time.c 27.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 *
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 * to make clock more stable (2.4.0-test5). The only thing
 * that this code assumes is that the timebases have been synchronized
 * by firmware on SMP and are never stopped (never do sleep
 * on SMP then, nap and doze are OK).
 * 
 * Speeded up do_gettimeofday by getting rid of references to
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 *
 * TODO (not necessarily in this file):
 * - improve precision and reproducibility of timebase frequency
20
 * measurement at boot time.
L
Linus Torvalds 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34
 * - for astronomical applications: add a new function to get
 * non ambiguous timestamps even around leap seconds. This needs
 * a new timestamp format and a good name.
 *
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
35
#include <linux/export.h>
L
Linus Torvalds 已提交
36 37 38 39 40 41 42 43 44
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
45
#include <linux/clockchips.h>
L
Linus Torvalds 已提交
46 47 48 49
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
50 51
#include <linux/percpu.h>
#include <linux/rtc.h>
52
#include <linux/jiffies.h>
53
#include <linux/posix-timers.h>
54
#include <linux/irq.h>
55
#include <linux/delay.h>
56
#include <linux/irq_work.h>
57
#include <asm/trace.h>
L
Linus Torvalds 已提交
58 59 60 61 62 63 64 65 66

#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
#include <asm/uaccess.h>
#include <asm/time.h>
#include <asm/prom.h>
67 68
#include <asm/irq.h>
#include <asm/div64.h>
P
Paul Mackerras 已提交
69
#include <asm/smp.h>
70
#include <asm/vdso_datapage.h>
71
#include <asm/firmware.h>
M
Michael Neuling 已提交
72
#include <asm/cputime.h>
L
Linus Torvalds 已提交
73

74 75
/* powerpc clocksource/clockevent code */

76
#include <linux/clockchips.h>
77
#include <linux/timekeeper_internal.h>
78

79
static cycle_t rtc_read(struct clocksource *);
80 81 82 83 84 85 86 87
static struct clocksource clocksource_rtc = {
	.name         = "rtc",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.read         = rtc_read,
};

88
static cycle_t timebase_read(struct clocksource *);
89 90 91 92 93 94 95 96
static struct clocksource clocksource_timebase = {
	.name         = "timebase",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.read         = timebase_read,
};

97 98 99 100 101 102 103
#define DECREMENTER_MAX	0x7fffffff

static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev);
static void decrementer_set_mode(enum clock_event_mode mode,
				 struct clock_event_device *dev);

104
struct clock_event_device decrementer_clockevent = {
105 106 107 108 109
	.name           = "decrementer",
	.rating         = 200,
	.irq            = 0,
	.set_next_event = decrementer_set_next_event,
	.set_mode       = decrementer_set_mode,
110
	.features       = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP,
111
};
112
EXPORT_SYMBOL(decrementer_clockevent);
113

114 115
DEFINE_PER_CPU(u64, decrementers_next_tb);
static DEFINE_PER_CPU(struct clock_event_device, decrementers);
116

L
Linus Torvalds 已提交
117 118
#define XSEC_PER_SEC (1024*1024)

119 120 121 122 123 124 125
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
#endif

L
Linus Torvalds 已提交
126 127 128 129
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
130
EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
131

L
Linus Torvalds 已提交
132
DEFINE_SPINLOCK(rtc_lock);
133
EXPORT_SYMBOL_GPL(rtc_lock);
L
Linus Torvalds 已提交
134

135 136
static u64 tb_to_ns_scale __read_mostly;
static unsigned tb_to_ns_shift __read_mostly;
137
static u64 boot_tb __read_mostly;
L
Linus Torvalds 已提交
138 139

extern struct timezone sys_tz;
140
static long timezone_offset;
L
Linus Torvalds 已提交
141

142
unsigned long ppc_proc_freq;
143
EXPORT_SYMBOL_GPL(ppc_proc_freq);
144
unsigned long ppc_tb_freq;
145
EXPORT_SYMBOL_GPL(ppc_tb_freq);
146

