time.c 30.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 *
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 * to make clock more stable (2.4.0-test5). The only thing
 * that this code assumes is that the timebases have been synchronized
 * by firmware on SMP and are never stopped (never do sleep
 * on SMP then, nap and doze are OK).
 * 
 * Speeded up do_gettimeofday by getting rid of references to
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 *
 * TODO (not necessarily in this file):
 * - improve precision and reproducibility of timebase frequency
20
 * measurement at boot time.
L
Linus Torvalds 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34
 * - for astronomical applications: add a new function to get
 * non ambiguous timestamps even around leap seconds. This needs
 * a new timestamp format and a good name.
 *
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
35
#include <linux/export.h>
L
Linus Torvalds 已提交
36 37 38 39 40 41 42 43 44
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
45
#include <linux/clockchips.h>
L
Linus Torvalds 已提交
46 47 48 49
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
50 51
#include <linux/percpu.h>
#include <linux/rtc.h>
52
#include <linux/jiffies.h>
53
#include <linux/posix-timers.h>
54
#include <linux/irq.h>
55
#include <linux/delay.h>
56
#include <linux/irq_work.h>
57
#include <linux/clk-provider.h>
58
#include <linux/suspend.h>
59
#include <linux/rtc.h>
60
#include <asm/trace.h>
L
Linus Torvalds 已提交
61 62 63 64 65 66 67 68 69

#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
#include <asm/uaccess.h>
#include <asm/time.h>
#include <asm/prom.h>
70 71
#include <asm/irq.h>
#include <asm/div64.h>
P
Paul Mackerras 已提交
72
#include <asm/smp.h>
73
#include <asm/vdso_datapage.h>
74
#include <asm/firmware.h>
M
Michael Neuling 已提交
75
#include <asm/cputime.h>
76
#include <asm/asm-prototypes.h>
L
Linus Torvalds 已提交
77

78 79
/* powerpc clocksource/clockevent code */

80
#include <linux/clockchips.h>
81
#include <linux/timekeeper_internal.h>
82

83
static cycle_t rtc_read(struct clocksource *);
84 85 86 87 88 89 90 91
static struct clocksource clocksource_rtc = {
	.name         = "rtc",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.read         = rtc_read,
};

92
static cycle_t timebase_read(struct clocksource *);
93 94 95 96 97 98 99 100
static struct clocksource clocksource_timebase = {
	.name         = "timebase",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.read         = timebase_read,
};

101 102
#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
103 104 105

static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev);
106
static int decrementer_shutdown(struct clock_event_device *evt);
107

108
struct clock_event_device decrementer_clockevent = {
109 110 111 112 113 114 115 116
	.name			= "decrementer",
	.rating			= 200,
	.irq			= 0,
	.set_next_event		= decrementer_set_next_event,
	.set_state_shutdown	= decrementer_shutdown,
	.tick_resume		= decrementer_shutdown,
	.features		= CLOCK_EVT_FEAT_ONESHOT |
				  CLOCK_EVT_FEAT_C3STOP,
117
};
118
EXPORT_SYMBOL(decrementer_clockevent);
119

120 121
DEFINE_PER_CPU(u64, decrementers_next_tb);
static DEFINE_PER_CPU(struct clock_event_device, decrementers);
122

L
Linus Torvalds 已提交
123 124
#define XSEC_PER_SEC (1024*1024)

125 126 127 128 129 130 131
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
#endif

L
Linus Torvalds 已提交
132 133 134 135
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
136
EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
137

L
Linus Torvalds 已提交
138
DEFINE_SPINLOCK(rtc_lock);
139
EXPORT_SYMBOL_GPL(rtc_lock);
L
Linus Torvalds 已提交
140

141 142
static u64 tb_to_ns_scale __read_mostly;
static unsigned tb_to_ns_shift __read_mostly;
143
static u64 boot_tb __read_mostly;
L
Linus Torvalds 已提交
144 145

extern struct timezone sys_tz;
146
static long timezone_offset;
L
Linus Torvalds 已提交
147

148
unsigned long ppc_proc_freq;
149
EXPORT_SYMBOL_GPL(ppc_proc_freq);
150
unsigned long ppc_tb_freq;
151
EXPORT_SYMBOL_GPL(ppc_tb_freq);
152

