i915_gem_userptr.c 21.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2012-2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drmP.h>
#include <drm/i915_drm.h>
27 28 29 30 31 32 33 34
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
#include <linux/mmu_context.h>
#include <linux/mmu_notifier.h>
#include <linux/mempolicy.h>
#include <linux/swap.h>

35 36 37 38 39 40 41 42 43
struct i915_mm_struct {
	struct mm_struct *mm;
	struct drm_device *dev;
	struct i915_mmu_notifier *mn;
	struct hlist_node node;
	struct kref kref;
	struct work_struct work;
};

44 45 46 47 48 49 50 51
#if defined(CONFIG_MMU_NOTIFIER)
#include <linux/interval_tree.h>

struct i915_mmu_notifier {
	spinlock_t lock;
	struct hlist_node node;
	struct mmu_notifier mn;
	struct rb_root objects;
52
	struct list_head linear;
53
	unsigned long serial;
54
	bool has_linear;
55 56 57
};

struct i915_mmu_object {
58
	struct i915_mmu_notifier *mn;
59
	struct interval_tree_node it;
60
	struct list_head link;
61
	struct drm_i915_gem_object *obj;
62
	bool is_linear;
63 64
};

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
static unsigned long cancel_userptr(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	unsigned long end;

	mutex_lock(&dev->struct_mutex);
	/* Cancel any active worker and force us to re-evaluate gup */
	obj->userptr.work = NULL;

	if (obj->pages != NULL) {
		struct drm_i915_private *dev_priv = to_i915(dev);
		struct i915_vma *vma, *tmp;
		bool was_interruptible;

		was_interruptible = dev_priv->mm.interruptible;
		dev_priv->mm.interruptible = false;

		list_for_each_entry_safe(vma, tmp, &obj->vma_list, vma_link) {
			int ret = i915_vma_unbind(vma);
			WARN_ON(ret && ret != -EIO);
		}
		WARN_ON(i915_gem_object_put_pages(obj));

		dev_priv->mm.interruptible = was_interruptible;
	}

	end = obj->userptr.ptr + obj->base.size;

	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);

	return end;
}

99 100 101 102
static void *invalidate_range__linear(struct i915_mmu_notifier *mn,
				      struct mm_struct *mm,
				      unsigned long start,
				      unsigned long end)
103
{
104
	struct i915_mmu_object *mo;
105 106 107 108
	unsigned long serial;

restart:
	serial = mn->serial;
109
	list_for_each_entry(mo, &mn->linear, link) {
110 111
		struct drm_i915_gem_object *obj;

112
		if (mo->it.last < start || mo->it.start > end)
113 114
			continue;

115
		obj = mo->obj;
116 117 118 119

		if (!kref_get_unless_zero(&obj->base.refcount))
			continue;

120 121 122 123 124 125 126 127 128
		spin_unlock(&mn->lock);

		cancel_userptr(obj);

		spin_lock(&mn->lock);
		if (serial != mn->serial)
			goto restart;
	}

129
	return NULL;
130 131
}

132 133 134 135 136 137 138
static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
						       struct mm_struct *mm,
						       unsigned long start,
						       unsigned long end)
{
	struct i915_mmu_notifier *mn = container_of(_mn, struct i915_mmu_notifier, mn);
	struct interval_tree_node *it = NULL;
139
	unsigned long next = start;
140 141 142
	unsigned long serial = 0;

	end--; /* interval ranges are inclusive, but invalidate range is exclusive */
143
	while (next < end) {
144
		struct drm_i915_gem_object *obj = NULL;
145 146

		spin_lock(&mn->lock);
147
		if (mn->has_linear)
148 149
			it = invalidate_range__linear(mn, mm, start, end);
		else if (serial == mn->serial)
150
			it = interval_tree_iter_next(it, next, end);
151 152 153 154
		else
			it = interval_tree_iter_first(&mn->objects, start, end);
		if (it != NULL) {
			obj = container_of(it, struct i915_mmu_object, it)->obj;
155 156 157 158 159 160 161 162 163 164 165 166 167 168

