i915_gem_userptr.c 19.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/*
 * Copyright © 2012-2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

#include "drmP.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
#include <linux/mmu_context.h>
#include <linux/mmu_notifier.h>
#include <linux/mempolicy.h>
#include <linux/swap.h>

#if defined(CONFIG_MMU_NOTIFIER)
#include <linux/interval_tree.h>

struct i915_mmu_notifier {
	spinlock_t lock;
	struct hlist_node node;
	struct mmu_notifier mn;
	struct rb_root objects;
	struct drm_device *dev;
	struct mm_struct *mm;
	struct work_struct work;
	unsigned long count;
	unsigned long serial;
};

struct i915_mmu_object {
	struct i915_mmu_notifier *mmu;
	struct interval_tree_node it;
	struct drm_i915_gem_object *obj;
};

static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
						       struct mm_struct *mm,
						       unsigned long start,
						       unsigned long end)
{
	struct i915_mmu_notifier *mn = container_of(_mn, struct i915_mmu_notifier, mn);
	struct interval_tree_node *it = NULL;
	unsigned long serial = 0;

	end--; /* interval ranges are inclusive, but invalidate range is exclusive */
	while (start < end) {
		struct drm_i915_gem_object *obj;

		obj = NULL;
		spin_lock(&mn->lock);
		if (serial == mn->serial)
			it = interval_tree_iter_next(it, start, end);
		else
			it = interval_tree_iter_first(&mn->objects, start, end);
		if (it != NULL) {
			obj = container_of(it, struct i915_mmu_object, it)->obj;
			drm_gem_object_reference(&obj->base);
			serial = mn->serial;
		}
		spin_unlock(&mn->lock);
		if (obj == NULL)
			return;

		mutex_lock(&mn->dev->struct_mutex);
		/* Cancel any active worker and force us to re-evaluate gup */
		obj->userptr.work = NULL;

		if (obj->pages != NULL) {
			struct drm_i915_private *dev_priv = to_i915(mn->dev);
			struct i915_vma *vma, *tmp;
			bool was_interruptible;

			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;

			list_for_each_entry_safe(vma, tmp, &obj->vma_list, vma_link) {
				int ret = i915_vma_unbind(vma);
				WARN_ON(ret && ret != -EIO);
			}
			WARN_ON(i915_gem_object_put_pages(obj));

			dev_priv->mm.interruptible = was_interruptible;
		}

		start = obj->userptr.ptr + obj->base.size;

		drm_gem_object_unreference(&obj->base);
		mutex_unlock(&mn->dev->struct_mutex);
	}
}

static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
	.invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
};

static struct i915_mmu_notifier *
__i915_mmu_notifier_lookup(struct drm_device *dev, struct mm_struct *mm)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_mmu_notifier *mmu;

	/* Protected by dev->struct_mutex */
	hash_for_each_possible(dev_priv->mmu_notifiers, mmu, node, (unsigned long)mm)
		if (mmu->mm == mm)
			return mmu;

	return NULL;
}

static struct i915_mmu_notifier *
i915_mmu_notifier_get(struct drm_device *dev, struct mm_struct *mm)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_mmu_notifier *mmu;
	int ret;

	lockdep_assert_held(&dev->struct_mutex);

	mmu = __i915_mmu_notifier_lookup(dev, mm);
	if (mmu)
		return mmu;

	mmu = kmalloc(sizeof(*mmu), GFP_KERNEL);
	if (mmu == NULL)
		return ERR_PTR(-ENOMEM);

	spin_lock_init(&mmu->lock);
	mmu->dev = dev;
	mmu->mn.ops = &i915_gem_userptr_notifier;
	mmu->mm = mm;
	mmu->objects = RB_ROOT;
	mmu->count = 0;
153
	mmu->serial = 1;
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711

	/* Protected by mmap_sem (write-lock) */
	ret = __mmu_notifier_register(&mmu->mn, mm);
	if (ret) {
		kfree(mmu);
		return ERR_PTR(ret);
	}