153
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
154 155
/*
 * Factors for converting from cputime_t (timebase ticks) to
156
 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
157 158 159
 * These are all stored as 0.64 fixed-point binary fractions.
 */
u64 __cputime_jiffies_factor;
160
EXPORT_SYMBOL(__cputime_jiffies_factor);
161 162
u64 __cputime_usec_factor;
EXPORT_SYMBOL(__cputime_usec_factor);
163
u64 __cputime_sec_factor;
164
EXPORT_SYMBOL(__cputime_sec_factor);
165
u64 __cputime_clockt_factor;
166
EXPORT_SYMBOL(__cputime_clockt_factor);
167

168 169
cputime_t cputime_one_jiffy;

170
#ifdef CONFIG_PPC_SPLPAR
171
void (*dtl_consumer)(struct dtl_entry *, u64);
172 173 174 175 176 177 178
#endif

#ifdef CONFIG_PPC64
#define get_accounting(tsk)	(&get_paca()->accounting)
#else
#define get_accounting(tsk)	(&task_thread_info(tsk)->accounting)
#endif
179

180 181 182 183 184 185
static void calc_cputime_factors(void)
{
	struct div_result res;

	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
	__cputime_jiffies_factor = res.result_low;
186 187
	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
	__cputime_usec_factor = res.result_low;
188 189 190 191 192 193 194
	div128_by_32(1, 0, tb_ticks_per_sec, &res);
	__cputime_sec_factor = res.result_low;
	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
	__cputime_clockt_factor = res.result_low;
}

/*
195 196
 * Read the SPURR on systems that have it, otherwise the PURR,
 * or if that doesn't exist return the timebase value passed in.
197
 */
198
static unsigned long read_spurr(unsigned long tb)
199
{
200 201
	if (cpu_has_feature(CPU_FTR_SPURR))
		return mfspr(SPRN_SPURR);
202 203
	if (cpu_has_feature(CPU_FTR_PURR))
		return mfspr(SPRN_PURR);
204
	return tb;
205 206
}

207 208
#ifdef CONFIG_PPC_SPLPAR

209
/*
210 211
 * Scan the dispatch trace log and count up the stolen time.
 * Should be called with interrupts disabled.
212
 */
213
static u64 scan_dispatch_log(u64 stop_tb)
214
{
215
	u64 i = local_paca->dtl_ridx;
216 217 218 219 220 221 222
	struct dtl_entry *dtl = local_paca->dtl_curr;
	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
	struct lppaca *vpa = local_paca->lppaca_ptr;
	u64 tb_delta;
	u64 stolen = 0;
	u64 dtb;

223 224 225
	if (!dtl)
		return 0;

226
	if (i == be64_to_cpu(vpa->dtl_idx))
227
		return 0;
228 229 230 231
	while (i < be64_to_cpu(vpa->dtl_idx)) {
		dtb = be64_to_cpu(dtl->timebase);
		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
			be32_to_cpu(dtl->ready_to_enqueue_time);
232
		barrier();
233
		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
234
			/* buffer has overflowed */
235
			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
236 237 238 239 240
			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
			continue;
		}
		if (dtb > stop_tb)
			break;
241 242
		if (dtl_consumer)
			dtl_consumer(dtl, i);
243 244 245 246 247 248 249 250 251
		stolen += tb_delta;
		++i;
		++dtl;
		if (dtl == dtl_end)
			dtl = local_paca->dispatch_log;
	}
	local_paca->dtl_ridx = i;
	local_paca->dtl_curr = dtl;
	return stolen;
252 253
}

254 255 256 257 258 259 260
/*
 * Accumulate stolen time by scanning the dispatch trace log.
 * Called on entry from user mode.
 */
void accumulate_stolen_time(void)
{
	u64 sst, ust;
261
	u8 save_soft_enabled = local_paca->soft_enabled;
262
	struct cpu_accounting_data *acct = &local_paca->accounting;
263 264 265 266 267 268 269 270 271

	/* We are called early in the exception entry, before
	 * soft/hard_enabled are sync'ed to the expected state
	 * for the exception. We are hard disabled but the PACA
	 * needs to reflect that so various debug stuff doesn't
	 * complain
	 */
	local_paca->soft_enabled = 0;

272 273 274 275
	sst = scan_dispatch_log(acct->starttime_user);
	ust = scan_dispatch_log(acct->starttime);
	acct->system_time -= sst;
	acct->user_time -= ust;
276 277 278
	local_paca->stolen_time += ust + sst;

	local_paca->soft_enabled = save_soft_enabled;
279 280 281 282 283 284
}

static inline u64 calculate_stolen_time(u64 stop_tb)
{
	u64 stolen = 0;

