deadline.c 42.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Deadline Scheduling Class (SCHED_DEADLINE)
 *
 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
 *
 * Tasks that periodically executes their instances for less than their
 * runtime won't miss any of their deadlines.
 * Tasks that are not periodic or sporadic or that tries to execute more
 * than their reserved bandwidth will be slowed down (and may potentially
 * miss some of their deadlines), and won't affect any other task.
 *
 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13
 *                    Juri Lelli <juri.lelli@gmail.com>,
14 15 16 17 18
 *                    Michael Trimarchi <michael@amarulasolutions.com>,
 *                    Fabio Checconi <fchecconi@gmail.com>
 */
#include "sched.h"

19 20
#include <linux/slab.h>

21 22
struct dl_bandwidth def_dl_bandwidth;

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
{
	return container_of(dl_se, struct task_struct, dl);
}

static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
{
	return container_of(dl_rq, struct rq, dl);
}

static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
{
	struct task_struct *p = dl_task_of(dl_se);
	struct rq *rq = task_rq(p);

	return &rq->dl;
}

static inline int on_dl_rq(struct sched_dl_entity *dl_se)
{
	return !RB_EMPTY_NODE(&dl_se->rb_node);
}

static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
{
	struct sched_dl_entity *dl_se = &p->dl;

	return dl_rq->rb_leftmost == &dl_se->rb_node;
}

53 54 55 56 57 58 59 60 61 62 63 64 65
void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
{
	raw_spin_lock_init(&dl_b->dl_runtime_lock);
	dl_b->dl_period = period;
	dl_b->dl_runtime = runtime;
}

extern unsigned long to_ratio(u64 period, u64 runtime);

void init_dl_bw(struct dl_bw *dl_b)
{
	raw_spin_lock_init(&dl_b->lock);
	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
66
	if (global_rt_runtime() == RUNTIME_INF)
67 68
		dl_b->bw = -1;
	else
69
		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
70 71 72 73
	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
	dl_b->total_bw = 0;
}

74 75 76
void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq)
{
	dl_rq->rb_root = RB_ROOT;
77 78 79 80 81 82 83 84

#ifdef CONFIG_SMP
	/* zero means no -deadline tasks */
	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;

	dl_rq->dl_nr_migratory = 0;
	dl_rq->overloaded = 0;
	dl_rq->pushable_dl_tasks_root = RB_ROOT;
85 86
#else
	init_dl_bw(&dl_rq->dl_bw);
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
#endif
}

#ifdef CONFIG_SMP

static inline int dl_overloaded(struct rq *rq)
{
	return atomic_read(&rq->rd->dlo_count);
}

static inline void dl_set_overload(struct rq *rq)
{
	if (!rq->online)
		return;

	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
	/*
	 * Must be visible before the overload count is
	 * set (as in sched_rt.c).
	 *
	 * Matched by the barrier in pull_dl_task().
	 */
	smp_wmb();
	atomic_inc(&rq->rd->dlo_count);
}

static inline void dl_clear_overload(struct rq *rq)
{
	if (!rq->online)
		return;

	atomic_dec(&rq->rd->dlo_count);
	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
}

static void update_dl_migration(struct dl_rq *dl_rq)
{
124
	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
		if (!dl_rq->overloaded) {
			dl_set_overload(rq_of_dl_rq(dl_rq));
			dl_rq->overloaded = 1;
		}
	} else if (dl_rq->overloaded) {
		dl_clear_overload(rq_of_dl_rq(dl_rq));
		dl_rq->overloaded = 0;
	}
}

static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	struct task_struct *p = dl_task_of(dl_se);

	if (p->nr_cpus_allowed > 1)
		dl_rq->dl_nr_migratory++;

	update_dl_migration(dl_rq);
}

static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	struct task_struct *p = dl_task_of(dl_se);

	if (p->nr_cpus_allowed > 1)
		dl_rq->dl_nr_migratory--;

	update_dl_migration(dl_rq);
}

/*
 * The list of pushable -deadline task is not a plist, like in
 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 */
static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
{
	struct dl_rq *dl_rq = &rq->dl;
	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
	struct rb_node *parent = NULL;
	struct task_struct *entry;
	int leftmost = 1;

	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));

	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct task_struct,
				 pushable_dl_tasks);
		if (dl_entity_preempt(&p->dl, &entry->dl))
			link = &parent->rb_left;
		else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	if (leftmost)
		dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;

	rb_link_node(&p->pushable_dl_tasks, parent, link);
	rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
186 187
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
{
	struct dl_rq *dl_rq = &rq->dl;

	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
		return;

	if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
		struct rb_node *next_node;

		next_node = rb_next(&p->pushable_dl_tasks);
		dl_rq->pushable_dl_tasks_leftmost = next_node;
	}

	rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
}

static inline int has_pushable_dl_tasks(struct rq *rq)
{
	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
}

static int push_dl_task(struct rq *rq);

P
Peter Zijlstra 已提交
213 214 215 216 217 218 219 220 221 222
static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
{
	return dl_task(prev);
}

static inline void set_post_schedule(struct rq *rq)
{
	rq->post_schedule = has_pushable_dl_tasks(rq);
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
#else

static inline
void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
{
}

static inline
void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
{
}

static inline
void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
}

static inline
void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
}

P
Peter Zijlstra 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257
static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
{
	return false;
}

static inline int pull_dl_task(struct rq *rq)
{
	return 0;
}

static inline void set_post_schedule(struct rq *rq)
{
}
258 259
#endif /* CONFIG_SMP */

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
				  int flags);