	/* Protected by dev->struct_mutex */
	hash_add(dev_priv->mmu_notifiers, &mmu->node, (unsigned long)mm);
	return mmu;
}

static void
__i915_mmu_notifier_destroy_worker(struct work_struct *work)
{
	struct i915_mmu_notifier *mmu = container_of(work, typeof(*mmu), work);
	mmu_notifier_unregister(&mmu->mn, mmu->mm);
	kfree(mmu);
}

static void
__i915_mmu_notifier_destroy(struct i915_mmu_notifier *mmu)
{
	lockdep_assert_held(&mmu->dev->struct_mutex);

	/* Protected by dev->struct_mutex */
	hash_del(&mmu->node);

	/* Our lock ordering is: mmap_sem, mmu_notifier_scru, struct_mutex.
	 * We enter the function holding struct_mutex, therefore we need
	 * to drop our mutex prior to calling mmu_notifier_unregister in
	 * order to prevent lock inversion (and system-wide deadlock)
	 * between the mmap_sem and struct-mutex. Hence we defer the
	 * unregistration to a workqueue where we hold no locks.
	 */
	INIT_WORK(&mmu->work, __i915_mmu_notifier_destroy_worker);
	schedule_work(&mmu->work);
}

static void __i915_mmu_notifier_update_serial(struct i915_mmu_notifier *mmu)
{
	if (++mmu->serial == 0)
		mmu->serial = 1;
}

static void
i915_mmu_notifier_del(struct i915_mmu_notifier *mmu,
		      struct i915_mmu_object *mn)
{
	lockdep_assert_held(&mmu->dev->struct_mutex);

	spin_lock(&mmu->lock);
	interval_tree_remove(&mn->it, &mmu->objects);
	__i915_mmu_notifier_update_serial(mmu);
	spin_unlock(&mmu->lock);

	/* Protected against _add() by dev->struct_mutex */
	if (--mmu->count == 0)
		__i915_mmu_notifier_destroy(mmu);
}

static int
i915_mmu_notifier_add(struct i915_mmu_notifier *mmu,
		      struct i915_mmu_object *mn)
{
	struct interval_tree_node *it;
	int ret;

	ret = i915_mutex_lock_interruptible(mmu->dev);
	if (ret)
		return ret;

	/* Make sure we drop the final active reference (and thereby
	 * remove the objects from the interval tree) before we do
	 * the check for overlapping objects.
	 */
	i915_gem_retire_requests(mmu->dev);

	/* Disallow overlapping userptr objects */
	spin_lock(&mmu->lock);
	it = interval_tree_iter_first(&mmu->objects,
				      mn->it.start, mn->it.last);
	if (it) {
		struct drm_i915_gem_object *obj;

		/* We only need to check the first object in the range as it
		 * either has cancelled gup work queued and we need to
		 * return back to the user to give time for the gup-workers
		 * to flush their object references upon which the object will
		 * be removed from the interval-tree, or the the range is
		 * still in use by another client and the overlap is invalid.
		 */

		obj = container_of(it, struct i915_mmu_object, it)->obj;
		ret = obj->userptr.workers ? -EAGAIN : -EINVAL;
	} else {
		interval_tree_insert(&mn->it, &mmu->objects);
		__i915_mmu_notifier_update_serial(mmu);
		ret = 0;
	}
	spin_unlock(&mmu->lock);
	mutex_unlock(&mmu->dev->struct_mutex);

	return ret;
}

static void
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
{
	struct i915_mmu_object *mn;

	mn = obj->userptr.mn;
	if (mn == NULL)
		return;

	i915_mmu_notifier_del(mn->mmu, mn);
	obj->userptr.mn = NULL;
}

static int
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
				    unsigned flags)
{
	struct i915_mmu_notifier *mmu;
	struct i915_mmu_object *mn;
	int ret;

	if (flags & I915_USERPTR_UNSYNCHRONIZED)
		return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;