147
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
148 149
/*
 * Factors for converting from cputime_t (timebase ticks) to
150
 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
151 152 153
 * These are all stored as 0.64 fixed-point binary fractions.
 */
u64 __cputime_jiffies_factor;
154
EXPORT_SYMBOL(__cputime_jiffies_factor);
155 156
u64 __cputime_usec_factor;
EXPORT_SYMBOL(__cputime_usec_factor);
157
u64 __cputime_sec_factor;
158
EXPORT_SYMBOL(__cputime_sec_factor);
159
u64 __cputime_clockt_factor;
160
EXPORT_SYMBOL(__cputime_clockt_factor);
M
Michael Neuling 已提交
161 162
DEFINE_PER_CPU(unsigned long, cputime_last_delta);
DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
163

164 165
cputime_t cputime_one_jiffy;

166 167
void (*dtl_consumer)(struct dtl_entry *, u64);

168 169 170 171 172 173
static void calc_cputime_factors(void)
{
	struct div_result res;

	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
	__cputime_jiffies_factor = res.result_low;
174 175
	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
	__cputime_usec_factor = res.result_low;
176 177 178 179 180 181 182
	div128_by_32(1, 0, tb_ticks_per_sec, &res);
	__cputime_sec_factor = res.result_low;
	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
	__cputime_clockt_factor = res.result_low;
}

/*
183 184
 * Read the SPURR on systems that have it, otherwise the PURR,
 * or if that doesn't exist return the timebase value passed in.
185
 */
186
static u64 read_spurr(u64 tb)
187
{
188 189
	if (cpu_has_feature(CPU_FTR_SPURR))
		return mfspr(SPRN_SPURR);
190 191
	if (cpu_has_feature(CPU_FTR_PURR))
		return mfspr(SPRN_PURR);
192
	return tb;
193 194
}

195 196
#ifdef CONFIG_PPC_SPLPAR

197
/*
198 199
 * Scan the dispatch trace log and count up the stolen time.
 * Should be called with interrupts disabled.
200
 */
201
static u64 scan_dispatch_log(u64 stop_tb)
202
{
203
	u64 i = local_paca->dtl_ridx;
204 205 206 207 208 209 210
	struct dtl_entry *dtl = local_paca->dtl_curr;
	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
	struct lppaca *vpa = local_paca->lppaca_ptr;
	u64 tb_delta;
	u64 stolen = 0;
	u64 dtb;

211 212 213
	if (!dtl)
		return 0;

214
	if (i == be64_to_cpu(vpa->dtl_idx))
215
		return 0;
216 217 218 219
	while (i < be64_to_cpu(vpa->dtl_idx)) {
		dtb = be64_to_cpu(dtl->timebase);
		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
			be32_to_cpu(dtl->ready_to_enqueue_time);
220
		barrier();
221
		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
222
			/* buffer has overflowed */
223
			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
224 225 226 227 228
			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
			continue;
		}
		if (dtb > stop_tb)
			break;
229 230
		if (dtl_consumer)
			dtl_consumer(dtl, i);
231 232 233 234 235 236 237 238 239
		stolen += tb_delta;
		++i;
		++dtl;
		if (dtl == dtl_end)
			dtl = local_paca->dispatch_log;
	}
	local_paca->dtl_ridx = i;
	local_paca->dtl_curr = dtl;
	return stolen;
240 241
}

242 243 244 245 246 247 248 249
/*
 * Accumulate stolen time by scanning the dispatch trace log.
 * Called on entry from user mode.
 */
void accumulate_stolen_time(void)
{
	u64 sst, ust;

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
	u8 save_soft_enabled = local_paca->soft_enabled;

	/* We are called early in the exception entry, before
	 * soft/hard_enabled are sync'ed to the expected state
	 * for the exception. We are hard disabled but the PACA
	 * needs to reflect that so various debug stuff doesn't
	 * complain
	 */
	local_paca->soft_enabled = 0;

	sst = scan_dispatch_log(local_paca->starttime_user);
	ust = scan_dispatch_log(local_paca->starttime);
	local_paca->system_time -= sst;
	local_paca->user_time -= ust;
	local_paca->stolen_time += ust + sst;

	local_paca->soft_enabled = save_soft_enabled;
267 268 269 270 271 272
}

static inline u64 calculate_stolen_time(u64 stop_tb)
{
	u64 stolen = 0;

