else if (dl_rq->overloaded) {
		dl_clear_overload(rq_of_dl_rq(dl_rq));
		dl_rq->overloaded = 0;
	}
}

static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	struct task_struct *p = dl_task_of(dl_se);

357
	if (p->nr_cpus_allowed > 1)
358 359 360 361 362 363 364 365 366
		dl_rq->dl_nr_migratory++;

	update_dl_migration(dl_rq);
}

static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	struct task_struct *p = dl_task_of(dl_se);

367
	if (p->nr_cpus_allowed > 1)
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
		dl_rq->dl_nr_migratory--;

	update_dl_migration(dl_rq);
}

/*
 * The list of pushable -deadline task is not a plist, like in
 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 */
static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
{
	struct dl_rq *dl_rq = &rq->dl;
	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
	struct rb_node *parent = NULL;
	struct task_struct *entry;
	int leftmost = 1;

	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));

	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct task_struct,
				 pushable_dl_tasks);
		if (dl_entity_preempt(&p->dl, &entry->dl))
			link = &parent->rb_left;
		else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

399
	if (leftmost) {
400
		dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
401 402
		dl_rq->earliest_dl.next = p->dl.deadline;
	}
403 404 405

	rb_link_node(&p->pushable_dl_tasks, parent, link);
	rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
406 407
}

408 409 410 411 412 413 414 415 416 417 418 419
static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
{
	struct dl_rq *dl_rq = &rq->dl;

	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
		return;

	if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
		struct rb_node *next_node;

		next_node = rb_next(&p->pushable_dl_tasks);
		dl_rq->pushable_dl_tasks_leftmost = next_node;
420 421 422 423
		if (next_node) {
			dl_rq->earliest_dl.next = rb_entry(next_node,
				struct task_struct, pushable_dl_tasks)->dl.deadline;
		}
424 425 426 427 428 429 430 431 432 433 434 435 436
	}

	rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
}

static inline int has_pushable_dl_tasks(struct rq *rq)
{
	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
}

static int push_dl_task(struct rq *rq);

P
Peter Zijlstra 已提交
437 438 439 440 441
static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
{
	return dl_task(prev);
}

442 443
static DEFINE_PER_CPU(struct callback_head, dl_push_head);
static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
444 445

static void push_dl_tasks(struct rq *);
446
static void pull_dl_task(struct rq *);
447 448

static inline void queue_push_tasks(struct rq *rq)
P
Peter Zijlstra 已提交
449
{
450 451 452
	if (!has_pushable_dl_tasks(rq))
		return;

453 454 455 456 457 458
	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
}

static inline void queue_pull_task(struct rq *rq)
{
	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
P
Peter Zijlstra 已提交
459 460
}

461 462
static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);

463
static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
464 465 466 467 468 469 470 471 472 473 474
{
	struct rq *later_rq = NULL;

	later_rq = find_lock_later_rq(p, rq);
	if (!later_rq) {
		int cpu;

		/*
		 * If we cannot preempt any rq, fall back to pick any
		 * online cpu.
		 */
475
		cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
		if (cpu >= nr_cpu_ids) {
			/*
			 * Fail to find any suitable cpu.
			 * The task will never come back!
			 */
			BUG_ON(dl_bandwidth_enabled());

			/*
			 * If admission control is disabled we
			 * try a little harder to let the task
			 * run.
			 */
			cpu = cpumask_any(cpu_active_mask);
		}
		later_rq = cpu_rq(cpu);
		double_lock_balance(rq, later_rq);
	}

	set_task_cpu(p, later_rq->cpu);
495 496 497
	double_unlock_balance(later_rq, rq);

	return later_rq;
498 499
}

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
#else

static inline
void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
{
}

static inline
void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
{
}

static inline
void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
}

static inline
void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
}

P
Peter Zijlstra 已提交
522 523 524 525 526
static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
{
	return false;
}

527
static inline void pull_dl_task(struct rq *rq)
P
Peter Zijlstra 已提交
528 529 530
{
}

531
static inline void queue_push_tasks(struct rq *rq)
P
Peter Zijlstra 已提交
532 533 534
{
}

535
static inline void queue_pull_task(struct rq *rq)
P
Peter Zijlstra 已提交
536 537
{
}
538 539
#endif /* CONFIG_SMP */

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
				  int flags);

/*
 * We are being explicitly informed that a new instance is starting,
 * and this means that:
 *  - the absolute deadline of the entity has to be placed at
 *    current time + relative deadline;
 *  - the runtime of the entity has to be set to the maximum value.
 *
 * The capability of specifying such event is useful whenever a -deadline
 * entity wants to (try to!) synchronize its behaviour with the scheduler's
 * one, and to (try to!) reconcile itself with its own scheduling
 * parameters.
 */
557
static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
558 559 560 561
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
	struct rq *rq = rq_of_dl_rq(dl_rq);

562
	WARN_ON(dl_se->dl_boosted);
563 564 565 566 567 568 569 570 571
	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));

	/*
	 * We are racing with the deadline timer. So, do nothing because
	 * the deadline timer handler will take care of properly recharging
	 * the runtime and postponing the deadline
	 */
	if (dl_se->dl_throttled)
		return;
572 573 574 575 576 577

	/*
	 * We use the regular wall clock time to set deadlines in the
	 * future; in fact, we must consider execution overheads (time
	 * spent on hardirq context, etc.).
	 */
578 579
	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
	dl_se->runtime = dl_se->dl_runtime;
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
}

/*
 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 * possibility of a entity lasting more than what it declared, and thus
 * exhausting its runtime.
 *
 * Here we are interested in making runtime overrun possible, but we do
 * not want a entity which is misbehaving to affect the scheduling of all
 * other entities.
 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 * is used, in order to confine each entity within its own bandwidth.
 *
 * This function deals exactly with that, and ensures that when the runtime
 * of a entity is replenished, its deadline is also postponed. That ensures
 * the overrunning entity can't interfere with other entity in the system and
 * can't make them miss their deadlines. Reasons why this kind of overruns
 * could happen are, typically, a entity voluntarily trying to overcome its
598
 * runtime, or it just underestimated it during sched_setattr().
599
 */
600 601
static void replenish_dl_entity(struct sched_dl_entity *dl_se,
				struct sched_dl_entity *pi_se)
602 603 604 605
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
	struct rq *rq = rq_of_dl_rq(dl_rq);

606 607 608 609 610 611 612 613 614 615 616
	BUG_ON(pi_se->dl_runtime <= 0);

	/*
	 * This could be the case for a !-dl task that is boosted.
	 * Just go with full inherited parameters.
	 */
	if (dl_se->dl_deadline == 0) {
		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
		dl_se->runtime = pi_se->dl_runtime;
	}

617 618 619
	if (dl_se->dl_yielded && dl_se->runtime > 0)
		dl_se->runtime = 0;