285
	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
286
		stolen = scan_dispatch_log(stop_tb);
287
		get_paca()->accounting.system_time -= stolen;
288 289 290 291 292
	}

	stolen += get_paca()->stolen_time;
	get_paca()->stolen_time = 0;
	return stolen;
293 294
}

295 296 297 298 299 300 301 302
#else /* CONFIG_PPC_SPLPAR */
static inline u64 calculate_stolen_time(u64 stop_tb)
{
	return 0;
}

#endif /* CONFIG_PPC_SPLPAR */

303 304 305 306
/*
 * Account time for a transition between system, hard irq
 * or soft irq state.
 */
307 308 309
static unsigned long vtime_delta(struct task_struct *tsk,
				 unsigned long *sys_scaled,
				 unsigned long *stolen)
310
{
311 312 313
	unsigned long now, nowscaled, deltascaled;
	unsigned long udelta, delta, user_scaled;
	struct cpu_accounting_data *acct = get_accounting(tsk);
314

315 316
	WARN_ON_ONCE(!irqs_disabled());

317
	now = mftb();
318
	nowscaled = read_spurr(now);
319 320 321 322
	acct->system_time += now - acct->starttime;
	acct->starttime = now;
	deltascaled = nowscaled - acct->startspurr;
	acct->startspurr = nowscaled;
323

324
	*stolen = calculate_stolen_time(now);
325

326 327 328 329
	delta = acct->system_time;
	acct->system_time = 0;
	udelta = acct->user_time - acct->utime_sspurr;
	acct->utime_sspurr = acct->user_time;
330 331 332 333 334 335 336 337 338 339 340

	/*
	 * Because we don't read the SPURR on every kernel entry/exit,
	 * deltascaled includes both user and system SPURR ticks.
	 * Apportion these ticks to system SPURR ticks and user
	 * SPURR ticks in the same ratio as the system time (delta)
	 * and user time (udelta) values obtained from the timebase
	 * over the same interval.  The system ticks get accounted here;
	 * the user ticks get saved up in paca->user_time_scaled to be
	 * used by account_process_tick.
	 */
341
	*sys_scaled = delta;
342 343 344
	user_scaled = udelta;
	if (deltascaled != delta + udelta) {
		if (udelta) {
345 346
			*sys_scaled = deltascaled * delta / (delta + udelta);
			user_scaled = deltascaled - *sys_scaled;
347
		} else {
348
			*sys_scaled = deltascaled;
349 350
		}
	}
351
	acct->user_time_scaled += user_scaled;
352

353 354 355
	return delta;
}

356
void vtime_account_system(struct task_struct *tsk)
357
{
358
	unsigned long delta, sys_scaled, stolen;
359 360 361 362 363 364

	delta = vtime_delta(tsk, &sys_scaled, &stolen);
	account_system_time(tsk, 0, delta, sys_scaled);
	if (stolen)
		account_steal_time(stolen);
}
365
EXPORT_SYMBOL_GPL(vtime_account_system);
366

367
void vtime_account_idle(struct task_struct *tsk)
368
{
369
	unsigned long delta, sys_scaled, stolen;
370 371 372

	delta = vtime_delta(tsk, &sys_scaled, &stolen);
	account_idle_time(delta + stolen);
373 374 375
}

/*
376 377 378
 * Transfer the user time accumulated in the paca
 * by the exception entry and exit code to the generic
 * process user time records.
379
 * Must be called with interrupts disabled.
380 381
 * Assumes that vtime_account_system/idle() has been called
 * recently (i.e. since the last entry from usermode) so that
382
 * get_paca()->user_time_scaled is up to date.
383
 */
384
void vtime_account_user(struct task_struct *tsk)
385
{
386
	cputime_t utime, utimescaled;
387
	struct cpu_accounting_data *acct = get_accounting(tsk);
388

389 390 391 392 393
	utime = acct->user_time;
	utimescaled = acct->user_time_scaled;
	acct->user_time = 0;
	acct->user_time_scaled = 0;
	acct->utime_sspurr = 0;
394
	account_user_time(tsk, utime, utimescaled);
395 396
}