273
	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
274 275 276 277 278 279 280
		stolen = scan_dispatch_log(stop_tb);
		get_paca()->system_time -= stolen;
	}

	stolen += get_paca()->stolen_time;
	get_paca()->stolen_time = 0;
	return stolen;
281 282
}

283 284 285 286 287 288 289 290
#else /* CONFIG_PPC_SPLPAR */
static inline u64 calculate_stolen_time(u64 stop_tb)
{
	return 0;
}

#endif /* CONFIG_PPC_SPLPAR */

291 292 293 294
/*
 * Account time for a transition between system, hard irq
 * or soft irq state.
 */
295 296
static u64 vtime_delta(struct task_struct *tsk,
			u64 *sys_scaled, u64 *stolen)
297
{
298 299
	u64 now, nowscaled, deltascaled;
	u64 udelta, delta, user_scaled;
300

301 302
	WARN_ON_ONCE(!irqs_disabled());

303
	now = mftb();
304
	nowscaled = read_spurr(now);
305 306
	get_paca()->system_time += now - get_paca()->starttime;
	get_paca()->starttime = now;
307 308
	deltascaled = nowscaled - get_paca()->startspurr;
	get_paca()->startspurr = nowscaled;
309

310
	*stolen = calculate_stolen_time(now);
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

	delta = get_paca()->system_time;
	get_paca()->system_time = 0;
	udelta = get_paca()->user_time - get_paca()->utime_sspurr;
	get_paca()->utime_sspurr = get_paca()->user_time;

	/*
	 * Because we don't read the SPURR on every kernel entry/exit,
	 * deltascaled includes both user and system SPURR ticks.
	 * Apportion these ticks to system SPURR ticks and user
	 * SPURR ticks in the same ratio as the system time (delta)
	 * and user time (udelta) values obtained from the timebase
	 * over the same interval.  The system ticks get accounted here;
	 * the user ticks get saved up in paca->user_time_scaled to be
	 * used by account_process_tick.
	 */
327
	*sys_scaled = delta;
328 329 330
	user_scaled = udelta;
	if (deltascaled != delta + udelta) {
		if (udelta) {
331 332
			*sys_scaled = deltascaled * delta / (delta + udelta);
			user_scaled = deltascaled - *sys_scaled;
333
		} else {
334
			*sys_scaled = deltascaled;
335 336 337 338
		}
	}
	get_paca()->user_time_scaled += user_scaled;

339 340 341
	return delta;
}

342
void vtime_account_system(struct task_struct *tsk)
343 344 345 346 347 348 349 350
{
	u64 delta, sys_scaled, stolen;

	delta = vtime_delta(tsk, &sys_scaled, &stolen);
	account_system_time(tsk, 0, delta, sys_scaled);
	if (stolen)
		account_steal_time(stolen);
}
351
EXPORT_SYMBOL_GPL(vtime_account_system);
352

353
void vtime_account_idle(struct task_struct *tsk)
354 355 356 357 358
{
	u64 delta, sys_scaled, stolen;

	delta = vtime_delta(tsk, &sys_scaled, &stolen);
	account_idle_time(delta + stolen);
359 360 361
}

/*
362 363 364
 * Transfer the user time accumulated in the paca
 * by the exception entry and exit code to the generic
 * process user time records.
365
 * Must be called with interrupts disabled.
366 367
 * Assumes that vtime_account_system/idle() has been called
 * recently (i.e. since the last entry from usermode) so that
368
 * get_paca()->user_time_scaled is up to date.
369
 */
370
void vtime_account_user(struct task_struct *tsk)
371
{
372
	cputime_t utime, utimescaled;
373 374

	utime = get_paca()->user_time;
375
	utimescaled = get_paca()->user_time_scaled;
376
	get_paca()->user_time = 0;
377 378
	get_paca()->user_time_scaled = 0;
	get_paca()->utime_sspurr = 0;
379
	account_user_time(tsk, utime, utimescaled);
380 381
}

382
#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
383 384 385
#define calc_cputime_factors()
#endif

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
void __delay(unsigned long loops)
{
	unsigned long start;
	int diff;

	if (__USE_RTC()) {
		start = get_rtcl();
		do {
			/* the RTCL register wraps at 1000000000 */
			diff = get_rtcl() - start;
			if (diff < 0)
				diff += 1000000000;
		} while (diff < loops);
	} else {
		start = get_tbl();
		while (get_tbl() - start < loops)
			HMT_low();
		HMT_medium();
	}
}
EXPORT_SYMBOL(__delay);

void udelay(unsigned long usecs)
{
	__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);