/*
 * We are being explicitly informed that a new instance is starting,
 * and this means that:
 *  - the absolute deadline of the entity has to be placed at
 *    current time + relative deadline;
 *  - the runtime of the entity has to be set to the maximum value.
 *
 * The capability of specifying such event is useful whenever a -deadline
 * entity wants to (try to!) synchronize its behaviour with the scheduler's
 * one, and to (try to!) reconcile itself with its own scheduling
 * parameters.
 */
277 278
static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
				       struct sched_dl_entity *pi_se)
279 280 281 282 283 284 285 286 287 288 289
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
	struct rq *rq = rq_of_dl_rq(dl_rq);

	WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);

	/*
	 * We use the regular wall clock time to set deadlines in the
	 * future; in fact, we must consider execution overheads (time
	 * spent on hardirq context, etc.).
	 */
290 291
	dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
	dl_se->runtime = pi_se->dl_runtime;
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	dl_se->dl_new = 0;
}

/*
 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 * possibility of a entity lasting more than what it declared, and thus
 * exhausting its runtime.
 *
 * Here we are interested in making runtime overrun possible, but we do
 * not want a entity which is misbehaving to affect the scheduling of all
 * other entities.
 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 * is used, in order to confine each entity within its own bandwidth.
 *
 * This function deals exactly with that, and ensures that when the runtime
 * of a entity is replenished, its deadline is also postponed. That ensures
 * the overrunning entity can't interfere with other entity in the system and
 * can't make them miss their deadlines. Reasons why this kind of overruns
 * could happen are, typically, a entity voluntarily trying to overcome its
 * runtime, or it just underestimated it during sched_setscheduler_ex().
 */
313 314
static void replenish_dl_entity(struct sched_dl_entity *dl_se,
				struct sched_dl_entity *pi_se)
315 316 317 318
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
	struct rq *rq = rq_of_dl_rq(dl_rq);

319 320 321 322 323 324 325 326 327 328 329
	BUG_ON(pi_se->dl_runtime <= 0);

	/*
	 * This could be the case for a !-dl task that is boosted.
	 * Just go with full inherited parameters.
	 */
	if (dl_se->dl_deadline == 0) {
		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
		dl_se->runtime = pi_se->dl_runtime;
	}

330 331 332 333 334 335 336
	/*
	 * We keep moving the deadline away until we get some
	 * available runtime for the entity. This ensures correct
	 * handling of situations where the runtime overrun is
	 * arbitrary large.
	 */
	while (dl_se->runtime <= 0) {
337 338
		dl_se->deadline += pi_se->dl_period;
		dl_se->runtime += pi_se->dl_runtime;
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
	}

	/*
	 * At this point, the deadline really should be "in
	 * the future" with respect to rq->clock. If it's
	 * not, we are, for some reason, lagging too much!
	 * Anyway, after having warn userspace abut that,
	 * we still try to keep the things running by
	 * resetting the deadline and the budget of the
	 * entity.
	 */
	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
		static bool lag_once = false;

		if (!lag_once) {
			lag_once = true;
			printk_sched("sched: DL replenish lagged to much\n");
		}
357 358
		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
		dl_se->runtime = pi_se->dl_runtime;
359 360 361 362 363 364 365 366 367 368 369 370 371 372
	}
}

/*
 * Here we check if --at time t-- an entity (which is probably being
 * [re]activated or, in general, enqueued) can use its remaining runtime
 * and its current deadline _without_ exceeding the bandwidth it is
 * assigned (function returns true if it can't). We are in fact applying
 * one of the CBS rules: when a task wakes up, if the residual runtime
 * over residual deadline fits within the allocated bandwidth, then we
 * can keep the current (absolute) deadline and residual budget without
 * disrupting the schedulability of the system. Otherwise, we should
 * refill the runtime and set the deadline a period in the future,
 * because keeping the current (absolute) deadline of the task would
373 374
 * result in breaking guarantees promised to other tasks (refer to
 * Documentation/scheduler/sched-deadline.txt for more informations).
375 376 377
 *
 * This function returns true if:
 *
378
 *   runtime / (deadline - t) > dl_runtime / dl_period ,
379 380
 *
 * IOW we can't recycle current parameters.
381 382 383 384
 *
 * Notice that the bandwidth check is done against the period. For
 * task with deadline equal to period this is the same of using
 * dl_deadline instead of dl_period in the equation above.
385
 */
386 387
static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
			       struct sched_dl_entity *pi_se, u64 t)
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
{
	u64 left, right;

	/*
	 * left and right are the two sides of the equation above,
	 * after a bit of shuffling to use multiplications instead
	 * of divisions.
	 *
	 * Note that none of the time values involved in the two
	 * multiplications are absolute: dl_deadline and dl_runtime
	 * are the relative deadline and the maximum runtime of each
	 * instance, runtime is the runtime left for the last instance
	 * and (deadline - t), since t is rq->clock, is the time left
	 * to the (absolute) deadline. Even if overflowing the u64 type
	 * is very unlikely to occur in both cases, here we scale down
	 * as we want to avoid that risk at all. Scaling down by 10
	 * means that we reduce granularity to 1us. We are fine with it,
	 * since this is only a true/false check and, anyway, thinking
	 * of anything below microseconds resolution is actually fiction
	 * (but still we want to give the user that illusion >;).
	 */
409 410 411
	left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
	right = ((dl_se->deadline - t) >> DL_SCALE) *
		(pi_se->dl_runtime >> DL_SCALE);
412 413 414 415 416 417 418 419 420 421 422 423 424

	return dl_time_before(right, left);
}

/*
 * When a -deadline entity is queued back on the runqueue, its runtime and
 * deadline might need updating.
 *
 * The policy here is that we update the deadline of the entity only if:
 *  - the current deadline is in the past,
 *  - using the remaining runtime with the current deadline would make
 *    the entity exceed its bandwidth.
 */
425 426
static void update_dl_entity(struct sched_dl_entity *dl_se,
			     struct sched_dl_entity *pi_se)
427 428 429 430 431 432 433 434 435
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
	struct rq *rq = rq_of_dl_rq(dl_rq);