620 621 622 623 624 625 626
	/*
	 * We keep moving the deadline away until we get some
	 * available runtime for the entity. This ensures correct
	 * handling of situations where the runtime overrun is
	 * arbitrary large.
	 */
	while (dl_se->runtime <= 0) {
627 628
		dl_se->deadline += pi_se->dl_period;
		dl_se->runtime += pi_se->dl_runtime;
629 630 631 632 633 634 635 636 637 638 639 640
	}

	/*
	 * At this point, the deadline really should be "in
	 * the future" with respect to rq->clock. If it's
	 * not, we are, for some reason, lagging too much!
	 * Anyway, after having warn userspace abut that,
	 * we still try to keep the things running by
	 * resetting the deadline and the budget of the
	 * entity.
	 */
	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
641
		printk_deferred_once("sched: DL replenish lagged too much\n");
642 643
		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
		dl_se->runtime = pi_se->dl_runtime;
644
	}
645 646 647 648 649

	if (dl_se->dl_yielded)
		dl_se->dl_yielded = 0;
	if (dl_se->dl_throttled)
		dl_se->dl_throttled = 0;
650 651 652 653 654 655 656 657 658 659 660 661 662
}

/*
 * Here we check if --at time t-- an entity (which is probably being
 * [re]activated or, in general, enqueued) can use its remaining runtime
 * and its current deadline _without_ exceeding the bandwidth it is
 * assigned (function returns true if it can't). We are in fact applying
 * one of the CBS rules: when a task wakes up, if the residual runtime
 * over residual deadline fits within the allocated bandwidth, then we
 * can keep the current (absolute) deadline and residual budget without
 * disrupting the schedulability of the system. Otherwise, we should
 * refill the runtime and set the deadline a period in the future,
 * because keeping the current (absolute) deadline of the task would
663 664
 * result in breaking guarantees promised to other tasks (refer to
 * Documentation/scheduler/sched-deadline.txt for more informations).
665 666 667
 *
 * This function returns true if:
 *
668
 *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
669 670
 *
 * IOW we can't recycle current parameters.
671
 *
672
 * Notice that the bandwidth check is done against the deadline. For
673
 * task with deadline equal to period this is the same of using
674
 * dl_period instead of dl_deadline in the equation above.
675
 */
676 677
static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
			       struct sched_dl_entity *pi_se, u64 t)
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
{
	u64 left, right;

	/*
	 * left and right are the two sides of the equation above,
	 * after a bit of shuffling to use multiplications instead
	 * of divisions.
	 *
	 * Note that none of the time values involved in the two
	 * multiplications are absolute: dl_deadline and dl_runtime
	 * are the relative deadline and the maximum runtime of each
	 * instance, runtime is the runtime left for the last instance
	 * and (deadline - t), since t is rq->clock, is the time left
	 * to the (absolute) deadline. Even if overflowing the u64 type
	 * is very unlikely to occur in both cases, here we scale down
	 * as we want to avoid that risk at all. Scaling down by 10
	 * means that we reduce granularity to 1us. We are fine with it,
	 * since this is only a true/false check and, anyway, thinking
	 * of anything below microseconds resolution is actually fiction
	 * (but still we want to give the user that illusion >;).
	 */
699
	left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
700 701
	right = ((dl_se->deadline - t) >> DL_SCALE) *
		(pi_se->dl_runtime >> DL_SCALE);
702 703 704 705 706 707 708 709 710 711 712 713 714

	return dl_time_before(right, left);
}

/*
 * When a -deadline entity is queued back on the runqueue, its runtime and
 * deadline might need updating.
 *
 * The policy here is that we update the deadline of the entity only if:
 *  - the current deadline is in the past,
 *  - using the remaining runtime with the current deadline would make
 *    the entity exceed its bandwidth.
 */
715 716
static void update_dl_entity(struct sched_dl_entity *dl_se,
			     struct sched_dl_entity *pi_se)
717 718 719 720 721
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
	struct rq *rq = rq_of_dl_rq(dl_rq);

	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
722 723 724
	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
		dl_se->runtime = pi_se->dl_runtime;
725 726 727
	}
}

728 729 730 731 732
static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
{
	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
}

733 734 735
/*
 * If the entity depleted all its runtime, and if we want it to sleep
 * while waiting for some new execution time to become available, we
736
 * set the bandwidth replenishment timer to the replenishment instant
737 738 739 740 741 742
 * and try to activate it.
 *
 * Notice that it is important for the caller to know if the timer
 * actually started or not (i.e., the replenishment instant is in
 * the future or in the past).
 */
743
static int start_dl_timer(struct task_struct *p)
744
{
745 746 747
	struct sched_dl_entity *dl_se = &p->dl;
	struct hrtimer *timer = &dl_se->dl_timer;
	struct rq *rq = task_rq(p);
748 749 750
	ktime_t now, act;
	s64 delta;

751 752
	lockdep_assert_held(&rq->lock);

753 754 755 756 757
	/*
	 * We want the timer to fire at the deadline, but considering
	 * that it is actually coming from rq->clock and not from
	 * hrtimer's time base reading.
	 */
758
	act = ns_to_ktime(dl_next_period(dl_se));
759
	now = hrtimer_cb_get_time(timer);
760 761 762 763 764 765 766 767 768 769 770
	delta = ktime_to_ns(now) - rq_clock(rq);
	act = ktime_add_ns(act, delta);

	/*
	 * If the expiry time already passed, e.g., because the value
	 * chosen as the deadline is too small, don't even try to
	 * start the timer in the past!
	 */
	if (ktime_us_delta(act, now) < 0)
		return 0;

771 772 773 774 775 776 777 778 779 780 781 782 783
	/*
	 * !enqueued will guarantee another callback; even if one is already in
	 * progress. This ensures a balanced {get,put}_task_struct().
	 *
	 * The race against __run_timer() clearing the enqueued state is
	 * harmless because we're holding task_rq()->lock, therefore the timer
	 * expiring after we've done the check will wait on its task_rq_lock()
	 * and observe our state.
	 */
	if (!hrtimer_is_queued(timer)) {
		get_task_struct(p);
		hrtimer_start(timer, act, HRTIMER_MODE_ABS);
	}
784

785
	return 1;
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
}

/*
 * This is the bandwidth enforcement timer callback. If here, we know
 * a task is not on its dl_rq, since the fact that the timer was running
 * means the task is throttled and needs a runtime replenishment.
 *
 * However, what we actually do depends on the fact the task is active,
 * (it is on its rq) or has been removed from there by a call to
 * dequeue_task_dl(). In the former case we must issue the runtime
 * replenishment and add the task back to the dl_rq; in the latter, we just
 * do nothing but clearing dl_throttled, so that runtime and deadline
 * updating (and the queueing back to dl_rq) will be done by the
 * next call to enqueue_task_dl().
 */
static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
{
	struct sched_dl_entity *dl_se = container_of(timer,
						     struct sched_dl_entity,
						     dl_timer);
	struct task_struct *p = dl_task_of(dl_se);
807
	struct rq_flags rf;
808
	struct rq *rq;
809