			/* The mmu_object is released late when destroying the
			 * GEM object so it is entirely possible to gain a
			 * reference on an object in the process of being freed
			 * since our serialisation is via the spinlock and not
			 * the struct_mutex - and consequently use it after it
			 * is freed and then double free it.
			 */
			if (!kref_get_unless_zero(&obj->base.refcount)) {
				spin_unlock(&mn->lock);
				serial = 0;
				continue;
			}

169 170 171 172 173 174
			serial = mn->serial;
		}
		spin_unlock(&mn->lock);
		if (obj == NULL)
			return;

175
		next = cancel_userptr(obj);
176 177 178 179 180 181 182 183
	}
}

static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
	.invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
};

static struct i915_mmu_notifier *
184
i915_mmu_notifier_create(struct mm_struct *mm)
185
{
186
	struct i915_mmu_notifier *mn;
187 188
	int ret;

189 190
	mn = kmalloc(sizeof(*mn), GFP_KERNEL);
	if (mn == NULL)
191 192
		return ERR_PTR(-ENOMEM);

193 194 195 196 197 198 199 200 201
	spin_lock_init(&mn->lock);
	mn->mn.ops = &i915_gem_userptr_notifier;
	mn->objects = RB_ROOT;
	mn->serial = 1;
	INIT_LIST_HEAD(&mn->linear);
	mn->has_linear = false;

	 /* Protected by mmap_sem (write-lock) */
	ret = __mmu_notifier_register(&mn->mn, mm);
202
	if (ret) {
203
		kfree(mn);
204 205 206
		return ERR_PTR(ret);
	}

207
	return mn;
208 209
}

210
static void __i915_mmu_notifier_update_serial(struct i915_mmu_notifier *mn)
211
{
212 213
	if (++mn->serial == 0)
		mn->serial = 1;
214 215 216
}

static int
217 218 219
i915_mmu_notifier_add(struct drm_device *dev,
		      struct i915_mmu_notifier *mn,
		      struct i915_mmu_object *mo)
220 221 222 223
{
	struct interval_tree_node *it;
	int ret;

224
	ret = i915_mutex_lock_interruptible(dev);
225 226 227 228 229 230 231
	if (ret)
		return ret;

	/* Make sure we drop the final active reference (and thereby
	 * remove the objects from the interval tree) before we do
	 * the check for overlapping objects.
	 */
232
	i915_gem_retire_requests(dev);
233

234 235 236
	spin_lock(&mn->lock);
	it = interval_tree_iter_first(&mn->objects,
				      mo->it.start, mo->it.last);
237 238 239 240 241 242 243 244 245
	if (it) {
		struct drm_i915_gem_object *obj;

		/* We only need to check the first object in the range as it
		 * either has cancelled gup work queued and we need to
		 * return back to the user to give time for the gup-workers
		 * to flush their object references upon which the object will
		 * be removed from the interval-tree, or the the range is
		 * still in use by another client and the overlap is invalid.
246 247 248
		 *
		 * If we do have an overlap, we cannot use the interval tree
		 * for fast range invalidation.
249 250 251
		 */

		obj = container_of(it, struct i915_mmu_object, it)->obj;
252
		if (!obj->userptr.workers)
253
			mn->has_linear = mo->is_linear = true;
254 255 256
		else
			ret = -EAGAIN;
	} else
257
		interval_tree_insert(&mo->it, &mn->objects);
258 259

	if (ret == 0) {
260 261
		list_add(&mo->link, &mn->linear);
		__i915_mmu_notifier_update_serial(mn);
262
	}
263 264
	spin_unlock(&mn->lock);
	mutex_unlock(&dev->struct_mutex);
265 266 267 268

	return ret;
}

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
static bool i915_mmu_notifier_has_linear(struct i915_mmu_notifier *mn)
{
	struct i915_mmu_object *mo;

	list_for_each_entry(mo, &mn->linear, link)
		if (mo->is_linear)
			return true;

	return false;
}

static void
i915_mmu_notifier_del(struct i915_mmu_notifier *mn,
		      struct i915_mmu_object *mo)
{
	spin_lock(&mn->lock);
	list_del(&mo->link);
	if (mo->is_linear)
		mn->has_linear = i915_mmu_notifier_has_linear(mn);
	else
		interval_tree_remove(&mo->it, &mn->objects);
	__i915_mmu_notifier_update_serial(mn);
	spin_unlock(&mn->lock);
}