	/*
	 * The arrival of a new instance needs special treatment, i.e.,
	 * the actual scheduling parameters have to be "renewed".
	 */
	if (dl_se->dl_new) {
436
		setup_new_dl_entity(dl_se, pi_se);
437 438 439 440
		return;
	}

	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
441 442 443
	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
		dl_se->runtime = pi_se->dl_runtime;
444 445 446 447 448 449 450 451 452 453 454 455 456
	}
}

/*
 * If the entity depleted all its runtime, and if we want it to sleep
 * while waiting for some new execution time to become available, we
 * set the bandwidth enforcement timer to the replenishment instant
 * and try to activate it.
 *
 * Notice that it is important for the caller to know if the timer
 * actually started or not (i.e., the replenishment instant is in
 * the future or in the past).
 */
457
static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted)
458 459 460 461 462 463 464 465
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
	struct rq *rq = rq_of_dl_rq(dl_rq);
	ktime_t now, act;
	ktime_t soft, hard;
	unsigned long range;
	s64 delta;

466 467
	if (boosted)
		return 0;
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
	/*
	 * We want the timer to fire at the deadline, but considering
	 * that it is actually coming from rq->clock and not from
	 * hrtimer's time base reading.
	 */
	act = ns_to_ktime(dl_se->deadline);
	now = hrtimer_cb_get_time(&dl_se->dl_timer);
	delta = ktime_to_ns(now) - rq_clock(rq);
	act = ktime_add_ns(act, delta);

	/*
	 * If the expiry time already passed, e.g., because the value
	 * chosen as the deadline is too small, don't even try to
	 * start the timer in the past!
	 */
	if (ktime_us_delta(act, now) < 0)
		return 0;

	hrtimer_set_expires(&dl_se->dl_timer, act);

	soft = hrtimer_get_softexpires(&dl_se->dl_timer);
	hard = hrtimer_get_expires(&dl_se->dl_timer);
	range = ktime_to_ns(ktime_sub(hard, soft));
	__hrtimer_start_range_ns(&dl_se->dl_timer, soft,
				 range, HRTIMER_MODE_ABS, 0);

	return hrtimer_active(&dl_se->dl_timer);
}

/*
 * This is the bandwidth enforcement timer callback. If here, we know
 * a task is not on its dl_rq, since the fact that the timer was running
 * means the task is throttled and needs a runtime replenishment.
 *
 * However, what we actually do depends on the fact the task is active,
 * (it is on its rq) or has been removed from there by a call to
 * dequeue_task_dl(). In the former case we must issue the runtime
 * replenishment and add the task back to the dl_rq; in the latter, we just
 * do nothing but clearing dl_throttled, so that runtime and deadline
 * updating (and the queueing back to dl_rq) will be done by the
 * next call to enqueue_task_dl().
 */
static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
{
	struct sched_dl_entity *dl_se = container_of(timer,
						     struct sched_dl_entity,
						     dl_timer);
	struct task_struct *p = dl_task_of(dl_se);
	struct rq *rq = task_rq(p);
	raw_spin_lock(&rq->lock);

	/*
	 * We need to take care of a possible races here. In fact, the
	 * task might have changed its scheduling policy to something
	 * different from SCHED_DEADLINE or changed its reservation
	 * parameters (through sched_setscheduler()).
	 */
	if (!dl_task(p) || dl_se->dl_new)
		goto unlock;

	sched_clock_tick();
	update_rq_clock(rq);
	dl_se->dl_throttled = 0;
	if (p->on_rq) {
		enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
		if (task_has_dl_policy(rq->curr))
			check_preempt_curr_dl(rq, p, 0);
		else
			resched_task(rq->curr);
537 538 539 540 541 542 543 544
#ifdef CONFIG_SMP
		/*
		 * Queueing this task back might have overloaded rq,
		 * check if we need to kick someone away.
		 */
		if (has_pushable_dl_tasks(rq))
			push_dl_task(rq);
#endif
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
	}
unlock:
	raw_spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

void init_dl_task_timer(struct sched_dl_entity *dl_se)
{
	struct hrtimer *timer = &dl_se->dl_timer;

	if (hrtimer_active(timer)) {
		hrtimer_try_to_cancel(timer);
		return;
	}

	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	timer->function = dl_task_timer;
}

static
int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se)
{
	int dmiss = dl_time_before(dl_se->deadline, rq_clock(rq));
	int rorun = dl_se->runtime <= 0;

	if (!rorun && !dmiss)
		return 0;

	/*
	 * If we are beyond our current deadline and we are still
	 * executing, then we have already used some of the runtime of
	 * the next instance. Thus, if we do not account that, we are
	 * stealing bandwidth from the system at each deadline miss!
	 */
	if (dmiss) {
		dl_se->runtime = rorun ? dl_se->runtime : 0;
		dl_se->runtime -= rq_clock(rq) - dl_se->deadline;
	}

	return 1;
}

588 589
extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
/*
 * Update the current task's runtime statistics (provided it is still
 * a -deadline task and has not been removed from the dl_rq).
 */
static void update_curr_dl(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct sched_dl_entity *dl_se = &curr->dl;
	u64 delta_exec;

	if (!dl_task(curr) || !on_dl_rq(dl_se))
		return;