810
	rq = task_rq_lock(p, &rf);
811

812
	/*
813
	 * The task might have changed its scheduling policy to something
814
	 * different than SCHED_DEADLINE (through switched_from_dl()).
815
	 */
816
	if (!dl_task(p))
817 818 819 820 821 822 823 824
		goto unlock;

	/*
	 * The task might have been boosted by someone else and might be in the
	 * boosting/deboosting path, its not throttled.
	 */
	if (dl_se->dl_boosted)
		goto unlock;
825

826
	/*
827 828
	 * Spurious timer due to start_dl_timer() race; or we already received
	 * a replenishment from rt_mutex_setprio().
829
	 */
830
	if (!dl_se->dl_throttled)
831
		goto unlock;
832 833 834

	sched_clock_tick();
	update_rq_clock(rq);
835

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
	/*
	 * If the throttle happened during sched-out; like:
	 *
	 *   schedule()
	 *     deactivate_task()
	 *       dequeue_task_dl()
	 *         update_curr_dl()
	 *           start_dl_timer()
	 *         __dequeue_task_dl()
	 *     prev->on_rq = 0;
	 *
	 * We can be both throttled and !queued. Replenish the counter
	 * but do not enqueue -- wait for our wakeup to do that.
	 */
	if (!task_on_rq_queued(p)) {
		replenish_dl_entity(dl_se, dl_se);
		goto unlock;
	}

855
#ifdef CONFIG_SMP
856
	if (unlikely(!rq->online)) {
857 858 859 860
		/*
		 * If the runqueue is no longer available, migrate the
		 * task elsewhere. This necessarily changes rq.
		 */
861
		lockdep_unpin_lock(&rq->lock, rf.cookie);
862
		rq = dl_task_offline_migration(rq, p);
863
		rf.cookie = lockdep_pin_lock(&rq->lock);
864
		update_rq_clock(rq);
865 866 867 868 869 870

		/*
		 * Now that the task has been migrated to the new RQ and we
		 * have that locked, proceed as normal and enqueue the task
		 * there.
		 */
871
	}
872
#endif
873

874 875 876 877 878
	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
	if (dl_task(rq->curr))
		check_preempt_curr_dl(rq, p, 0);
	else
		resched_curr(rq);
879

880
#ifdef CONFIG_SMP
881 882 883
	/*
	 * Queueing this task back might have overloaded rq, check if we need
	 * to kick someone away.
884
	 */
885 886 887 888 889
	if (has_pushable_dl_tasks(rq)) {
		/*
		 * Nothing relies on rq->lock after this, so its safe to drop
		 * rq->lock.
		 */
890
		rq_unpin_lock(rq, &rf);
891
		push_dl_task(rq);
892
		rq_repin_lock(rq, &rf);
893
	}
894
#endif
895

896
unlock:
897
	task_rq_unlock(rq, p, &rf);
898

899 900 901 902 903 904
	/*
	 * This can free the task_struct, including this hrtimer, do not touch
	 * anything related to that after this.
	 */
	put_task_struct(p);

905 906 907 908 909 910 911 912 913 914 915
	return HRTIMER_NORESTART;
}

void init_dl_task_timer(struct sched_dl_entity *dl_se)
{
	struct hrtimer *timer = &dl_se->dl_timer;

	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	timer->function = dl_task_timer;
}

916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
/*
 * During the activation, CBS checks if it can reuse the current task's
 * runtime and period. If the deadline of the task is in the past, CBS
 * cannot use the runtime, and so it replenishes the task. This rule
 * works fine for implicit deadline tasks (deadline == period), and the
 * CBS was designed for implicit deadline tasks. However, a task with
 * constrained deadline (deadine < period) might be awakened after the
 * deadline, but before the next period. In this case, replenishing the
 * task would allow it to run for runtime / deadline. As in this case
 * deadline < period, CBS enables a task to run for more than the
 * runtime / period. In a very loaded system, this can cause a domino
 * effect, making other tasks miss their deadlines.
 *
 * To avoid this problem, in the activation of a constrained deadline
 * task after the deadline but before the next period, throttle the
 * task and set the replenishing timer to the begin of the next period,
 * unless it is boosted.
 */
static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
{
	struct task_struct *p = dl_task_of(dl_se);
	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));

	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
		if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
			return;
		dl_se->dl_throttled = 1;
	}
}

947
static
948
int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
949
{
950
	return (dl_se->runtime <= 0);
951 952
}

953 954
extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);

955 956 957
/*
 * This function implements the GRUB accounting rule:
 * according to the GRUB reclaiming algorithm, the runtime is
958 959 960 961 962 963 964
 * not decreased as "dq = -dt", but as "dq = -max{u, (1 - Uinact)} dt",
 * where u is the utilization of the task and Uinact is the
 * (per-runqueue) inactive utilization, computed as the difference
 * between the "total runqueue utilization" and the runqueue
 * active utilization.
 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
 * multiplied by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
965
 */
966
u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
967
{
968 969
	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
	u64 u_act;
970

971 972 973 974 975 976 977 978 979 980 981
	/*
	 * Instead of computing max{u, (1 - u_inact)}, we compare
	 * u_inact with 1 - u, because u_inact can be larger than 1
	 * (so, 1 - u_inact would be negative leading to wrong results)
	 */
	if (u_inact > BW_UNIT - dl_se->dl_bw)
		u_act = dl_se->dl_bw;
	else
		u_act = BW_UNIT - u_inact;

	return (delta * u_act) >> BW_SHIFT;
982 983
}

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/*
 * Update the current task's runtime statistics (provided it is still
 * a -deadline task and has not been removed from the dl_rq).
 */
static void update_curr_dl(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct sched_dl_entity *dl_se = &curr->dl;
	u64 delta_exec;

	if (!dl_task(curr) || !on_dl_rq(dl_se))
		return;

	/*
	 * Consumed budget is computed considering the time as
	 * observed by schedulable tasks (excluding time spent
	 * in hardirq context, etc.). Deadlines are instead
	 * computed using hard walltime. This seems to be the more
	 * natural solution, but the full ramifications of this
	 * approach need further study.
	 */
	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
1006 1007 1008
	if (unlikely((s64)delta_exec <= 0)) {
		if (unlikely(dl_se->dl_yielded))
			goto throttle;
1009
		return;
1010
	}
1011

1012
	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
1013
	cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_DL);
1014

1015 1016 1017 1018 1019 1020 1021 1022 1023
	schedstat_set(curr->se.statistics.exec_max,
		      max(curr->se.statistics.exec_max, delta_exec));

	curr->se.sum_exec_runtime += delta_exec;
	account_group_exec_runtime(curr, delta_exec);

	curr->se.exec_start = rq_clock_task(rq);
	cpuacct_charge(curr, delta_exec);

1024 1025
	sched_rt_avg_update(rq, delta_exec);

1026
	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM))
1027
		delta_exec = grub_reclaim(delta_exec, rq, &curr->dl);
1028 1029 1030 1031
	dl_se->runtime -= delta_exec;

throttle:
	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1032
		dl_se->dl_throttled = 1;
1033
		__dequeue_task_dl(rq, curr, 0);
1034
		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1035 1036 1037
			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);

		if (!is_leftmost(curr, &rq->dl))
1038
			resched_curr(rq);
1039
	}
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