L
Linus Torvalds 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426
#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	if (in_lock_functions(pc))
		return regs->link;

	return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif

427
#ifdef CONFIG_IRQ_WORK
428

429 430 431 432
/*
 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 */
#ifdef CONFIG_PPC64
433
static inline unsigned long test_irq_work_pending(void)
434
{
435 436 437 438
	unsigned long x;

	asm volatile("lbz %0,%1(13)"
		: "=r" (x)
439
		: "i" (offsetof(struct paca_struct, irq_work_pending)));
440 441 442
	return x;
}

443
static inline void set_irq_work_pending_flag(void)
444 445 446
{
	asm volatile("stb %0,%1(13)" : :
		"r" (1),
447
		"i" (offsetof(struct paca_struct, irq_work_pending)));
448 449
}

450
static inline void clear_irq_work_pending(void)
451 452 453
{
	asm volatile("stb %0,%1(13)" : :
		"r" (0),
454
		"i" (offsetof(struct paca_struct, irq_work_pending)));
455 456
}

457 458
#else /* 32-bit */

459
DEFINE_PER_CPU(u8, irq_work_pending);
460

461 462 463
#define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
#define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
#define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
464

465 466
#endif /* 32 vs 64 bit */

467
void arch_irq_work_raise(void)
468 469
{
	preempt_disable();
470
	set_irq_work_pending_flag();
471 472 473 474
	set_dec(1);
	preempt_enable();
}

475
#else  /* CONFIG_IRQ_WORK */
476

477 478
#define test_irq_work_pending()	0
#define clear_irq_work_pending()
479

480
#endif /* CONFIG_IRQ_WORK */
481

482
static void __timer_interrupt(void)
483 484
{
	struct pt_regs *regs = get_irq_regs();
485 486
	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
487 488 489 490 491 492 493 494 495 496 497 498 499 500
	u64 now;

	trace_timer_interrupt_entry(regs);

	if (test_irq_work_pending()) {
		clear_irq_work_pending();
		irq_work_run();
	}

	now = get_tb_or_rtc();
	if (now >= *next_tb) {
		*next_tb = ~(u64)0;
		if (evt->event_handler)
			evt->event_handler(evt);
501
		__this_cpu_inc(irq_stat.timer_irqs_event);
502 503 504 505 506 507 508
	} else {
		now = *next_tb - now;
		if (now <= DECREMENTER_MAX)
			set_dec((int)now);
		/* We may have raced with new irq work */
		if (test_irq_work_pending())
			set_dec(1);
509
		__this_cpu_inc(irq_stat.timer_irqs_others);
510 511 512 513 514
	}

#ifdef CONFIG_PPC64
	/* collect purr register values often, for accurate calculations */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
515
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
516 517 518 519 520 521 522
		cu->current_tb = mfspr(SPRN_PURR);
	}
#endif

	trace_timer_interrupt_exit(regs);
}

L
Linus Torvalds 已提交
523 524 525 526
/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
527
void timer_interrupt(struct pt_regs * regs)
L
Linus Torvalds 已提交
528
{
529
	struct pt_regs *old_regs;
530
	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
531

532 533 534 535 536 537
	/* Ensure a positive value is written to the decrementer, or else
	 * some CPUs will continue to take decrementer exceptions.
	 */
	set_dec(DECREMENTER_MAX);

	/* Some implementations of hotplug will get timer interrupts while
538 539 540 541
	 * offline, just ignore these and we also need to set
	 * decrementers_next_tb as MAX to make sure __check_irq_replay
	 * don't replay timer interrupt when return, otherwise we'll trap
	 * here infinitely :(
542
	 */
543 544
	if (!cpu_online(smp_processor_id())) {
		*next_tb = ~(u64)0;
545
		return;
546
	}
547

548 549 550 551 552
	/* Conditionally hard-enable interrupts now that the DEC has been
	 * bumped to its maximum value
	 */
	may_hard_irq_enable();