	/*
	 * Consumed budget is computed considering the time as
	 * observed by schedulable tasks (excluding time spent
	 * in hardirq context, etc.). Deadlines are instead
	 * computed using hard walltime. This seems to be the more
	 * natural solution, but the full ramifications of this
	 * approach need further study.
	 */
	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
612 613
	if (unlikely((s64)delta_exec <= 0))
		return;
614 615 616 617 618 619 620 621 622 623

	schedstat_set(curr->se.statistics.exec_max,
		      max(curr->se.statistics.exec_max, delta_exec));

	curr->se.sum_exec_runtime += delta_exec;
	account_group_exec_runtime(curr, delta_exec);

	curr->se.exec_start = rq_clock_task(rq);
	cpuacct_charge(curr, delta_exec);

624 625
	sched_rt_avg_update(rq, delta_exec);

626 627 628
	dl_se->runtime -= delta_exec;
	if (dl_runtime_exceeded(rq, dl_se)) {
		__dequeue_task_dl(rq, curr, 0);
629
		if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted)))
630 631 632 633 634 635 636
			dl_se->dl_throttled = 1;
		else
			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);

		if (!is_leftmost(curr, &rq->dl))
			resched_task(curr);
	}
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654

	/*
	 * Because -- for now -- we share the rt bandwidth, we need to
	 * account our runtime there too, otherwise actual rt tasks
	 * would be able to exceed the shared quota.
	 *
	 * Account to the root rt group for now.
	 *
	 * The solution we're working towards is having the RT groups scheduled
	 * using deadline servers -- however there's a few nasties to figure
	 * out before that can happen.
	 */
	if (rt_bandwidth_enabled()) {
		struct rt_rq *rt_rq = &rq->rt;

		raw_spin_lock(&rt_rq->rt_runtime_lock);
		/*
		 * We'll let actual RT tasks worry about the overflow here, we
655 656
		 * have our own CBS to keep us inline; only account when RT
		 * bandwidth is relevant.
657
		 */
658 659
		if (sched_rt_bandwidth_account(rt_rq))
			rt_rq->rt_time += delta_exec;
660 661
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
	}
662 663
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
#ifdef CONFIG_SMP

static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);

static inline u64 next_deadline(struct rq *rq)
{
	struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);

	if (next && dl_prio(next->prio))
		return next->dl.deadline;
	else
		return 0;
}

static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
{
	struct rq *rq = rq_of_dl_rq(dl_rq);

	if (dl_rq->earliest_dl.curr == 0 ||
	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
		/*
		 * If the dl_rq had no -deadline tasks, or if the new task
		 * has shorter deadline than the current one on dl_rq, we
		 * know that the previous earliest becomes our next earliest,
		 * as the new task becomes the earliest itself.
		 */
		dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
		dl_rq->earliest_dl.curr = deadline;
692
		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
	} else if (dl_rq->earliest_dl.next == 0 ||
		   dl_time_before(deadline, dl_rq->earliest_dl.next)) {
		/*
		 * On the other hand, if the new -deadline task has a
		 * a later deadline than the earliest one on dl_rq, but
		 * it is earlier than the next (if any), we must
		 * recompute the next-earliest.
		 */
		dl_rq->earliest_dl.next = next_deadline(rq);
	}
}

static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
{
	struct rq *rq = rq_of_dl_rq(dl_rq);

	/*
	 * Since we may have removed our earliest (and/or next earliest)
	 * task we must recompute them.
	 */
	if (!dl_rq->dl_nr_running) {
		dl_rq->earliest_dl.curr = 0;
		dl_rq->earliest_dl.next = 0;
716
		cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
717 718 719 720 721 722 723
	} else {
		struct rb_node *leftmost = dl_rq->rb_leftmost;
		struct sched_dl_entity *entry;

		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
		dl_rq->earliest_dl.curr = entry->deadline;
		dl_rq->earliest_dl.next = next_deadline(rq);
724
		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
	}
}

#else

static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}

#endif /* CONFIG_SMP */

static inline
void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	int prio = dl_task_of(dl_se)->prio;
	u64 deadline = dl_se->deadline;

	WARN_ON(!dl_prio(prio));
	dl_rq->dl_nr_running++;
743
	inc_nr_running(rq_of_dl_rq(dl_rq));
744 745 746 747 748 749 750 751 752 753 754 755 756

	inc_dl_deadline(dl_rq, deadline);
	inc_dl_migration(dl_se, dl_rq);
}

static inline
void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	int prio = dl_task_of(dl_se)->prio;

	WARN_ON(!dl_prio(prio));
	WARN_ON(!dl_rq->dl_nr_running);
	dl_rq->dl_nr_running--;
757
	dec_nr_running(rq_of_dl_rq(dl_rq));
758 759 760 761 762

	dec_dl_deadline(dl_rq, dl_se->deadline);
	dec_dl_migration(dl_se, dl_rq);
}

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
	struct rb_node **link = &dl_rq->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct sched_dl_entity *entry;
	int leftmost = 1;

	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));

	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
		if (dl_time_before(dl_se->deadline, entry->deadline))
			link = &parent->rb_left;
		else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	if (leftmost)
		dl_rq->rb_leftmost = &dl_se->rb_node;

	rb_link_node(&dl_se->rb_node, parent, link);
	rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);

790
	inc_dl_tasks(dl_se, dl_rq);
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
}

static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);

	if (RB_EMPTY_NODE(&dl_se->rb_node))
		return;

	if (dl_rq->rb_leftmost == &dl_se->rb_node) {
		struct rb_node *next_node;

		next_node = rb_next(&dl_se->rb_node);
		dl_rq->rb_leftmost = next_node;
	}

	rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
	RB_CLEAR_NODE(&dl_se->rb_node);