	down_write(&obj->userptr.mm->mmap_sem);
	ret = i915_mutex_lock_interruptible(obj->base.dev);
	if (ret == 0) {
		mmu = i915_mmu_notifier_get(obj->base.dev, obj->userptr.mm);
		if (!IS_ERR(mmu))
			mmu->count++; /* preemptive add to act as a refcount */
		else
			ret = PTR_ERR(mmu);
		mutex_unlock(&obj->base.dev->struct_mutex);
	}
	up_write(&obj->userptr.mm->mmap_sem);
	if (ret)
		return ret;

	mn = kzalloc(sizeof(*mn), GFP_KERNEL);
	if (mn == NULL) {
		ret = -ENOMEM;
		goto destroy_mmu;
	}

	mn->mmu = mmu;
	mn->it.start = obj->userptr.ptr;
	mn->it.last = mn->it.start + obj->base.size - 1;
	mn->obj = obj;

	ret = i915_mmu_notifier_add(mmu, mn);
	if (ret)
		goto free_mn;

	obj->userptr.mn = mn;
	return 0;

free_mn:
	kfree(mn);
destroy_mmu:
	mutex_lock(&obj->base.dev->struct_mutex);
	if (--mmu->count == 0)
		__i915_mmu_notifier_destroy(mmu);
	mutex_unlock(&obj->base.dev->struct_mutex);
	return ret;
}

#else

static void
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
{
}

static int
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
				    unsigned flags)
{
	if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
		return -ENODEV;

	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;

	return 0;
}
#endif

struct get_pages_work {
	struct work_struct work;
	struct drm_i915_gem_object *obj;
	struct task_struct *task;
};


#if IS_ENABLED(CONFIG_SWIOTLB)
#define swiotlb_active() swiotlb_nr_tbl()
#else
#define swiotlb_active() 0
#endif

static int
st_set_pages(struct sg_table **st, struct page **pvec, int num_pages)
{
	struct scatterlist *sg;
	int ret, n;

	*st = kmalloc(sizeof(**st), GFP_KERNEL);
	if (*st == NULL)
		return -ENOMEM;

	if (swiotlb_active()) {
		ret = sg_alloc_table(*st, num_pages, GFP_KERNEL);
		if (ret)
			goto err;

		for_each_sg((*st)->sgl, sg, num_pages, n)
			sg_set_page(sg, pvec[n], PAGE_SIZE, 0);
	} else {
		ret = sg_alloc_table_from_pages(*st, pvec, num_pages,
						0, num_pages << PAGE_SHIFT,
						GFP_KERNEL);
		if (ret)
			goto err;
	}

	return 0;

err:
	kfree(*st);
	*st = NULL;
	return ret;
}

static void
__i915_gem_userptr_get_pages_worker(struct work_struct *_work)
{
	struct get_pages_work *work = container_of(_work, typeof(*work), work);
	struct drm_i915_gem_object *obj = work->obj;
	struct drm_device *dev = obj->base.dev;
	const int num_pages = obj->base.size >> PAGE_SHIFT;
	struct page **pvec;
	int pinned, ret;

	ret = -ENOMEM;
	pinned = 0;

	pvec = kmalloc(num_pages*sizeof(struct page *),
		       GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
	if (pvec == NULL)
		pvec = drm_malloc_ab(num_pages, sizeof(struct page *));
	if (pvec != NULL) {
		struct mm_struct *mm = obj->userptr.mm;

		down_read(&mm->mmap_sem);
		while (pinned < num_pages) {
			ret = get_user_pages(work->task, mm,
					     obj->userptr.ptr + pinned * PAGE_SIZE,
					     num_pages - pinned,
					     !obj->userptr.read_only, 0,
					     pvec + pinned, NULL);
			if (ret < 0)
				break;

			pinned += ret;
		}
		up_read(&mm->mmap_sem);
	}

	mutex_lock(&dev->struct_mutex);
	if (obj->userptr.work != &work->work) {
		ret = 0;
	} else if (pinned == num_pages) {
		ret = st_set_pages(&obj->pages, pvec, num_pages);
		if (ret == 0) {
			list_add_tail(&obj->global_list, &to_i915(dev)->mm.unbound_list);
			pinned = 0;
		}
	}

	obj->userptr.work = ERR_PTR(ret);
	obj->userptr.workers--;
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);

	release_pages(pvec, pinned, 0);
	drm_free_large(pvec);

	put_task_struct(work->task);
	kfree(work);
}

static int
i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
{
	const int num_pages = obj->base.size >> PAGE_SHIFT;
	struct page **pvec;
	int pinned, ret;