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
#ifdef CONFIG_PPC32
/*
 * Called from the context switch with interrupts disabled, to charge all
 * accumulated times to the current process, and to prepare accounting on
 * the next process.
 */
void arch_vtime_task_switch(struct task_struct *prev)
{
	struct cpu_accounting_data *acct = get_accounting(current);

	acct->starttime = get_accounting(prev)->starttime;
	acct->system_time = 0;
	acct->user_time = 0;
}
#endif /* CONFIG_PPC32 */

413
#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
414 415 416
#define calc_cputime_factors()
#endif

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
void __delay(unsigned long loops)
{
	unsigned long start;
	int diff;

	if (__USE_RTC()) {
		start = get_rtcl();
		do {
			/* the RTCL register wraps at 1000000000 */
			diff = get_rtcl() - start;
			if (diff < 0)
				diff += 1000000000;
		} while (diff < loops);
	} else {
		start = get_tbl();
		while (get_tbl() - start < loops)
			HMT_low();
		HMT_medium();
	}
}
EXPORT_SYMBOL(__delay);

void udelay(unsigned long usecs)
{
	__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);

L
Linus Torvalds 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457
#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	if (in_lock_functions(pc))
		return regs->link;

	return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif

458
#ifdef CONFIG_IRQ_WORK
459

460 461 462 463
/*
 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 */
#ifdef CONFIG_PPC64
464
static inline unsigned long test_irq_work_pending(void)
465
{
466 467 468 469
	unsigned long x;

	asm volatile("lbz %0,%1(13)"
		: "=r" (x)
470
		: "i" (offsetof(struct paca_struct, irq_work_pending)));
471 472 473
	return x;
}

474
static inline void set_irq_work_pending_flag(void)
475 476 477
{
	asm volatile("stb %0,%1(13)" : :
		"r" (1),
478
		"i" (offsetof(struct paca_struct, irq_work_pending)));
479 480
}

481
static inline void clear_irq_work_pending(void)
482 483 484
{
	asm volatile("stb %0,%1(13)" : :
		"r" (0),
485
		"i" (offsetof(struct paca_struct, irq_work_pending)));
486 487
}

488 489
#else /* 32-bit */

490
DEFINE_PER_CPU(u8, irq_work_pending);
491

492 493 494
#define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
#define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
#define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
495

496 497
#endif /* 32 vs 64 bit */

498
void arch_irq_work_raise(void)
499 500
{
	preempt_disable();
501
	set_irq_work_pending_flag();
502 503 504 505
	set_dec(1);
	preempt_enable();
}

506
#else  /* CONFIG_IRQ_WORK */
507

508 509
#define test_irq_work_pending()	0
#define clear_irq_work_pending()
510

511
#endif /* CONFIG_IRQ_WORK */
512

513
static void __timer_interrupt(void)
514 515
{
	struct pt_regs *regs = get_irq_regs();
516 517
	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
518 519 520 521 522 523 524 525 526 527 528 529 530 531
	u64 now;

	trace_timer_interrupt_entry(regs);

	if (test_irq_work_pending()) {
		clear_irq_work_pending();
		irq_work_run();
	}

	now = get_tb_or_rtc();
	if (now >= *next_tb) {
		*next_tb = ~(u64)0;
		if (evt->event_handler)
			evt->event_handler(evt);
532
		__this_cpu_inc(irq_stat.timer_irqs_event);
533 534
	} else {
		now = *next_tb - now;
535 536
		if (now <= decrementer_max)
			set_dec(now);
537 538 539
		/* We may have raced with new irq work */
		if (test_irq_work_pending())
			set_dec(1);
540
		__this_cpu_inc(irq_stat.timer_irqs_others);
541 542 543 544 545
	}

#ifdef CONFIG_PPC64
	/* collect purr register values often, for accurate calculations */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
546
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
547 548 549 550 551 552 553
		cu->current_tb = mfspr(SPRN_PURR);
	}
#endif

	trace_timer_interrupt_exit(regs);
}

L
Linus Torvalds 已提交
554 555 556 557
/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
558
void timer_interrupt(struct pt_regs * regs)
L
Linus Torvalds 已提交
559
{
560
	struct pt_regs *old_regs;
561
	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
562

563 564 565
	/* Ensure a positive value is written to the decrementer, or else
	 * some CPUs will continue to take decrementer exceptions.
	 */
566
	set_dec(decrementer_max);
567 568