294 295 296
static void
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
{
297
	struct i915_mmu_object *mo;
298

299 300
	mo = obj->userptr.mmu_object;
	if (mo == NULL)
301 302
		return;

303 304 305 306 307 308 309 310 311
	i915_mmu_notifier_del(mo->mn, mo);
	kfree(mo);

	obj->userptr.mmu_object = NULL;
}

static struct i915_mmu_notifier *
i915_mmu_notifier_find(struct i915_mm_struct *mm)
{
312 313 314 315 316 317 318 319 320 321 322 323
	struct i915_mmu_notifier *mn = mm->mn;

	mn = mm->mn;
	if (mn)
		return mn;

	down_write(&mm->mm->mmap_sem);
	mutex_lock(&to_i915(mm->dev)->mm_lock);
	if ((mn = mm->mn) == NULL) {
		mn = i915_mmu_notifier_create(mm->mm);
		if (!IS_ERR(mn))
			mm->mn = mn;
324
	}
325 326 327 328
	mutex_unlock(&to_i915(mm->dev)->mm_lock);
	up_write(&mm->mm->mmap_sem);

	return mn;
329 330 331 332 333 334
}

static int
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
				    unsigned flags)
{
335 336
	struct i915_mmu_notifier *mn;
	struct i915_mmu_object *mo;
337 338 339 340 341
	int ret;

	if (flags & I915_USERPTR_UNSYNCHRONIZED)
		return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;

342 343
	if (WARN_ON(obj->userptr.mm == NULL))
		return -EINVAL;
344

345 346 347
	mn = i915_mmu_notifier_find(obj->userptr.mm);
	if (IS_ERR(mn))
		return PTR_ERR(mn);
348

349 350 351
	mo = kzalloc(sizeof(*mo), GFP_KERNEL);
	if (mo == NULL)
		return -ENOMEM;
352

353 354 355 356
	mo->mn = mn;
	mo->it.start = obj->userptr.ptr;
	mo->it.last = mo->it.start + obj->base.size - 1;
	mo->obj = obj;
357

358 359 360 361 362 363 364
	ret = i915_mmu_notifier_add(obj->base.dev, mn, mo);
	if (ret) {
		kfree(mo);
		return ret;
	}

	obj->userptr.mmu_object = mo;
365
	return 0;
366 367 368 369 370 371 372 373
}

static void
i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
		       struct mm_struct *mm)
{
	if (mn == NULL)
		return;
374

375
	mmu_notifier_unregister(&mn->mn, mm);
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
	kfree(mn);
}

#else

static void
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
{
}

static int
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
				    unsigned flags)
{
	if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
		return -ENODEV;

	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;

	return 0;
}
398 399 400 401 402 403 404

static void
i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
		       struct mm_struct *mm)
{
}

405 406
#endif

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
static struct i915_mm_struct *
__i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
{
	struct i915_mm_struct *mm;

	/* Protected by dev_priv->mm_lock */
	hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
		if (mm->mm == real)
			return mm;

	return NULL;
}

static int
i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_mm_struct *mm;
	int ret = 0;

	/* During release of the GEM object we hold the struct_mutex. This
	 * precludes us from calling mmput() at that time as that may be
	 * the last reference and so call exit_mmap(). exit_mmap() will
	 * attempt to reap the vma, and if we were holding a GTT mmap
	 * would then call drm_gem_vm_close() and attempt to reacquire
	 * the struct mutex. So in order to avoid that recursion, we have
	 * to defer releasing the mm reference until after we drop the
	 * struct_mutex, i.e. we need to schedule a worker to do the clean
	 * up.
	 */
	mutex_lock(&dev_priv->mm_lock);
	mm = __i915_mm_struct_find(dev_priv, current->mm);
	if (mm == NULL) {
		mm = kmalloc(sizeof(*mm), GFP_KERNEL);
		if (mm == NULL) {
			ret = -ENOMEM;
			goto out;
		}

		kref_init(&mm->kref);
		mm->dev = obj->base.dev;

		mm->mm = current->mm;
		atomic_inc(&current->mm->mm_count);

		mm->mn = NULL;