	/*
	 * Because -- for now -- we share the rt bandwidth, we need to
	 * account our runtime there too, otherwise actual rt tasks
	 * would be able to exceed the shared quota.
	 *
	 * Account to the root rt group for now.
	 *
	 * The solution we're working towards is having the RT groups scheduled
	 * using deadline servers -- however there's a few nasties to figure
	 * out before that can happen.
	 */
	if (rt_bandwidth_enabled()) {
		struct rt_rq *rt_rq = &rq->rt;

		raw_spin_lock(&rt_rq->rt_runtime_lock);
		/*
		 * We'll let actual RT tasks worry about the overflow here, we
1058 1059
		 * have our own CBS to keep us inline; only account when RT
		 * bandwidth is relevant.
1060
		 */
1061 1062
		if (sched_rt_bandwidth_account(rt_rq))
			rt_rq->rt_time += delta_exec;
1063 1064
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
	}
1065 1066
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
{
	struct sched_dl_entity *dl_se = container_of(timer,
						     struct sched_dl_entity,
						     inactive_timer);
	struct task_struct *p = dl_task_of(dl_se);
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(p, &rf);

	if (!dl_task(p) || p->state == TASK_DEAD) {
1079 1080
		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));

1081 1082
		if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
			sub_running_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl));
1083
			sub_rq_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl));
1084 1085
			dl_se->dl_non_contending = 0;
		}
1086 1087 1088 1089

		raw_spin_lock(&dl_b->lock);
		__dl_clear(dl_b, p->dl.dl_bw);
		raw_spin_unlock(&dl_b->lock);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
		__dl_clear_params(p);

		goto unlock;
	}
	if (dl_se->dl_non_contending == 0)
		goto unlock;

	sched_clock_tick();
	update_rq_clock(rq);

	sub_running_bw(dl_se->dl_bw, &rq->dl);
	dl_se->dl_non_contending = 0;
unlock:
	task_rq_unlock(rq, p, &rf);
	put_task_struct(p);

	return HRTIMER_NORESTART;
}

void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
{
	struct hrtimer *timer = &dl_se->inactive_timer;

	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	timer->function = inactive_task_timer;
}

1117 1118 1119 1120 1121 1122 1123 1124 1125
#ifdef CONFIG_SMP

static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
{
	struct rq *rq = rq_of_dl_rq(dl_rq);

	if (dl_rq->earliest_dl.curr == 0 ||
	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
		dl_rq->earliest_dl.curr = deadline;
1126
		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	}
}

static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
{
	struct rq *rq = rq_of_dl_rq(dl_rq);

	/*
	 * Since we may have removed our earliest (and/or next earliest)
	 * task we must recompute them.
	 */
	if (!dl_rq->dl_nr_running) {
		dl_rq->earliest_dl.curr = 0;
		dl_rq->earliest_dl.next = 0;
1141
		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1142 1143 1144 1145 1146 1147
	} else {
		struct rb_node *leftmost = dl_rq->rb_leftmost;
		struct sched_dl_entity *entry;

		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
		dl_rq->earliest_dl.curr = entry->deadline;
1148
		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
	}
}

#else

static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}

#endif /* CONFIG_SMP */

static inline
void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	int prio = dl_task_of(dl_se)->prio;
	u64 deadline = dl_se->deadline;

	WARN_ON(!dl_prio(prio));
	dl_rq->dl_nr_running++;
1167
	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

	inc_dl_deadline(dl_rq, deadline);
	inc_dl_migration(dl_se, dl_rq);
}

static inline
void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	int prio = dl_task_of(dl_se)->prio;

	WARN_ON(!dl_prio(prio));
	WARN_ON(!dl_rq->dl_nr_running);
	dl_rq->dl_nr_running--;
1181
	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1182 1183 1184 1185 1186

	dec_dl_deadline(dl_rq, dl_se->deadline);
	dec_dl_migration(dl_se, dl_rq);
}

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
	struct rb_node **link = &dl_rq->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct sched_dl_entity *entry;
	int leftmost = 1;

	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));

	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
		if (dl_time_before(dl_se->deadline, entry->deadline))
			link = &parent->rb_left;
		else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	if (leftmost)
		dl_rq->rb_leftmost = &dl_se->rb_node;

	rb_link_node(&dl_se->rb_node, parent, link);
	rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);

1214
	inc_dl_tasks(dl_se, dl_rq);
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
}

static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);

	if (RB_EMPTY_NODE(&dl_se->rb_node))
		return;

	if (dl_rq->rb_leftmost == &dl_se->rb_node) {
		struct rb_node *next_node;

		next_node = rb_next(&dl_se->rb_node);
		dl_rq->rb_leftmost = next_node;
	}

	rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
	RB_CLEAR_NODE(&dl_se->rb_node);

1234
	dec_dl_tasks(dl_se, dl_rq);
1235 1236 1237
}

static void
1238 1239
enqueue_dl_entity(struct sched_dl_entity *dl_se,
		  struct sched_dl_entity *pi_se, int flags)
1240 1241 1242 1243 1244 1245 1246 1247
{
	BUG_ON(on_dl_rq(dl_se));

	/*
	 * If this is a wakeup or a new instance, the scheduling
	 * parameters of the task might need updating. Otherwise,
	 * we want a replenishment of its runtime.
	 */
1248
	if (flags & ENQUEUE_WAKEUP) {
1249
		task_contending(dl_se, flags);
1250
		update_dl_entity(dl_se, pi_se);
1251
	} else if (flags & ENQUEUE_REPLENISH) {
1252
		replenish_dl_entity(dl_se, pi_se);
1253
	}
1254 1255 1256 1257 1258 1259 1260 1261 1262

	__enqueue_dl_entity(dl_se);
}

static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
{
	__dequeue_dl_entity(dl_se);
}

1263 1264 1265 1266 1267
static inline bool dl_is_constrained(struct sched_dl_entity *dl_se)
{
	return dl_se->dl_deadline < dl_se->dl_period;
}

1268 1269
static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
{
1270 1271 1272 1273 1274
	struct task_struct *pi_task = rt_mutex_get_top_task(p);
	struct sched_dl_entity *pi_se = &p->dl;

	/*
	 * Use the scheduling parameters of the top pi-waiter
1275
	 * task if we have one and its (absolute) deadline is
1276 1277 1278
	 * smaller than our one... OTW we keep our runtime and
	 * deadline.
	 */
1279
	if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
1280
		pi_se = &pi_task->dl;
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	} else if (!dl_prio(p->normal_prio)) {
		/*
		 * Special case in which we have a !SCHED_DEADLINE task
		 * that is going to be deboosted, but exceedes its
		 * runtime while doing so. No point in replenishing
		 * it, as it's going to return back to its original
		 * scheduling class after this.
		 */
		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
		return;
	}
1292