	/* Some implementations of hotplug will get timer interrupts while
569 570 571 572
	 * offline, just ignore these and we also need to set
	 * decrementers_next_tb as MAX to make sure __check_irq_replay
	 * don't replay timer interrupt when return, otherwise we'll trap
	 * here infinitely :(
573
	 */
574 575
	if (!cpu_online(smp_processor_id())) {
		*next_tb = ~(u64)0;
576
		return;
577
	}
578

579 580 581 582 583
	/* Conditionally hard-enable interrupts now that the DEC has been
	 * bumped to its maximum value
	 */
	may_hard_irq_enable();

584

P
Paul Bolle 已提交
585
#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
586 587 588
	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);
#endif
L
Linus Torvalds 已提交
589

590
	old_regs = set_irq_regs(regs);
L
Linus Torvalds 已提交
591 592
	irq_enter();

593
	__timer_interrupt();
L
Linus Torvalds 已提交
594
	irq_exit();
595
	set_irq_regs(old_regs);
L
Linus Torvalds 已提交
596
}
A
Al Viro 已提交
597
EXPORT_SYMBOL(timer_interrupt);
L
Linus Torvalds 已提交
598

599 600 601 602 603 604 605 606 607
/*
 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
 * left pending on exit from a KVM guest.  We don't need to do anything
 * to clear them, as they are edge-triggered.
 */
void hdec_interrupt(struct pt_regs *regs)
{
}

608
#ifdef CONFIG_SUSPEND
609
static void generic_suspend_disable_irqs(void)
610 611 612 613 614
{
	/* Disable the decrementer, so that it doesn't interfere
	 * with suspending.
	 */

615
	set_dec(decrementer_max);
616
	local_irq_disable();
617
	set_dec(decrementer_max);
618 619
}

620
static void generic_suspend_enable_irqs(void)
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
{
	local_irq_enable();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_disable_irqs(void)
{
	if (ppc_md.suspend_disable_irqs)
		ppc_md.suspend_disable_irqs();
	generic_suspend_disable_irqs();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_enable_irqs(void)
{
	generic_suspend_enable_irqs();
	if (ppc_md.suspend_enable_irqs)
		ppc_md.suspend_enable_irqs();
}
#endif

642 643 644 645 646 647
unsigned long long tb_to_ns(unsigned long long ticks)
{
	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
}
EXPORT_SYMBOL_GPL(tb_to_ns);

L
Linus Torvalds 已提交
648 649 650 651 652 653 654 655 656
/*
 * Scheduler clock - returns current time in nanosec units.
 *
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 * are 64-bit unsigned numbers.
 */
unsigned long long sched_clock(void)
{
657 658
	if (__USE_RTC())
		return get_rtc();
659
	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
L
Linus Torvalds 已提交
660 661
}

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693

#ifdef CONFIG_PPC_PSERIES

/*
 * Running clock - attempts to give a view of time passing for a virtualised
 * kernels.
 * Uses the VTB register if available otherwise a next best guess.
 */
unsigned long long running_clock(void)
{
	/*
	 * Don't read the VTB as a host since KVM does not switch in host
	 * timebase into the VTB when it takes a guest off the CPU, reading the
	 * VTB would result in reading 'last switched out' guest VTB.
	 *
	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
	 * would be unsafe to rely only on the #ifdef above.
	 */
	if (firmware_has_feature(FW_FEATURE_LPAR) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;

	/*
	 * This is a next best approximation without a VTB.
	 * On a host which is running bare metal there should never be any stolen
	 * time and on a host which doesn't do any virtualisation TB *should* equal
	 * VTB so it makes no difference anyway.
	 */
	return local_clock() - cputime_to_nsecs(kcpustat_this_cpu->cpustat[CPUTIME_STEAL]);
}
#endif

694
static int __init get_freq(char *name, int cells, unsigned long *val)
695 696
{
	struct device_node *cpu;
697
	const __be32 *fp;
698
	int found = 0;
699

700
	/* The cpu node should have timebase and clock frequency properties */
701 702
	cpu = of_find_node_by_type(NULL, "cpu");

703
	if (cpu) {
704
		fp = of_get_property(cpu, name, NULL);
705
		if (fp) {
706
			found = 1;
707
			*val = of_read_ulong(fp, cells);
708
		}
709 710

		of_node_put(cpu);
711
	}
712 713 714 715

	return found;
}

716
static void start_cpu_decrementer(void)
717 718 719 720 721 722 723 724 725 726
{
#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