	/* If userspace should engineer that these pages are replaced in
	 * the vma between us binding this page into the GTT and completion
	 * of rendering... Their loss. If they change the mapping of their
	 * pages they need to create a new bo to point to the new vma.
	 *
	 * However, that still leaves open the possibility of the vma
	 * being copied upon fork. Which falls under the same userspace
	 * synchronisation issue as a regular bo, except that this time
	 * the process may not be expecting that a particular piece of
	 * memory is tied to the GPU.
	 *
	 * Fortunately, we can hook into the mmu_notifier in order to
	 * discard the page references prior to anything nasty happening
	 * to the vma (discard or cloning) which should prevent the more
	 * egregious cases from causing harm.
	 */

	pvec = NULL;
	pinned = 0;
	if (obj->userptr.mm == current->mm) {
		pvec = kmalloc(num_pages*sizeof(struct page *),
			       GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
		if (pvec == NULL) {
			pvec = drm_malloc_ab(num_pages, sizeof(struct page *));
			if (pvec == NULL)
				return -ENOMEM;
		}

		pinned = __get_user_pages_fast(obj->userptr.ptr, num_pages,
					       !obj->userptr.read_only, pvec);
	}
	if (pinned < num_pages) {
		if (pinned < 0) {
			ret = pinned;
			pinned = 0;
		} else {
			/* Spawn a worker so that we can acquire the
			 * user pages without holding our mutex. Access
			 * to the user pages requires mmap_sem, and we have
			 * a strict lock ordering of mmap_sem, struct_mutex -
			 * we already hold struct_mutex here and so cannot
			 * call gup without encountering a lock inversion.
			 *
			 * Userspace will keep on repeating the operation
			 * (thanks to EAGAIN) until either we hit the fast
			 * path or the worker completes. If the worker is
			 * cancelled or superseded, the task is still run
			 * but the results ignored. (This leads to
			 * complications that we may have a stray object
			 * refcount that we need to be wary of when
			 * checking for existing objects during creation.)
			 * If the worker encounters an error, it reports
			 * that error back to this function through
			 * obj->userptr.work = ERR_PTR.
			 */
			ret = -EAGAIN;
			if (obj->userptr.work == NULL &&
			    obj->userptr.workers < I915_GEM_USERPTR_MAX_WORKERS) {
				struct get_pages_work *work;

				work = kmalloc(sizeof(*work), GFP_KERNEL);
				if (work != NULL) {
					obj->userptr.work = &work->work;
					obj->userptr.workers++;

					work->obj = obj;
					drm_gem_object_reference(&obj->base);

					work->task = current;
					get_task_struct(work->task);

					INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
					schedule_work(&work->work);
				} else
					ret = -ENOMEM;
			} else {
				if (IS_ERR(obj->userptr.work)) {
					ret = PTR_ERR(obj->userptr.work);
					obj->userptr.work = NULL;
				}
			}
		}
	} else {
		ret = st_set_pages(&obj->pages, pvec, num_pages);
		if (ret == 0) {
			obj->userptr.work = NULL;
			pinned = 0;
		}
	}

	release_pages(pvec, pinned, 0);
	drm_free_large(pvec);
	return ret;
}

static void
i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj)
{
	struct scatterlist *sg;
	int i;

	BUG_ON(obj->userptr.work != NULL);

	if (obj->madv != I915_MADV_WILLNEED)
		obj->dirty = 0;

	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
		struct page *page = sg_page(sg);

		if (obj->dirty)
			set_page_dirty(page);

		mark_page_accessed(page);
		page_cache_release(page);
	}
	obj->dirty = 0;