1293 1294 1295 1296 1297 1298 1299 1300 1301
	/*
	 * Check if a constrained deadline task was activated
	 * after the deadline but before the next period.
	 * If that is the case, the task will be throttled and
	 * the replenishment timer will be set to the next period.
	 */
	if (!p->dl.dl_throttled && dl_is_constrained(&p->dl))
		dl_check_constrained_dl(&p->dl);

1302 1303
	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
		add_rq_bw(p->dl.dl_bw, &rq->dl);
1304
		add_running_bw(p->dl.dl_bw, &rq->dl);
1305
	}
1306

1307
	/*
1308
	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1309 1310 1311
	 * its budget it needs a replenishment and, since it now is on
	 * its rq, the bandwidth timer callback (which clearly has not
	 * run yet) will take care of this.
1312 1313 1314 1315 1316 1317
	 * However, the active utilization does not depend on the fact
	 * that the task is on the runqueue or not (but depends on the
	 * task's state - in GRUB parlance, "inactive" vs "active contending").
	 * In other words, even if a task is throttled its utilization must
	 * be counted in the active utilization; hence, we need to call
	 * add_running_bw().
1318
	 */
1319
	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1320
		if (flags & ENQUEUE_WAKEUP)
1321
			task_contending(&p->dl, flags);
1322

1323
		return;
1324
	}
1325

1326
	enqueue_dl_entity(&p->dl, pi_se, flags);
1327

1328
	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1329
		enqueue_pushable_dl_task(rq, p);
1330 1331 1332 1333 1334
}

static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
{
	dequeue_dl_entity(&p->dl);
1335
	dequeue_pushable_dl_task(rq, p);
1336 1337 1338 1339 1340 1341
}

static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
{
	update_curr_dl(rq);
	__dequeue_task_dl(rq, p, flags);
1342

1343
	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1344
		sub_running_bw(p->dl.dl_bw, &rq->dl);
1345 1346
		sub_rq_bw(p->dl.dl_bw, &rq->dl);
	}
1347 1348

	/*
1349 1350
	 * This check allows to start the inactive timer (or to immediately
	 * decrease the active utilization, if needed) in two cases:
1351 1352 1353 1354 1355 1356 1357
	 * when the task blocks and when it is terminating
	 * (p->state == TASK_DEAD). We can handle the two cases in the same
	 * way, because from GRUB's point of view the same thing is happening
	 * (the task moves from "active contending" to "active non contending"
	 * or "inactive")
	 */
	if (flags & DEQUEUE_SLEEP)
1358
		task_non_contending(p);
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
}

/*
 * Yield task semantic for -deadline tasks is:
 *
 *   get off from the CPU until our next instance, with
 *   a new runtime. This is of little use now, since we
 *   don't have a bandwidth reclaiming mechanism. Anyway,
 *   bandwidth reclaiming is planned for the future, and
 *   yield_task_dl will indicate that some spare budget
 *   is available for other task instances to use it.
 */
static void yield_task_dl(struct rq *rq)
{
	/*
	 * We make the task go to sleep until its current deadline by
	 * forcing its runtime to zero. This way, update_curr_dl() stops
	 * it and the bandwidth timer will wake it up and will give it
1377
	 * new scheduling parameters (thanks to dl_yielded=1).
1378
	 */
1379 1380
	rq->curr->dl.dl_yielded = 1;

1381
	update_rq_clock(rq);
1382
	update_curr_dl(rq);
1383 1384 1385 1386 1387 1388
	/*
	 * Tell update_rq_clock() that we've just updated,
	 * so we don't do microscopic update in schedule()
	 * and double the fastpath cost.
	 */
	rq_clock_skip_update(rq, true);
1389 1390
}

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
#ifdef CONFIG_SMP

static int find_later_rq(struct task_struct *task);

static int
select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
{
	struct task_struct *curr;
	struct rq *rq;

1401
	if (sd_flag != SD_BALANCE_WAKE)
1402 1403 1404 1405 1406
		goto out;

	rq = cpu_rq(cpu);

	rcu_read_lock();
1407
	curr = READ_ONCE(rq->curr); /* unlocked access */
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

	/*
	 * If we are dealing with a -deadline task, we must
	 * decide where to wake it up.
	 * If it has a later deadline and the current task
	 * on this rq can't move (provided the waking task
	 * can!) we prefer to send it somewhere else. On the
	 * other hand, if it has a shorter deadline, we
	 * try to make it stay here, it might be important.
	 */
	if (unlikely(dl_task(curr)) &&
1419
	    (curr->nr_cpus_allowed < 2 ||
1420
	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1421
	    (p->nr_cpus_allowed > 1)) {
1422 1423
		int target = find_later_rq(p);

1424
		if (target != -1 &&
1425 1426 1427
				(dl_time_before(p->dl.deadline,
					cpu_rq(target)->dl.earliest_dl.curr) ||
				(cpu_rq(target)->dl.dl_nr_running == 0)))
1428 1429 1430 1431 1432 1433 1434 1435
			cpu = target;
	}
	rcu_read_unlock();

out:
	return cpu;
}

1436 1437 1438 1439
static void migrate_task_rq_dl(struct task_struct *p)
{
	struct rq *rq;

1440
	if (p->state != TASK_WAKING)
1441 1442 1443 1444 1445 1446 1447 1448 1449
		return;

	rq = task_rq(p);
	/*
	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
	 * rq->lock is not... So, lock it
	 */
	raw_spin_lock(&rq->lock);
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	if (p->dl.dl_non_contending) {
		sub_running_bw(p->dl.dl_bw, &rq->dl);
		p->dl.dl_non_contending = 0;
		/*
		 * If the timer handler is currently running and the
		 * timer cannot be cancelled, inactive_task_timer()
		 * will see that dl_not_contending is not set, and
		 * will not touch the rq's active utilization,
		 * so we are still safe.
		 */
		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
			put_task_struct(p);
	}
	sub_rq_bw(p->dl.dl_bw, &rq->dl);
1464 1465 1466
	raw_spin_unlock(&rq->lock);
}

1467 1468 1469 1470 1471 1472
static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
{
	/*
	 * Current can't be migrated, useless to reschedule,
	 * let's hope p can move out.
	 */
1473
	if (rq->curr->nr_cpus_allowed == 1 ||
1474
	    cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1475 1476 1477 1478 1479 1480
		return;

	/*
	 * p is migratable, so let's not schedule it and
	 * see if it is pushed or pulled somewhere else.
	 */
1481
	if (p->nr_cpus_allowed != 1 &&
1482
	    cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1483 1484
		return;

1485
	resched_curr(rq);
1486 1487 1488 1489
}

#endif /* CONFIG_SMP */

1490 1491 1492 1493 1494 1495 1496
/*
 * Only called when both the current and waking task are -deadline
 * tasks.
 */
static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
				  int flags)
{
1497
	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1498
		resched_curr(rq);
1499 1500 1501 1502 1503 1504 1505 1506
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * In the unlikely case current and p have the same deadline
	 * let us try to decide what's the best thing to do...
	 */
1507 1508
	if ((p->dl.deadline == rq->curr->dl.deadline) &&
	    !test_tsk_need_resched(rq->curr))
1509 1510
		check_preempt_equal_dl(rq, p);
#endif /* CONFIG_SMP */
1511 1512 1513 1514 1515
}