	/* Enable decrementer interrupt */
	mtspr(SPRN_TCR, TCR_DIE);
#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
}

727 728 729 730 731 732 733
void __init generic_calibrate_decr(void)
{
	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */

	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {

734 735
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");
736
	}
737

738 739 740 741 742 743 744
	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */

	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {

		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");
745 746 747
	}
}

748
int update_persistent_clock(struct timespec now)
749 750 751
{
	struct rtc_time tm;

752
	if (!ppc_md.set_rtc_time)
753
		return -ENODEV;
754 755 756 757 758 759 760 761

	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
	tm.tm_year -= 1900;
	tm.tm_mon -= 1;

	return ppc_md.set_rtc_time(&tm);
}

762
static void __read_persistent_clock(struct timespec *ts)
763 764 765 766
{
	struct rtc_time tm;
	static int first = 1;

767
	ts->tv_nsec = 0;
768 769 770 771 772 773 774
	/* XXX this is a litle fragile but will work okay in the short term */
	if (first) {
		first = 0;
		if (ppc_md.time_init)
			timezone_offset = ppc_md.time_init();

		/* get_boot_time() isn't guaranteed to be safe to call late */
775 776 777 778 779 780 781 782
		if (ppc_md.get_boot_time) {
			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
			return;
		}
	}
	if (!ppc_md.get_rtc_time) {
		ts->tv_sec = 0;
		return;
783
	}
784
	ppc_md.get_rtc_time(&tm);
785

786 787
	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
			    tm.tm_hour, tm.tm_min, tm.tm_sec);
788 789
}

790 791 792 793 794 795 796 797 798 799 800 801
void read_persistent_clock(struct timespec *ts)
{
	__read_persistent_clock(ts);

	/* Sanitize it in case real time clock is set below EPOCH */
	if (ts->tv_sec < 0) {
		ts->tv_sec = 0;
		ts->tv_nsec = 0;
	}
		
}

802
/* clocksource code */
803
static cycle_t rtc_read(struct clocksource *cs)
804 805 806 807
{
	return (cycle_t)get_rtc();
}

808
static cycle_t timebase_read(struct clocksource *cs)
809 810 811 812
{
	return (cycle_t)get_tb();
}

813
void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
814
			 struct clocksource *clock, u32 mult, cycle_t cycle_last)
815
{
J
John Stultz 已提交
816
	u64 new_tb_to_xs, new_stamp_xsec;
817
	u32 frac_sec;
818 819 820 821 822 823 824 825

	if (clock != &clocksource_timebase)
		return;

	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();

826 827
	/* 19342813113834067 ~= 2^(20+64) / 1e9 */
	new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
J
John Stultz 已提交
828
	new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
J
John Stultz 已提交
829
	do_div(new_stamp_xsec, 1000000000);
J
John Stultz 已提交
830
	new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
J
John Stultz 已提交
831

832 833 834 835
	BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
	/* this is tv_nsec / 1e9 as a 0.32 fraction */
	frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;

J
John Stultz 已提交
836 837 838 839 840 841 842 843 844 845 846
	/*
	 * tb_update_count is used to allow the userspace gettimeofday code
	 * to assure itself that it sees a consistent view of the tb_to_xs and
	 * stamp_xsec variables.  It reads the tb_update_count, then reads
	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
	 * the two values of tb_update_count match and are even then the
	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
	 * loops back and reads them again until this criteria is met.
	 * We expect the caller to have done the first increment of
	 * vdso_data->tb_update_count already.
	 */
847
	vdso_data->tb_orig_stamp = cycle_last;
J
John Stultz 已提交
848 849
	vdso_data->stamp_xsec = new_stamp_xsec;
	vdso_data->tb_to_xs = new_tb_to_xs;
850 851
	vdso_data->wtom_clock_sec = wtm->tv_sec;
	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
J
John Stultz 已提交
852
	vdso_data->stamp_xtime = *wall_time;
853
	vdso_data->stamp_sec_fraction = frac_sec;
J
John Stultz 已提交
854 855
	smp_wmb();
	++(vdso_data->tb_update_count);
856 857 858 859 860 861 862 863
}

void update_vsyscall_tz(void)
{
	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
}