		/* Protected by dev_priv->mm_lock */
		hash_add(dev_priv->mm_structs,
			 &mm->node, (unsigned long)mm->mm);
	} else
		kref_get(&mm->kref);

	obj->userptr.mm = mm;
out:
	mutex_unlock(&dev_priv->mm_lock);
	return ret;
}

static void
__i915_mm_struct_free__worker(struct work_struct *work)
{
	struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
	i915_mmu_notifier_free(mm->mn, mm->mm);
	mmdrop(mm->mm);
	kfree(mm);
}

static void
__i915_mm_struct_free(struct kref *kref)
{
	struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);

	/* Protected by dev_priv->mm_lock */
	hash_del(&mm->node);
	mutex_unlock(&to_i915(mm->dev)->mm_lock);

	INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
	schedule_work(&mm->work);
}

static void
i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
{
	if (obj->userptr.mm == NULL)
		return;

	kref_put_mutex(&obj->userptr.mm->kref,
		       __i915_mm_struct_free,
		       &to_i915(obj->base.dev)->mm_lock);
	obj->userptr.mm = NULL;
}

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
struct get_pages_work {
	struct work_struct work;
	struct drm_i915_gem_object *obj;
	struct task_struct *task;
};

#if IS_ENABLED(CONFIG_SWIOTLB)
#define swiotlb_active() swiotlb_nr_tbl()
#else
#define swiotlb_active() 0
#endif

static int
st_set_pages(struct sg_table **st, struct page **pvec, int num_pages)
{
	struct scatterlist *sg;
	int ret, n;

	*st = kmalloc(sizeof(**st), GFP_KERNEL);
	if (*st == NULL)
		return -ENOMEM;

	if (swiotlb_active()) {
		ret = sg_alloc_table(*st, num_pages, GFP_KERNEL);
		if (ret)
			goto err;

		for_each_sg((*st)->sgl, sg, num_pages, n)
			sg_set_page(sg, pvec[n], PAGE_SIZE, 0);
	} else {
		ret = sg_alloc_table_from_pages(*st, pvec, num_pages,
						0, num_pages << PAGE_SHIFT,
						GFP_KERNEL);
		if (ret)
			goto err;
	}

	return 0;

err:
	kfree(*st);
	*st = NULL;
	return ret;
}

static void
__i915_gem_userptr_get_pages_worker(struct work_struct *_work)
{
	struct get_pages_work *work = container_of(_work, typeof(*work), work);
	struct drm_i915_gem_object *obj = work->obj;
	struct drm_device *dev = obj->base.dev;
	const int num_pages = obj->base.size >> PAGE_SHIFT;
	struct page **pvec;
	int pinned, ret;

	ret = -ENOMEM;
	pinned = 0;

	pvec = kmalloc(num_pages*sizeof(struct page *),
		       GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
	if (pvec == NULL)
		pvec = drm_malloc_ab(num_pages, sizeof(struct page *));
	if (pvec != NULL) {
563
		struct mm_struct *mm = obj->userptr.mm->mm;
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628

		down_read(&mm->mmap_sem);
		while (pinned < num_pages) {
			ret = get_user_pages(work->task, mm,
					     obj->userptr.ptr + pinned * PAGE_SIZE,
					     num_pages - pinned,
					     !obj->userptr.read_only, 0,
					     pvec + pinned, NULL);
			if (ret < 0)
				break;

			pinned += ret;
		}
		up_read(&mm->mmap_sem);
	}

	mutex_lock(&dev->struct_mutex);
	if (obj->userptr.work != &work->work) {
		ret = 0;
	} else if (pinned == num_pages) {
		ret = st_set_pages(&obj->pages, pvec, num_pages);
		if (ret == 0) {
			list_add_tail(&obj->global_list, &to_i915(dev)->mm.unbound_list);
			pinned = 0;
		}
	}

	obj->userptr.work = ERR_PTR(ret);
	obj->userptr.workers--;
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);

	release_pages(pvec, pinned, 0);
	drm_free_large(pvec);

	put_task_struct(work->task);
	kfree(work);
}

static int
i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
{
	const int num_pages = obj->base.size >> PAGE_SHIFT;
	struct page **pvec;
	int pinned, ret;