#ifdef CONFIG_SCHED_HRTICK
static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
{
1516
	hrtick_start(rq, p->dl.runtime);
1517
}
1518 1519 1520 1521
#else /* !CONFIG_SCHED_HRTICK */
static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
{
}
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
#endif

static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
						   struct dl_rq *dl_rq)
{
	struct rb_node *left = dl_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_dl_entity, rb_node);
}

1535
struct task_struct *
1536
pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1537 1538 1539 1540 1541 1542 1543
{
	struct sched_dl_entity *dl_se;
	struct task_struct *p;
	struct dl_rq *dl_rq;

	dl_rq = &rq->dl;

1544
	if (need_pull_dl_task(rq, prev)) {
1545 1546 1547 1548 1549 1550
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we're
		 * being very careful to re-start the picking loop.
		 */
1551
		rq_unpin_lock(rq, rf);
1552
		pull_dl_task(rq);
1553
		rq_repin_lock(rq, rf);
1554
		/*
1555
		 * pull_dl_task() can drop (and re-acquire) rq->lock; this
1556 1557 1558
		 * means a stop task can slip in, in which case we need to
		 * re-start task selection.
		 */
1559
		if (rq->stop && task_on_rq_queued(rq->stop))
1560 1561 1562
			return RETRY_TASK;
	}

1563 1564 1565 1566 1567 1568
	/*
	 * When prev is DL, we may throttle it in put_prev_task().
	 * So, we update time before we check for dl_nr_running.
	 */
	if (prev->sched_class == &dl_sched_class)
		update_curr_dl(rq);
1569

1570 1571 1572
	if (unlikely(!dl_rq->dl_nr_running))
		return NULL;

1573
	put_prev_task(rq, prev);
1574

1575 1576 1577 1578 1579
	dl_se = pick_next_dl_entity(rq, dl_rq);
	BUG_ON(!dl_se);

	p = dl_task_of(dl_se);
	p->se.exec_start = rq_clock_task(rq);
1580 1581

	/* Running task will never be pushed. */
1582
       dequeue_pushable_dl_task(rq, p);
1583

1584 1585
	if (hrtick_enabled(rq))
		start_hrtick_dl(rq, p);
1586

1587
	queue_push_tasks(rq);
1588

1589 1590 1591 1592 1593 1594
	return p;
}

static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
{
	update_curr_dl(rq);
1595

1596
	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1597
		enqueue_pushable_dl_task(rq, p);
1598 1599 1600 1601 1602 1603
}

static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
{
	update_curr_dl(rq);

1604 1605 1606 1607 1608 1609 1610
	/*
	 * Even when we have runtime, update_curr_dl() might have resulted in us
	 * not being the leftmost task anymore. In that case NEED_RESCHED will
	 * be set and schedule() will start a new hrtick for the next task.
	 */
	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
	    is_leftmost(p, &rq->dl))
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
		start_hrtick_dl(rq, p);
}

static void task_fork_dl(struct task_struct *p)
{
	/*
	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
	 * sched_fork()
	 */
}

static void set_curr_task_dl(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq_clock_task(rq);
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639

	/* You can't push away the running task */
	dequeue_pushable_dl_task(rq, p);
}

#ifdef CONFIG_SMP

/* Only try algorithms three times */
#define DL_MAX_TRIES 3

static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1640
	    cpumask_test_cpu(cpu, &p->cpus_allowed))
1641 1642 1643 1644
		return 1;
	return 0;
}

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
/*
 * Return the earliest pushable rq's task, which is suitable to be executed
 * on the CPU, NULL otherwise:
 */
static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
{
	struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
	struct task_struct *p = NULL;

	if (!has_pushable_dl_tasks(rq))
		return NULL;

next_node:
	if (next_node) {
		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);

		if (pick_dl_task(rq, p, cpu))
			return p;

		next_node = rb_next(next_node);
		goto next_node;
	}

	return NULL;
}

1671 1672 1673 1674 1675
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);

static int find_later_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1676
	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1677 1678 1679 1680 1681 1682 1683
	int this_cpu = smp_processor_id();
	int best_cpu, cpu = task_cpu(task);

	/* Make sure the mask is initialized first */
	if (unlikely(!later_mask))
		return -1;

1684
	if (task->nr_cpus_allowed == 1)
1685 1686
		return -1;

1687 1688 1689 1690
	/*
	 * We have to consider system topology and task affinity
	 * first, then we can look for a suitable cpu.
	 */
1691 1692
	best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
			task, later_mask);
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	if (best_cpu == -1)
		return -1;

	/*
	 * If we are here, some target has been found,
	 * the most suitable of which is cached in best_cpu.
	 * This is, among the runqueues where the current tasks
	 * have later deadlines than the task's one, the rq
	 * with the latest possible one.
	 *
	 * Now we check how well this matches with task's
	 * affinity and system topology.
	 *
	 * The last cpu where the task run is our first
	 * guess, since it is most likely cache-hot there.
	 */
	if (cpumask_test_cpu(cpu, later_mask))
		return cpu;
	/*
	 * Check if this_cpu is to be skipped (i.e., it is
	 * not in the mask) or not.
	 */
	if (!cpumask_test_cpu(this_cpu, later_mask))
		this_cpu = -1;

	rcu_read_lock();
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {

			/*
			 * If possible, preempting this_cpu is
			 * cheaper than migrating.
			 */
			if (this_cpu != -1 &&
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
				return this_cpu;
			}

			/*
			 * Last chance: if best_cpu is valid and is
			 * in the mask, that becomes our choice.
			 */
			if (best_cpu < nr_cpu_ids &&
			    cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
				return best_cpu;
			}
		}
	}
	rcu_read_unlock();

	/*
	 * At this point, all our guesses failed, we just return
	 * 'something', and let the caller sort the things out.
	 */
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(later_mask);
	if (cpu < nr_cpu_ids)
		return cpu;

	return -1;
}

/* Locks the rq it finds */
static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
{
	struct rq *later_rq = NULL;
	int tries;
	int cpu;

	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
		cpu = find_later_rq(task);

		if ((cpu == -1) || (cpu == rq->cpu))
			break;

		later_rq = cpu_rq(cpu);

1774 1775
		if (later_rq->dl.dl_nr_running &&
		    !dl_time_before(task->dl.deadline,
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
					later_rq->dl.earliest_dl.curr)) {
			/*
			 * Target rq has tasks of equal or earlier deadline,
			 * retrying does not release any lock and is unlikely
			 * to yield a different result.
			 */
			later_rq = NULL;
			break;
		}