810
	dec_dl_tasks(dl_se, dl_rq);
811 812 813
}

static void
814 815
enqueue_dl_entity(struct sched_dl_entity *dl_se,
		  struct sched_dl_entity *pi_se, int flags)
816 817 818 819 820 821 822 823 824
{
	BUG_ON(on_dl_rq(dl_se));

	/*
	 * If this is a wakeup or a new instance, the scheduling
	 * parameters of the task might need updating. Otherwise,
	 * we want a replenishment of its runtime.
	 */
	if (!dl_se->dl_new && flags & ENQUEUE_REPLENISH)
825
		replenish_dl_entity(dl_se, pi_se);
826
	else
827
		update_dl_entity(dl_se, pi_se);
828 829 830 831 832 833 834 835 836 837 838

	__enqueue_dl_entity(dl_se);
}

static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
{
	__dequeue_dl_entity(dl_se);
}

static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
{
839 840 841 842 843 844 845 846 847 848 849 850
	struct task_struct *pi_task = rt_mutex_get_top_task(p);
	struct sched_dl_entity *pi_se = &p->dl;

	/*
	 * Use the scheduling parameters of the top pi-waiter
	 * task if we have one and its (relative) deadline is
	 * smaller than our one... OTW we keep our runtime and
	 * deadline.
	 */
	if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio))
		pi_se = &pi_task->dl;

851 852 853 854 855 856 857 858 859
	/*
	 * If p is throttled, we do nothing. In fact, if it exhausted
	 * its budget it needs a replenishment and, since it now is on
	 * its rq, the bandwidth timer callback (which clearly has not
	 * run yet) will take care of this.
	 */
	if (p->dl.dl_throttled)
		return;

860
	enqueue_dl_entity(&p->dl, pi_se, flags);
861 862 863

	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
		enqueue_pushable_dl_task(rq, p);
864 865 866 867 868
}

static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
{
	dequeue_dl_entity(&p->dl);
869
	dequeue_pushable_dl_task(rq, p);
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
}

static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
{
	update_curr_dl(rq);
	__dequeue_task_dl(rq, p, flags);
}

/*
 * Yield task semantic for -deadline tasks is:
 *
 *   get off from the CPU until our next instance, with
 *   a new runtime. This is of little use now, since we
 *   don't have a bandwidth reclaiming mechanism. Anyway,
 *   bandwidth reclaiming is planned for the future, and
 *   yield_task_dl will indicate that some spare budget
 *   is available for other task instances to use it.
 */
static void yield_task_dl(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	/*
	 * We make the task go to sleep until its current deadline by
	 * forcing its runtime to zero. This way, update_curr_dl() stops
	 * it and the bandwidth timer will wake it up and will give it
	 * new scheduling parameters (thanks to dl_new=1).
	 */
	if (p->dl.runtime > 0) {
		rq->curr->dl.dl_new = 1;
		p->dl.runtime = 0;
	}
	update_curr_dl(rq);
}

905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
#ifdef CONFIG_SMP

static int find_later_rq(struct task_struct *task);

static int
select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
{
	struct task_struct *curr;
	struct rq *rq;

	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
		goto out;

	rq = cpu_rq(cpu);

	rcu_read_lock();
	curr = ACCESS_ONCE(rq->curr); /* unlocked access */

	/*
	 * If we are dealing with a -deadline task, we must
	 * decide where to wake it up.
	 * If it has a later deadline and the current task
	 * on this rq can't move (provided the waking task
	 * can!) we prefer to send it somewhere else. On the
	 * other hand, if it has a shorter deadline, we
	 * try to make it stay here, it might be important.
	 */
	if (unlikely(dl_task(curr)) &&
	    (curr->nr_cpus_allowed < 2 ||
	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
	    (p->nr_cpus_allowed > 1)) {
		int target = find_later_rq(p);

		if (target != -1)
			cpu = target;
	}
	rcu_read_unlock();

out:
	return cpu;
}

static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
{
	/*
	 * Current can't be migrated, useless to reschedule,
	 * let's hope p can move out.
	 */
	if (rq->curr->nr_cpus_allowed == 1 ||
954
	    cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
955 956 957 958 959 960 961
		return;

	/*
	 * p is migratable, so let's not schedule it and
	 * see if it is pushed or pulled somewhere else.
	 */
	if (p->nr_cpus_allowed != 1 &&
962
	    cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
963 964 965 966 967
		return;

	resched_task(rq->curr);
}

968 969
static int pull_dl_task(struct rq *this_rq);

970 971
#endif /* CONFIG_SMP */

972 973 974 975 976 977 978
/*
 * Only called when both the current and waking task are -deadline
 * tasks.
 */
static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
				  int flags)
{
979
	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
980
		resched_task(rq->curr);
981 982 983 984 985 986 987 988
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * In the unlikely case current and p have the same deadline
	 * let us try to decide what's the best thing to do...
	 */
989 990
	if ((p->dl.deadline == rq->curr->dl.deadline) &&
	    !test_tsk_need_resched(rq->curr))
991 992
		check_preempt_equal_dl(rq, p);
#endif /* CONFIG_SMP */
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
}

#ifdef CONFIG_SCHED_HRTICK
static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
{
	s64 delta = p->dl.dl_runtime - p->dl.runtime;

	if (delta > 10000)
		hrtick_start(rq, p->dl.runtime);
}
#endif

static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
						   struct dl_rq *dl_rq)
{
	struct rb_node *left = dl_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_dl_entity, rb_node);
}

1016
struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
1017 1018 1019 1020 1021 1022 1023
{
	struct sched_dl_entity *dl_se;
	struct task_struct *p;
	struct dl_rq *dl_rq;

	dl_rq = &rq->dl;