	/* If userspace should engineer that these pages are replaced in
	 * the vma between us binding this page into the GTT and completion
	 * of rendering... Their loss. If they change the mapping of their
	 * pages they need to create a new bo to point to the new vma.
	 *
	 * However, that still leaves open the possibility of the vma
	 * being copied upon fork. Which falls under the same userspace
	 * synchronisation issue as a regular bo, except that this time
	 * the process may not be expecting that a particular piece of
	 * memory is tied to the GPU.
	 *
	 * Fortunately, we can hook into the mmu_notifier in order to
	 * discard the page references prior to anything nasty happening
	 * to the vma (discard or cloning) which should prevent the more
	 * egregious cases from causing harm.
	 */

	pvec = NULL;
	pinned = 0;
629
	if (obj->userptr.mm->mm == current->mm) {
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
		pvec = kmalloc(num_pages*sizeof(struct page *),
			       GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
		if (pvec == NULL) {
			pvec = drm_malloc_ab(num_pages, sizeof(struct page *));
			if (pvec == NULL)
				return -ENOMEM;
		}

		pinned = __get_user_pages_fast(obj->userptr.ptr, num_pages,
					       !obj->userptr.read_only, pvec);
	}
	if (pinned < num_pages) {
		if (pinned < 0) {
			ret = pinned;
			pinned = 0;
		} else {
			/* Spawn a worker so that we can acquire the
			 * user pages without holding our mutex. Access
			 * to the user pages requires mmap_sem, and we have
			 * a strict lock ordering of mmap_sem, struct_mutex -
			 * we already hold struct_mutex here and so cannot
			 * call gup without encountering a lock inversion.
			 *
			 * Userspace will keep on repeating the operation
			 * (thanks to EAGAIN) until either we hit the fast
			 * path or the worker completes. If the worker is
			 * cancelled or superseded, the task is still run
			 * but the results ignored. (This leads to
			 * complications that we may have a stray object
			 * refcount that we need to be wary of when
			 * checking for existing objects during creation.)
			 * If the worker encounters an error, it reports
			 * that error back to this function through
			 * obj->userptr.work = ERR_PTR.
			 */
			ret = -EAGAIN;
			if (obj->userptr.work == NULL &&
			    obj->userptr.workers < I915_GEM_USERPTR_MAX_WORKERS) {
				struct get_pages_work *work;

				work = kmalloc(sizeof(*work), GFP_KERNEL);
				if (work != NULL) {
					obj->userptr.work = &work->work;
					obj->userptr.workers++;

					work->obj = obj;
					drm_gem_object_reference(&obj->base);

					work->task = current;
					get_task_struct(work->task);

					INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
					schedule_work(&work->work);
				} else
					ret = -ENOMEM;
			} else {
				if (IS_ERR(obj->userptr.work)) {
					ret = PTR_ERR(obj->userptr.work);
					obj->userptr.work = NULL;
				}
			}
		}
	} else {
		ret = st_set_pages(&obj->pages, pvec, num_pages);
		if (ret == 0) {
			obj->userptr.work = NULL;
			pinned = 0;
		}
	}

	release_pages(pvec, pinned, 0);
	drm_free_large(pvec);
	return ret;
}

static void
i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj)
{
708
	struct sg_page_iter sg_iter;
709 710 711 712 713 714

	BUG_ON(obj->userptr.work != NULL);

	if (obj->madv != I915_MADV_WILLNEED)
		obj->dirty = 0;