	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_userptr_release(struct drm_i915_gem_object *obj)
{
	i915_gem_userptr_release__mmu_notifier(obj);

	if (obj->userptr.mm) {
		mmput(obj->userptr.mm);
		obj->userptr.mm = NULL;
	}
}

static int
i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
{
	if (obj->userptr.mn)
		return 0;

	return i915_gem_userptr_init__mmu_notifier(obj, 0);
}

static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
	.dmabuf_export = i915_gem_userptr_dmabuf_export,
	.get_pages = i915_gem_userptr_get_pages,
	.put_pages = i915_gem_userptr_put_pages,
	.release = i915_gem_userptr_release,
};

/**
 * Creates a new mm object that wraps some normal memory from the process
 * context - user memory.
 *
 * We impose several restrictions upon the memory being mapped
 * into the GPU.
 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
 * 2. It cannot overlap any other userptr object in the same address space.
 * 3. It must be normal system memory, not a pointer into another map of IO
 *    space (e.g. it must not be a GTT mmapping of another object).
 * 4. We only allow a bo as large as we could in theory map into the GTT,
 *    that is we limit the size to the total size of the GTT.
 * 5. The bo is marked as being snoopable. The backing pages are left
 *    accessible directly by the CPU, but reads and writes by the GPU may
 *    incur the cost of a snoop (unless you have an LLC architecture).
 *
 * Synchronisation between multiple users and the GPU is left to userspace
 * through the normal set-domain-ioctl. The kernel will enforce that the
 * GPU relinquishes the VMA before it is returned back to the system
 * i.e. upon free(), munmap() or process termination. However, the userspace
 * malloc() library may not immediately relinquish the VMA after free() and
 * instead reuse it whilst the GPU is still reading and writing to the VMA.
 * Caveat emptor.
 *
 * Also note, that the object created here is not currently a "first class"
 * object, in that several ioctls are banned. These are the CPU access
 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
 * direct access via your pointer rather than use those ioctls.
 *
 * If you think this is a good interface to use to pass GPU memory between
 * drivers, please use dma-buf instead. In fact, wherever possible use
 * dma-buf instead.
 */
int
i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_userptr *args = data;
	struct drm_i915_gem_object *obj;
	int ret;
	u32 handle;

	if (args->flags & ~(I915_USERPTR_READ_ONLY |
			    I915_USERPTR_UNSYNCHRONIZED))
		return -EINVAL;

	if (offset_in_page(args->user_ptr | args->user_size))
		return -EINVAL;

	if (args->user_size > dev_priv->gtt.base.total)
		return -E2BIG;

	if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
		       (char __user *)(unsigned long)args->user_ptr, args->user_size))
		return -EFAULT;

	if (args->flags & I915_USERPTR_READ_ONLY) {
		/* On almost all of the current hw, we cannot tell the GPU that a
		 * page is readonly, so this is just a placeholder in the uAPI.
		 */
		return -ENODEV;
	}

	/* Allocate the new object */
	obj = i915_gem_object_alloc(dev);
	if (obj == NULL)
		return -ENOMEM;

	drm_gem_private_object_init(dev, &obj->base, args->user_size);
	i915_gem_object_init(obj, &i915_gem_userptr_ops);
	obj->cache_level = I915_CACHE_LLC;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;

	obj->userptr.ptr = args->user_ptr;
	obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);

	/* And keep a pointer to the current->mm for resolving the user pages
	 * at binding. This means that we need to hook into the mmu_notifier
	 * in order to detect if the mmu is destroyed.
	 */
	ret = -ENOMEM;
	if ((obj->userptr.mm = get_task_mm(current)))
		ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
	if (ret == 0)
		ret = drm_gem_handle_create(file, &obj->base, &handle);

	/* drop reference from allocate - handle holds it now */
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;

	args->handle = handle;
	return 0;
}

int
i915_gem_init_userptr(struct drm_device *dev)
{
#if defined(CONFIG_MMU_NOTIFIER)
	struct drm_i915_private *dev_priv = to_i915(dev);
	hash_init(dev_priv->mmu_notifiers);
#endif
	return 0;
}