1024
	if (need_pull_dl_task(rq, prev)) {
1025
		pull_dl_task(rq);
1026 1027 1028 1029 1030 1031 1032 1033 1034
		/*
		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
		 * means a stop task can slip in, in which case we need to
		 * re-start task selection.
		 */
		if (rq->stop && rq->stop->on_rq)
			return RETRY_TASK;
	}

1035 1036 1037 1038 1039 1040
	/*
	 * When prev is DL, we may throttle it in put_prev_task().
	 * So, we update time before we check for dl_nr_running.
	 */
	if (prev->sched_class == &dl_sched_class)
		update_curr_dl(rq);
1041

1042 1043 1044
	if (unlikely(!dl_rq->dl_nr_running))
		return NULL;

1045
	put_prev_task(rq, prev);
1046

1047 1048 1049 1050 1051
	dl_se = pick_next_dl_entity(rq, dl_rq);
	BUG_ON(!dl_se);

	p = dl_task_of(dl_se);
	p->se.exec_start = rq_clock_task(rq);
1052 1053

	/* Running task will never be pushed. */
1054
       dequeue_pushable_dl_task(rq, p);
1055

1056 1057 1058 1059
#ifdef CONFIG_SCHED_HRTICK
	if (hrtick_enabled(rq))
		start_hrtick_dl(rq, p);
#endif
1060

P
Peter Zijlstra 已提交
1061
	set_post_schedule(rq);
1062

1063 1064 1065 1066 1067 1068
	return p;
}

static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
{
	update_curr_dl(rq);
1069 1070 1071

	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
		enqueue_pushable_dl_task(rq, p);
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
}

static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
{
	update_curr_dl(rq);

#ifdef CONFIG_SCHED_HRTICK
	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0)
		start_hrtick_dl(rq, p);
#endif
}

static void task_fork_dl(struct task_struct *p)
{
	/*
	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
	 * sched_fork()
	 */
}

static void task_dead_dl(struct task_struct *p)
{
	struct hrtimer *timer = &p->dl.dl_timer;
1095 1096 1097 1098 1099 1100 1101 1102
	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));

	/*
	 * Since we are TASK_DEAD we won't slip out of the domain!
	 */
	raw_spin_lock_irq(&dl_b->lock);
	dl_b->total_bw -= p->dl.dl_bw;
	raw_spin_unlock_irq(&dl_b->lock);
1103

1104
	hrtimer_cancel(timer);
1105 1106 1107 1108 1109 1110 1111
}

static void set_curr_task_dl(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq_clock_task(rq);
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

	/* You can't push away the running task */
	dequeue_pushable_dl_task(rq, p);
}

#ifdef CONFIG_SMP

/* Only try algorithms three times */
#define DL_MAX_TRIES 3

static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
	    (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
	    (p->nr_cpus_allowed > 1))
		return 1;

	return 0;
}

/* Returns the second earliest -deadline task, NULL otherwise */
static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
{
	struct rb_node *next_node = rq->dl.rb_leftmost;
	struct sched_dl_entity *dl_se;
	struct task_struct *p = NULL;

next_node:
	next_node = rb_next(next_node);
	if (next_node) {
		dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
		p = dl_task_of(dl_se);

		if (pick_dl_task(rq, p, cpu))
			return p;

		goto next_node;
	}

	return NULL;
}

static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);

static int find_later_rq(struct task_struct *task)
{
	struct sched_domain *sd;
	struct cpumask *later_mask = __get_cpu_var(local_cpu_mask_dl);
	int this_cpu = smp_processor_id();
	int best_cpu, cpu = task_cpu(task);

	/* Make sure the mask is initialized first */
	if (unlikely(!later_mask))
		return -1;

	if (task->nr_cpus_allowed == 1)
		return -1;

1170 1171
	best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
			task, later_mask);
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	if (best_cpu == -1)
		return -1;

	/*
	 * If we are here, some target has been found,
	 * the most suitable of which is cached in best_cpu.
	 * This is, among the runqueues where the current tasks
	 * have later deadlines than the task's one, the rq
	 * with the latest possible one.
	 *
	 * Now we check how well this matches with task's
	 * affinity and system topology.
	 *
	 * The last cpu where the task run is our first
	 * guess, since it is most likely cache-hot there.
	 */
	if (cpumask_test_cpu(cpu, later_mask))
		return cpu;
	/*
	 * Check if this_cpu is to be skipped (i.e., it is
	 * not in the mask) or not.
	 */
	if (!cpumask_test_cpu(this_cpu, later_mask))
		this_cpu = -1;

	rcu_read_lock();
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {

			/*
			 * If possible, preempting this_cpu is
			 * cheaper than migrating.
			 */
			if (this_cpu != -1 &&
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
				return this_cpu;
			}

			/*
			 * Last chance: if best_cpu is valid and is
			 * in the mask, that becomes our choice.
			 */
			if (best_cpu < nr_cpu_ids &&
			    cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
				return best_cpu;
			}
		}
	}
	rcu_read_unlock();

	/*
	 * At this point, all our guesses failed, we just return
	 * 'something', and let the caller sort the things out.
	 */
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(later_mask);
	if (cpu < nr_cpu_ids)
		return cpu;

	return -1;
}

/* Locks the rq it finds */
static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
{
	struct rq *later_rq = NULL;
	int tries;
	int cpu;

	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
		cpu = find_later_rq(task);

		if ((cpu == -1) || (cpu == rq->cpu))
			break;

		later_rq = cpu_rq(cpu);