864
static void __init clocksource_init(void)
865 866 867 868 869 870 871 872
{
	struct clocksource *clock;

	if (__USE_RTC())
		clock = &clocksource_rtc;
	else
		clock = &clocksource_timebase;

873
	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
874 875 876 877 878 879 880 881 882
		printk(KERN_ERR "clocksource: %s is already registered\n",
		       clock->name);
		return;
	}

	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
	       clock->name, clock->mult, clock->shift);
}

883 884 885
static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev)
{
886
	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
887
	set_dec(evt);
888 889 890 891 892

	/* We may have raced with new irq work */
	if (test_irq_work_pending())
		set_dec(1);

893 894 895
	return 0;
}

896
static int decrementer_shutdown(struct clock_event_device *dev)
897
{
898
	decrementer_set_next_event(decrementer_max, dev);
899
	return 0;
900 901
}

902 903 904
/* Interrupt handler for the timer broadcast IPI */
void tick_broadcast_ipi_handler(void)
{
905
	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
906 907 908

	*next_tb = get_tb_or_rtc();
	__timer_interrupt();
909 910
}

911 912
static void register_decrementer_clockevent(int cpu)
{
913
	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
914 915

	*dec = decrementer_clockevent;
916
	dec->cpumask = cpumask_of(cpu);
917

918 919
	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
		    dec->name, dec->mult, dec->shift, cpu);
920 921 922 923

	clockevents_register_device(dec);
}

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
static void enable_large_decrementer(void)
{
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return;

	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
		return;

	/*
	 * If we're running as the hypervisor we need to enable the LD manually
	 * otherwise firmware should have done it for us.
	 */
	if (cpu_has_feature(CPU_FTR_HVMODE))
		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
}

static void __init set_decrementer_max(void)
{
	struct device_node *cpu;
	u32 bits = 32;

	/* Prior to ISAv3 the decrementer is always 32 bit */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return;

	cpu = of_find_node_by_type(NULL, "cpu");

	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
		if (bits > 64 || bits < 32) {
			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
			bits = 32;
		}

		/* calculate the signed maximum given this many bits */
		decrementer_max = (1ul << (bits - 1)) - 1;
	}

	of_node_put(cpu);

	pr_info("time_init: %u bit decrementer (max: %llx)\n",
		bits, decrementer_max);
}

967
static void __init init_decrementer_clockevent(void)
968 969 970
{
	int cpu = smp_processor_id();

971 972
	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);

973
	decrementer_clockevent.max_delta_ns =
974
		clockevent_delta2ns(decrementer_max, &decrementer_clockevent);
975 976
	decrementer_clockevent.min_delta_ns =
		clockevent_delta2ns(2, &decrementer_clockevent);
977 978 979 980 981 982

	register_decrementer_clockevent(cpu);
}

void secondary_cpu_time_init(void)
{
983 984 985
	/* Enable and test the large decrementer for this cpu */
	enable_large_decrementer();

986 987 988 989 990
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

991 992 993 994 995
	/* FIME: Should make unrelatred change to move snapshot_timebase
	 * call here ! */
	register_decrementer_clockevent(smp_processor_id());
}

996
/* This function is only called on the boot processor */
L
Linus Torvalds 已提交
997 998 999
void __init time_init(void)
{
	struct div_result res;
1000
	u64 scale;
1001 1002
	unsigned shift;

1003 1004 1005 1006 1007 1008
	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		ppc_tb_freq = 1000000000;
	} else {
		/* Normal PowerPC with timebase register */
		ppc_md.calibrate_decr();
1009
		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1010
		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1011
		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1012 1013
		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
	}
1014 1015

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1016
	tb_ticks_per_sec = ppc_tb_freq;
1017
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
1018
	calc_cputime_factors();
1019
	setup_cputime_one_jiffy();
1020

L
Linus Torvalds 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	/*
	 * Compute scale factor for sched_clock.
	 * The calibrate_decr() function has set tb_ticks_per_sec,
	 * which is the timebase frequency.
	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
	 * the 128-bit result as a 64.64 fixed-point number.
	 * We then shift that number right until it is less than 1.0,
	 * giving us the scale factor and shift count to use in
	 * sched_clock().
	 */
	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
	scale = res.result_low;
	for (shift = 0; res.result_high != 0; ++shift) {
		scale = (scale >> 1) | (res.result_high << 63);
		res.result_high >>= 1;
	}
	tb_to_ns_scale = scale;
	tb_to_ns_shift = shift;
1039
	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1040
	boot_tb = get_tb_or_rtc();
L
Linus Torvalds 已提交
1041