1786 1787 1788
		/* Retry if something changed. */
		if (double_lock_balance(rq, later_rq)) {
			if (unlikely(task_rq(task) != rq ||
1789
				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) ||
1790
				     task_running(rq, task) ||
1791
				     !dl_task(task) ||
1792
				     !task_on_rq_queued(task))) {
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
				double_unlock_balance(rq, later_rq);
				later_rq = NULL;
				break;
			}
		}

		/*
		 * If the rq we found has no -deadline task, or
		 * its earliest one has a later deadline than our
		 * task, the rq is a good one.
		 */
		if (!later_rq->dl.dl_nr_running ||
		    dl_time_before(task->dl.deadline,
				   later_rq->dl.earliest_dl.curr))
			break;

		/* Otherwise we try again. */
		double_unlock_balance(rq, later_rq);
		later_rq = NULL;
	}

	return later_rq;
}

static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_dl_tasks(rq))
		return NULL;

	p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
		     struct task_struct, pushable_dl_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
1829
	BUG_ON(p->nr_cpus_allowed <= 1);
1830

1831
	BUG_ON(!task_on_rq_queued(p));
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	BUG_ON(!dl_task(p));

	return p;
}

/*
 * See if the non running -deadline tasks on this rq
 * can be sent to some other CPU where they can preempt
 * and start executing.
 */
static int push_dl_task(struct rq *rq)
{
	struct task_struct *next_task;
	struct rq *later_rq;
1846
	int ret = 0;
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867

	if (!rq->dl.overloaded)
		return 0;

	next_task = pick_next_pushable_dl_task(rq);
	if (!next_task)
		return 0;

retry:
	if (unlikely(next_task == rq->curr)) {
		WARN_ON(1);
		return 0;
	}

	/*
	 * If next_task preempts rq->curr, and rq->curr
	 * can move away, it makes sense to just reschedule
	 * without going further in pushing next_task.
	 */
	if (dl_task(rq->curr) &&
	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1868
	    rq->curr->nr_cpus_allowed > 1) {
1869
		resched_curr(rq);
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
		return 0;
	}

	/* We might release rq lock */
	get_task_struct(next_task);

	/* Will lock the rq it'll find */
	later_rq = find_lock_later_rq(next_task, rq);
	if (!later_rq) {
		struct task_struct *task;

		/*
		 * We must check all this again, since
		 * find_lock_later_rq releases rq->lock and it is
		 * then possible that next_task has migrated.
		 */
		task = pick_next_pushable_dl_task(rq);
1887
		if (task == next_task) {
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
			/*
			 * The task is still there. We don't try
			 * again, some other cpu will pull it when ready.
			 */
			goto out;
		}

		if (!task)
			/* No more tasks */
			goto out;

		put_task_struct(next_task);
		next_task = task;
		goto retry;
	}

	deactivate_task(rq, next_task, 0);
1905
	sub_running_bw(next_task->dl.dl_bw, &rq->dl);
1906
	sub_rq_bw(next_task->dl.dl_bw, &rq->dl);
1907
	set_task_cpu(next_task, later_rq->cpu);
1908
	add_rq_bw(next_task->dl.dl_bw, &later_rq->dl);
1909
	add_running_bw(next_task->dl.dl_bw, &later_rq->dl);
1910
	activate_task(later_rq, next_task, 0);
1911
	ret = 1;
1912

1913
	resched_curr(later_rq);
1914 1915 1916 1917 1918 1919

	double_unlock_balance(rq, later_rq);

out:
	put_task_struct(next_task);

1920
	return ret;
1921 1922 1923 1924
}

static void push_dl_tasks(struct rq *rq)
{
1925
	/* push_dl_task() will return true if it moved a -deadline task */
1926 1927
	while (push_dl_task(rq))
		;
1928 1929
}

1930
static void pull_dl_task(struct rq *this_rq)
1931
{
1932
	int this_cpu = this_rq->cpu, cpu;
1933
	struct task_struct *p;
1934
	bool resched = false;
1935 1936 1937 1938
	struct rq *src_rq;
	u64 dmin = LONG_MAX;

	if (likely(!dl_overloaded(this_rq)))
1939
		return;
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971

	/*
	 * Match the barrier from dl_set_overloaded; this guarantees that if we
	 * see overloaded we must also see the dlo_mask bit.
	 */
	smp_rmb();

	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);

		/*
		 * It looks racy, abd it is! However, as in sched_rt.c,
		 * we are fine with this.
		 */
		if (this_rq->dl.dl_nr_running &&
		    dl_time_before(this_rq->dl.earliest_dl.curr,
				   src_rq->dl.earliest_dl.next))
			continue;

		/* Might drop this_rq->lock */
		double_lock_balance(this_rq, src_rq);

		/*
		 * If there are no more pullable tasks on the
		 * rq, we're done with it.
		 */
		if (src_rq->dl.dl_nr_running <= 1)
			goto skip;

1972
		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

		/*
		 * We found a task to be pulled if:
		 *  - it preempts our current (if there's one),
		 *  - it will preempt the last one we pulled (if any).
		 */
		if (p && dl_time_before(p->dl.deadline, dmin) &&
		    (!this_rq->dl.dl_nr_running ||
		     dl_time_before(p->dl.deadline,
				    this_rq->dl.earliest_dl.curr))) {
			WARN_ON(p == src_rq->curr);
1984
			WARN_ON(!task_on_rq_queued(p));
1985 1986 1987 1988 1989 1990 1991 1992 1993

			/*
			 * Then we pull iff p has actually an earlier
			 * deadline than the current task of its runqueue.
			 */
			if (dl_time_before(p->dl.deadline,
					   src_rq->curr->dl.deadline))
				goto skip;

1994
			resched = true;
1995 1996

			deactivate_task(src_rq, p, 0);
1997
			sub_running_bw(p->dl.dl_bw, &src_rq->dl);
1998
			sub_rq_bw(p->dl.dl_bw, &src_rq->dl);
1999
			set_task_cpu(p, this_cpu);
2000
			add_rq_bw(p->dl.dl_bw, &this_rq->dl);
2001
			add_running_bw(p->dl.dl_bw, &this_rq->dl);
2002 2003 2004 2005 2006 2007 2008 2009 2010
			activate_task(this_rq, p, 0);
			dmin = p->dl.deadline;

			/* Is there any other task even earlier? */
		}
skip:
		double_unlock_balance(this_rq, src_rq);
	}

2011 2012
	if (resched)
		resched_curr(this_rq);
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
}

/*
 * Since the task is not running and a reschedule is not going to happen
 * anytime soon on its runqueue, we try pushing it away now.
 */
static void task_woken_dl(struct rq *rq, struct task_struct *p)
{
	if (!task_running(rq, p) &&
	    !test_tsk_need_resched(rq->curr) &&
2023
	    p->nr_cpus_allowed > 1 &&
2024
	    dl_task(rq->curr) &&
2025
	    (rq->curr->nr_cpus_allowed < 2 ||
2026
	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2027 2028 2029 2030 2031 2032 2033
		push_dl_tasks(rq);
	}
}

static void set_cpus_allowed_dl(struct task_struct *p,
				const struct cpumask *new_mask)
{
2034
	struct root_domain *src_rd;
2035
	struct rq *rq;
2036 2037 2038