715 716
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
		struct page *page = sg_page_iter_page(&sg_iter);
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733

		if (obj->dirty)
			set_page_dirty(page);

		mark_page_accessed(page);
		page_cache_release(page);
	}
	obj->dirty = 0;

	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_userptr_release(struct drm_i915_gem_object *obj)
{
	i915_gem_userptr_release__mmu_notifier(obj);
734
	i915_gem_userptr_release__mm_struct(obj);
735 736 737 738 739
}

static int
i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
{
740
	if (obj->userptr.mmu_object)
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
		return 0;

	return i915_gem_userptr_init__mmu_notifier(obj, 0);
}

static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
	.dmabuf_export = i915_gem_userptr_dmabuf_export,
	.get_pages = i915_gem_userptr_get_pages,
	.put_pages = i915_gem_userptr_put_pages,
	.release = i915_gem_userptr_release,
};

/**
 * Creates a new mm object that wraps some normal memory from the process
 * context - user memory.
 *
 * We impose several restrictions upon the memory being mapped
 * into the GPU.
 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
760
 * 2. It must be normal system memory, not a pointer into another map of IO
761
 *    space (e.g. it must not be a GTT mmapping of another object).
762
 * 3. We only allow a bo as large as we could in theory map into the GTT,
763
 *    that is we limit the size to the total size of the GTT.
764
 * 4. The bo is marked as being snoopable. The backing pages are left
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
 *    accessible directly by the CPU, but reads and writes by the GPU may
 *    incur the cost of a snoop (unless you have an LLC architecture).
 *
 * Synchronisation between multiple users and the GPU is left to userspace
 * through the normal set-domain-ioctl. The kernel will enforce that the
 * GPU relinquishes the VMA before it is returned back to the system
 * i.e. upon free(), munmap() or process termination. However, the userspace
 * malloc() library may not immediately relinquish the VMA after free() and
 * instead reuse it whilst the GPU is still reading and writing to the VMA.
 * Caveat emptor.
 *
 * Also note, that the object created here is not currently a "first class"
 * object, in that several ioctls are banned. These are the CPU access
 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
 * direct access via your pointer rather than use those ioctls.
 *
 * If you think this is a good interface to use to pass GPU memory between
 * drivers, please use dma-buf instead. In fact, wherever possible use
 * dma-buf instead.
 */
int
i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_userptr *args = data;
	struct drm_i915_gem_object *obj;
	int ret;
	u32 handle;

	if (args->flags & ~(I915_USERPTR_READ_ONLY |
			    I915_USERPTR_UNSYNCHRONIZED))
		return -EINVAL;

	if (offset_in_page(args->user_ptr | args->user_size))
		return -EINVAL;

	if (args->user_size > dev_priv->gtt.base.total)
		return -E2BIG;

	if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
		       (char __user *)(unsigned long)args->user_ptr, args->user_size))
		return -EFAULT;

	if (args->flags & I915_USERPTR_READ_ONLY) {
		/* On almost all of the current hw, we cannot tell the GPU that a
		 * page is readonly, so this is just a placeholder in the uAPI.
		 */
		return -ENODEV;
	}

	obj = i915_gem_object_alloc(dev);
	if (obj == NULL)
		return -ENOMEM;

	drm_gem_private_object_init(dev, &obj->base, args->user_size);
	i915_gem_object_init(obj, &i915_gem_userptr_ops);
	obj->cache_level = I915_CACHE_LLC;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;

	obj->userptr.ptr = args->user_ptr;
	obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);

	/* And keep a pointer to the current->mm for resolving the user pages
	 * at binding. This means that we need to hook into the mmu_notifier
	 * in order to detect if the mmu is destroyed.
	 */
832 833
	ret = i915_gem_userptr_init__mm_struct(obj);
	if (ret == 0)
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
		ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
	if (ret == 0)
		ret = drm_gem_handle_create(file, &obj->base, &handle);

	/* drop reference from allocate - handle holds it now */
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;

	args->handle = handle;
	return 0;
}

int
i915_gem_init_userptr(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
851 852
	mutex_init(&dev_priv->mm_lock);
	hash_init(dev_priv->mm_structs);
853 854
	return 0;
}