1042
	/* If platform provided a timezone (pmac), we correct the time */
1043
	if (timezone_offset) {
1044 1045
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
1046
	}
1047

1048 1049
	vdso_data->tb_update_count = 0;
	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
L
Linus Torvalds 已提交
1050

1051 1052 1053 1054
	/* initialise and enable the large decrementer (if we have one) */
	set_decrementer_max();
	enable_large_decrementer();

1055 1056 1057 1058 1059
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

1060 1061
	/* Register the clocksource */
	clocksource_init();
1062

1063
	init_decrementer_clockevent();
1064
	tick_setup_hrtimer_broadcast();
1065 1066 1067 1068

#ifdef CONFIG_COMMON_CLK
	of_clk_init(NULL);
#endif
L
Linus Torvalds 已提交
1069 1070 1071 1072 1073 1074 1075
}


#define FEBRUARY	2
#define	STARTOFTIME	1970
#define SECDAY		86400L
#define SECYR		(SECDAY * 365)
1076 1077
#define	leapyear(year)		((year) % 4 == 0 && \
				 ((year) % 100 != 0 || (year) % 400 == 0))
L
Linus Torvalds 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
#define	days_in_month(a) 	(month_days[(a) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

void to_tm(int tim, struct rtc_time * tm)
{
	register int    i;
	register long   hms, day;

	day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i;

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;

	/*
1115
	 * No-one uses the day of the week.
L
Linus Torvalds 已提交
1116
	 */
1117
	tm->tm_wday = -1;
L
Linus Torvalds 已提交
1118
}
1119
EXPORT_SYMBOL(to_tm);
L
Linus Torvalds 已提交
1120 1121 1122 1123 1124

/*
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 * result.
 */
1125 1126
void div128_by_32(u64 dividend_high, u64 dividend_low,
		  unsigned divisor, struct div_result *dr)
L
Linus Torvalds 已提交
1127
{
1128 1129 1130
	unsigned long a, b, c, d;
	unsigned long w, x, y, z;
	u64 ra, rb, rc;
L
Linus Torvalds 已提交
1131 1132 1133 1134 1135 1136

	a = dividend_high >> 32;
	b = dividend_high & 0xffffffff;
	c = dividend_low >> 32;
	d = dividend_low & 0xffffffff;

1137 1138 1139 1140 1141
	w = a / divisor;
	ra = ((u64)(a - (w * divisor)) << 32) + b;

	rb = ((u64) do_div(ra, divisor) << 32) + c;
	x = ra;
L
Linus Torvalds 已提交
1142

1143 1144 1145 1146 1147
	rc = ((u64) do_div(rb, divisor) << 32) + d;
	y = rb;

	do_div(rc, divisor);
	z = rc;
L
Linus Torvalds 已提交
1148

1149 1150
	dr->result_high = ((u64)w << 32) + x;
	dr->result_low  = ((u64)y << 32) + z;
L
Linus Torvalds 已提交
1151 1152

}
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162
/* We don't need to calibrate delay, we use the CPU timebase for that */
void calibrate_delay(void)
{
	/* Some generic code (such as spinlock debug) use loops_per_jiffy
	 * as the number of __delay(1) in a jiffy, so make it so
	 */
	loops_per_jiffy = tb_ticks_per_jiffy;
}

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
{
	ppc_md.get_rtc_time(tm);
	return rtc_valid_tm(tm);
}

static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
{
	if (!ppc_md.set_rtc_time)
		return -EOPNOTSUPP;

	if (ppc_md.set_rtc_time(tm) < 0)
		return -EOPNOTSUPP;

	return 0;
}

static const struct rtc_class_ops rtc_generic_ops = {
	.read_time = rtc_generic_get_time,
	.set_time = rtc_generic_set_time,
};

1186 1187 1188 1189 1190 1191 1192
static int __init rtc_init(void)
{
	struct platform_device *pdev;

	if (!ppc_md.get_rtc_time)
		return -ENODEV;

1193 1194 1195
	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
					     &rtc_generic_ops,
					     sizeof(rtc_generic_ops));
1196

1197
	return PTR_ERR_OR_ZERO(pdev);
1198 1199
}

1200
device_initcall(rtc_init);
1201
#endif