		/* Retry if something changed. */
		if (double_lock_balance(rq, later_rq)) {
			if (unlikely(task_rq(task) != rq ||
				     !cpumask_test_cpu(later_rq->cpu,
				                       &task->cpus_allowed) ||
				     task_running(rq, task) || !task->on_rq)) {
				double_unlock_balance(rq, later_rq);
				later_rq = NULL;
				break;
			}
		}

		/*
		 * If the rq we found has no -deadline task, or
		 * its earliest one has a later deadline than our
		 * task, the rq is a good one.
		 */
		if (!later_rq->dl.dl_nr_running ||
		    dl_time_before(task->dl.deadline,
				   later_rq->dl.earliest_dl.curr))
			break;

		/* Otherwise we try again. */
		double_unlock_balance(rq, later_rq);
		later_rq = NULL;
	}

	return later_rq;
}

static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_dl_tasks(rq))
		return NULL;

	p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
		     struct task_struct, pushable_dl_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
	BUG_ON(p->nr_cpus_allowed <= 1);

1297
	BUG_ON(!p->on_rq);
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	BUG_ON(!dl_task(p));

	return p;
}

/*
 * See if the non running -deadline tasks on this rq
 * can be sent to some other CPU where they can preempt
 * and start executing.
 */
static int push_dl_task(struct rq *rq)
{
	struct task_struct *next_task;
	struct rq *later_rq;

	if (!rq->dl.overloaded)
		return 0;

	next_task = pick_next_pushable_dl_task(rq);
	if (!next_task)
		return 0;

retry:
	if (unlikely(next_task == rq->curr)) {
		WARN_ON(1);
		return 0;
	}

	/*
	 * If next_task preempts rq->curr, and rq->curr
	 * can move away, it makes sense to just reschedule
	 * without going further in pushing next_task.
	 */
	if (dl_task(rq->curr) &&
	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
	    rq->curr->nr_cpus_allowed > 1) {
		resched_task(rq->curr);
		return 0;
	}

	/* We might release rq lock */
	get_task_struct(next_task);

	/* Will lock the rq it'll find */
	later_rq = find_lock_later_rq(next_task, rq);
	if (!later_rq) {
		struct task_struct *task;

		/*
		 * We must check all this again, since
		 * find_lock_later_rq releases rq->lock and it is
		 * then possible that next_task has migrated.
		 */
		task = pick_next_pushable_dl_task(rq);
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
			 * The task is still there. We don't try
			 * again, some other cpu will pull it when ready.
			 */
			dequeue_pushable_dl_task(rq, next_task);
			goto out;
		}

		if (!task)
			/* No more tasks */
			goto out;

		put_task_struct(next_task);
		next_task = task;
		goto retry;
	}

	deactivate_task(rq, next_task, 0);
	set_task_cpu(next_task, later_rq->cpu);
	activate_task(later_rq, next_task, 0);

	resched_task(later_rq->curr);

	double_unlock_balance(rq, later_rq);

out:
	put_task_struct(next_task);

	return 1;
}

static void push_dl_tasks(struct rq *rq)
{
	/* Terminates as it moves a -deadline task */
	while (push_dl_task(rq))
		;
1389 1390
}

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
static int pull_dl_task(struct rq *this_rq)
{
	int this_cpu = this_rq->cpu, ret = 0, cpu;
	struct task_struct *p;
	struct rq *src_rq;
	u64 dmin = LONG_MAX;

	if (likely(!dl_overloaded(this_rq)))
		return 0;

	/*
	 * Match the barrier from dl_set_overloaded; this guarantees that if we
	 * see overloaded we must also see the dlo_mask bit.
	 */
	smp_rmb();

	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);

		/*
		 * It looks racy, abd it is! However, as in sched_rt.c,
		 * we are fine with this.
		 */
		if (this_rq->dl.dl_nr_running &&
		    dl_time_before(this_rq->dl.earliest_dl.curr,
				   src_rq->dl.earliest_dl.next))
			continue;

		/* Might drop this_rq->lock */
		double_lock_balance(this_rq, src_rq);

		/*
		 * If there are no more pullable tasks on the
		 * rq, we're done with it.
		 */
		if (src_rq->dl.dl_nr_running <= 1)
			goto skip;

		p = pick_next_earliest_dl_task(src_rq, this_cpu);

		/*
		 * We found a task to be pulled if:
		 *  - it preempts our current (if there's one),
		 *  - it will preempt the last one we pulled (if any).
		 */
		if (p && dl_time_before(p->dl.deadline, dmin) &&
		    (!this_rq->dl.dl_nr_running ||
		     dl_time_before(p->dl.deadline,
				    this_rq->dl.earliest_dl.curr))) {
			WARN_ON(p == src_rq->curr);
1444
			WARN_ON(!p->on_rq);
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539

			/*
			 * Then we pull iff p has actually an earlier
			 * deadline than the current task of its runqueue.
			 */
			if (dl_time_before(p->dl.deadline,
					   src_rq->curr->dl.deadline))
				goto skip;

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			dmin = p->dl.deadline;

			/* Is there any other task even earlier? */
		}
skip:
		double_unlock_balance(this_rq, src_rq);
	}

	return ret;
}

static void post_schedule_dl(struct rq *rq)
{
	push_dl_tasks(rq);
}

/*
 * Since the task is not running and a reschedule is not going to happen
 * anytime soon on its runqueue, we try pushing it away now.
 */
static void task_woken_dl(struct rq *rq, struct task_struct *p)
{
	if (!task_running(rq, p) &&
	    !test_tsk_need_resched(rq->curr) &&
	    has_pushable_dl_tasks(rq) &&
	    p->nr_cpus_allowed > 1 &&
	    dl_task(rq->curr) &&
	    (rq->curr->nr_cpus_allowed < 2 ||
	     dl_entity_preempt(&rq->curr->dl, &p->dl))) {
		push_dl_tasks(rq);
	}
}

static void set_cpus_allowed_dl(struct task_struct *p,
				const struct cpumask *new_mask)
{
	struct rq *rq;
	int weight;