	BUG_ON(!dl_task(p));

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
	rq = task_rq(p);
	src_rd = rq->rd;
	/*
	 * Migrating a SCHED_DEADLINE task between exclusive
	 * cpusets (different root_domains) entails a bandwidth
	 * update. We already made space for us in the destination
	 * domain (see cpuset_can_attach()).
	 */
	if (!cpumask_intersects(src_rd->span, new_mask)) {
		struct dl_bw *src_dl_b;

		src_dl_b = dl_bw_of(cpu_of(rq));
		/*
		 * We now free resources of the root_domain we are migrating
		 * off. In the worst case, sched_setattr() may temporary fail
		 * until we complete the update.
		 */
		raw_spin_lock(&src_dl_b->lock);
		__dl_clear(src_dl_b, p->dl.dl_bw);
		raw_spin_unlock(&src_dl_b->lock);
	}

2061
	set_cpus_allowed_common(p, new_mask);
2062 2063 2064 2065 2066 2067 2068
}

/* Assumes rq->lock is held */
static void rq_online_dl(struct rq *rq)
{
	if (rq->dl.overloaded)
		dl_set_overload(rq);
2069

2070
	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2071
	if (rq->dl.dl_nr_running > 0)
2072
		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2073 2074 2075 2076 2077 2078 2079
}

/* Assumes rq->lock is held */
static void rq_offline_dl(struct rq *rq)
{
	if (rq->dl.overloaded)
		dl_clear_overload(rq);
2080

2081
	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2082
	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2083 2084
}

2085
void __init init_sched_dl_class(void)
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
{
	unsigned int i;

	for_each_possible_cpu(i)
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
					GFP_KERNEL, cpu_to_node(i));
}

#endif /* CONFIG_SMP */

2096 2097
static void switched_from_dl(struct rq *rq, struct task_struct *p)
{
2098
	/*
2099 2100 2101 2102 2103 2104
	 * task_non_contending() can start the "inactive timer" (if the 0-lag
	 * time is in the future). If the task switches back to dl before
	 * the "inactive timer" fires, it can continue to consume its current
	 * runtime using its current deadline. If it stays outside of
	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
	 * will reset the task parameters.
2105
	 */
2106 2107 2108
	if (task_on_rq_queued(p) && p->dl.dl_runtime)
		task_non_contending(p);

2109 2110 2111
	if (!task_on_rq_queued(p))
		sub_rq_bw(p->dl.dl_bw, &rq->dl);

2112 2113 2114 2115 2116 2117 2118
	/*
	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
	 * at the 0-lag time, because the task could have been migrated
	 * while SCHED_OTHER in the meanwhile.
	 */
	if (p->dl.dl_non_contending)
		p->dl.dl_non_contending = 0;
2119

2120 2121 2122 2123 2124
	/*
	 * Since this might be the only -deadline task on the rq,
	 * this is the right place to try to pull some other one
	 * from an overloaded cpu, if any.
	 */
2125 2126 2127
	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
		return;

2128
	queue_pull_task(rq);
2129 2130
}

2131 2132 2133 2134
/*
 * When switching to -deadline, we may overload the rq, then
 * we try to push someone off, if possible.
 */
2135 2136
static void switched_to_dl(struct rq *rq, struct task_struct *p)
{
2137 2138
	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
		put_task_struct(p);
2139 2140

	/* If p is not queued we will update its parameters at next wakeup. */
2141 2142
	if (!task_on_rq_queued(p)) {
		add_rq_bw(p->dl.dl_bw, &rq->dl);
2143

2144 2145
		return;
	}
2146 2147 2148 2149 2150
	/*
	 * If p is boosted we already updated its params in
	 * rt_mutex_setprio()->enqueue_task(..., ENQUEUE_REPLENISH),
	 * p's deadline being now already after rq_clock(rq).
	 */
2151
	if (dl_time_before(p->dl.deadline, rq_clock(rq)))
2152
		setup_new_dl_entity(&p->dl);
2153

2154
	if (rq->curr != p) {
2155
#ifdef CONFIG_SMP
2156
		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2157
			queue_push_tasks(rq);
2158
#endif
2159 2160 2161 2162
		if (dl_task(rq->curr))
			check_preempt_curr_dl(rq, p, 0);
		else
			resched_curr(rq);
2163 2164 2165
	}
}

2166 2167 2168 2169
/*
 * If the scheduling parameters of a -deadline task changed,
 * a push or pull operation might be needed.
 */
2170 2171 2172
static void prio_changed_dl(struct rq *rq, struct task_struct *p,
			    int oldprio)
{
2173
	if (task_on_rq_queued(p) || rq->curr == p) {
2174
#ifdef CONFIG_SMP
2175 2176 2177 2178 2179 2180 2181
		/*
		 * This might be too much, but unfortunately
		 * we don't have the old deadline value, and
		 * we can't argue if the task is increasing
		 * or lowering its prio, so...
		 */
		if (!rq->dl.overloaded)
2182
			queue_pull_task(rq);
2183 2184 2185 2186 2187 2188

		/*
		 * If we now have a earlier deadline task than p,
		 * then reschedule, provided p is still on this
		 * runqueue.
		 */
2189
		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2190
			resched_curr(rq);
2191 2192 2193 2194 2195 2196
#else
		/*
		 * Again, we don't know if p has a earlier
		 * or later deadline, so let's blindly set a
		 * (maybe not needed) rescheduling point.
		 */
2197
		resched_curr(rq);
2198
#endif /* CONFIG_SMP */
2199
	}
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
}

const struct sched_class dl_sched_class = {
	.next			= &rt_sched_class,
	.enqueue_task		= enqueue_task_dl,
	.dequeue_task		= dequeue_task_dl,
	.yield_task		= yield_task_dl,

	.check_preempt_curr	= check_preempt_curr_dl,

	.pick_next_task		= pick_next_task_dl,
	.put_prev_task		= put_prev_task_dl,

#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_dl,
2215
	.migrate_task_rq	= migrate_task_rq_dl,
2216 2217 2218 2219
	.set_cpus_allowed       = set_cpus_allowed_dl,
	.rq_online              = rq_online_dl,
	.rq_offline             = rq_offline_dl,
	.task_woken		= task_woken_dl,
2220 2221 2222 2223 2224 2225 2226 2227 2228
#endif

	.set_curr_task		= set_curr_task_dl,
	.task_tick		= task_tick_dl,
	.task_fork              = task_fork_dl,

	.prio_changed           = prio_changed_dl,
	.switched_from		= switched_from_dl,
	.switched_to		= switched_to_dl,
2229 2230

	.update_curr		= update_curr_dl,
2231
};
2232 2233 2234 2235 2236 2237 2238 2239 2240

#ifdef CONFIG_SCHED_DEBUG
extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);

void print_dl_stats(struct seq_file *m, int cpu)
{
	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
}
#endif /* CONFIG_SCHED_DEBUG */