	BUG_ON(!dl_task(p));

	/*
	 * Update only if the task is actually running (i.e.,
	 * it is on the rq AND it is not throttled).
	 */
	if (!on_dl_rq(&p->dl))
		return;

	weight = cpumask_weight(new_mask);

	/*
	 * Only update if the process changes its state from whether it
	 * can migrate or not.
	 */
	if ((p->nr_cpus_allowed > 1) == (weight > 1))
		return;

	rq = task_rq(p);

	/*
	 * The process used to be able to migrate OR it can now migrate
	 */
	if (weight <= 1) {
		if (!task_current(rq, p))
			dequeue_pushable_dl_task(rq, p);
		BUG_ON(!rq->dl.dl_nr_migratory);
		rq->dl.dl_nr_migratory--;
	} else {
		if (!task_current(rq, p))
			enqueue_pushable_dl_task(rq, p);
		rq->dl.dl_nr_migratory++;
	}

	update_dl_migration(&rq->dl);
}

/* Assumes rq->lock is held */
static void rq_online_dl(struct rq *rq)
{
	if (rq->dl.overloaded)
		dl_set_overload(rq);
1540 1541 1542

	if (rq->dl.dl_nr_running > 0)
		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1543 1544 1545 1546 1547 1548 1549
}

/* Assumes rq->lock is held */
static void rq_offline_dl(struct rq *rq)
{
	if (rq->dl.overloaded)
		dl_clear_overload(rq);
1550 1551

	cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
}

void init_sched_dl_class(void)
{
	unsigned int i;

	for_each_possible_cpu(i)
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
					GFP_KERNEL, cpu_to_node(i));
}

#endif /* CONFIG_SMP */

1565 1566
static void switched_from_dl(struct rq *rq, struct task_struct *p)
{
1567
	if (hrtimer_active(&p->dl.dl_timer) && !dl_policy(p->policy))
1568
		hrtimer_try_to_cancel(&p->dl.dl_timer);
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578

#ifdef CONFIG_SMP
	/*
	 * Since this might be the only -deadline task on the rq,
	 * this is the right place to try to pull some other one
	 * from an overloaded cpu, if any.
	 */
	if (!rq->dl.dl_nr_running)
		pull_dl_task(rq);
#endif
1579 1580
}

1581 1582 1583 1584
/*
 * When switching to -deadline, we may overload the rq, then
 * we try to push someone off, if possible.
 */
1585 1586
static void switched_to_dl(struct rq *rq, struct task_struct *p)
{
1587 1588
	int check_resched = 1;

1589 1590 1591 1592 1593 1594 1595 1596
	/*
	 * If p is throttled, don't consider the possibility
	 * of preempting rq->curr, the check will be done right
	 * after its runtime will get replenished.
	 */
	if (unlikely(p->dl.dl_throttled))
		return;

1597
	if (p->on_rq && rq->curr != p) {
1598 1599 1600 1601 1602 1603
#ifdef CONFIG_SMP
		if (rq->dl.overloaded && push_dl_task(rq) && rq != task_rq(p))
			/* Only reschedule if pushing failed */
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && task_has_dl_policy(rq->curr))
1604 1605 1606 1607
			check_preempt_curr_dl(rq, p, 0);
	}
}

1608 1609 1610 1611
/*
 * If the scheduling parameters of a -deadline task changed,
 * a push or pull operation might be needed.
 */
1612 1613 1614
static void prio_changed_dl(struct rq *rq, struct task_struct *p,
			    int oldprio)
{
1615
	if (p->on_rq || rq->curr == p) {
1616
#ifdef CONFIG_SMP
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
		/*
		 * This might be too much, but unfortunately
		 * we don't have the old deadline value, and
		 * we can't argue if the task is increasing
		 * or lowering its prio, so...
		 */
		if (!rq->dl.overloaded)
			pull_dl_task(rq);

		/*
		 * If we now have a earlier deadline task than p,
		 * then reschedule, provided p is still on this
		 * runqueue.
		 */
		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) &&
		    rq->curr == p)
			resched_task(p);
#else
		/*
		 * Again, we don't know if p has a earlier
		 * or later deadline, so let's blindly set a
		 * (maybe not needed) rescheduling point.
		 */
		resched_task(p);
#endif /* CONFIG_SMP */
	} else
		switched_to_dl(rq, p);
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
}

const struct sched_class dl_sched_class = {
	.next			= &rt_sched_class,
	.enqueue_task		= enqueue_task_dl,
	.dequeue_task		= dequeue_task_dl,
	.yield_task		= yield_task_dl,

	.check_preempt_curr	= check_preempt_curr_dl,

	.pick_next_task		= pick_next_task_dl,
	.put_prev_task		= put_prev_task_dl,

#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_dl,
1659 1660 1661 1662 1663
	.set_cpus_allowed       = set_cpus_allowed_dl,
	.rq_online              = rq_online_dl,
	.rq_offline             = rq_offline_dl,
	.post_schedule		= post_schedule_dl,
	.task_woken		= task_woken_dl,
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
#endif

	.set_curr_task		= set_curr_task_dl,
	.task_tick		= task_tick_dl,
	.task_fork              = task_fork_dl,
	.task_dead		= task_dead_dl,

	.prio_changed           = prio_changed_dl,
	.switched_from		= switched_from_dl,
	.switched_to		= switched_to_dl,
};