553

P
Paul Bolle 已提交
554
#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
555 556 557
	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);
#endif
L
Linus Torvalds 已提交
558

559
	old_regs = set_irq_regs(regs);
L
Linus Torvalds 已提交
560 561
	irq_enter();

562
	__timer_interrupt();
L
Linus Torvalds 已提交
563
	irq_exit();
564
	set_irq_regs(old_regs);
L
Linus Torvalds 已提交
565 566
}

567 568 569 570 571 572 573 574 575
/*
 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
 * left pending on exit from a KVM guest.  We don't need to do anything
 * to clear them, as they are edge-triggered.
 */
void hdec_interrupt(struct pt_regs *regs)
{
}

576
#ifdef CONFIG_SUSPEND
577
static void generic_suspend_disable_irqs(void)
578 579 580 581 582
{
	/* Disable the decrementer, so that it doesn't interfere
	 * with suspending.
	 */

583
	set_dec(DECREMENTER_MAX);
584
	local_irq_disable();
585
	set_dec(DECREMENTER_MAX);
586 587
}

588
static void generic_suspend_enable_irqs(void)
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
{
	local_irq_enable();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_disable_irqs(void)
{
	if (ppc_md.suspend_disable_irqs)
		ppc_md.suspend_disable_irqs();
	generic_suspend_disable_irqs();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_enable_irqs(void)
{
	generic_suspend_enable_irqs();
	if (ppc_md.suspend_enable_irqs)
		ppc_md.suspend_enable_irqs();
}
#endif

L
Linus Torvalds 已提交
610 611 612 613 614 615 616 617 618
/*
 * Scheduler clock - returns current time in nanosec units.
 *
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 * are 64-bit unsigned numbers.
 */
unsigned long long sched_clock(void)
{
619 620
	if (__USE_RTC())
		return get_rtc();
621
	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
L
Linus Torvalds 已提交
622 623
}

624
static int __init get_freq(char *name, int cells, unsigned long *val)
625 626
{
	struct device_node *cpu;
627
	const __be32 *fp;
628
	int found = 0;
629

630
	/* The cpu node should have timebase and clock frequency properties */
631 632
	cpu = of_find_node_by_type(NULL, "cpu");

633
	if (cpu) {
634
		fp = of_get_property(cpu, name, NULL);
635
		if (fp) {
636
			found = 1;
637
			*val = of_read_ulong(fp, cells);
638
		}
639 640

		of_node_put(cpu);
641
	}
642 643 644 645

	return found;
}

646
static void start_cpu_decrementer(void)
647 648 649 650 651 652 653 654 655 656
{
#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

	/* Enable decrementer interrupt */
	mtspr(SPRN_TCR, TCR_DIE);
#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
}

657 658 659 660 661 662 663
void __init generic_calibrate_decr(void)
{
	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */

	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {

664 665
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");
666
	}
667

668 669 670 671 672 673 674
	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */

	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {

		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");
675 676 677
	}
}

678
int update_persistent_clock(struct timespec now)
679 680 681
{
	struct rtc_time tm;

682
	if (!ppc_md.set_rtc_time)
683
		return -ENODEV;
684 685 686 687 688 689 690 691

	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
	tm.tm_year -= 1900;
	tm.tm_mon -= 1;

	return ppc_md.set_rtc_time(&tm);
}

692
static void __read_persistent_clock(struct timespec *ts)
693 694 695 696
{
	struct rtc_time tm;
	static int first = 1;

697
	ts->tv_nsec = 0;
698 699 700 701 702 703 704
	/* XXX this is a litle fragile but will work okay in the short term */
	if (first) {
		first = 0;
		if (ppc_md.time_init)
			timezone_offset = ppc_md.time_init();

		/* get_boot_time() isn't guaranteed to be safe to call late */
705 706 707 708 709 710 711 712
		if (ppc_md.get_boot_time) {
			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
			return;
		}
	}
	if (!ppc_md.get_rtc_time) {
		ts->tv_sec = 0;
		return;
713
	}
714
	ppc_md.get_rtc_time(&tm);
715

716 717
	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
			    tm.tm_hour, tm.tm_min, tm.tm_sec);
718 719
}

720 721 722 723 724 725 726 727 728 729 730 731
void read_persistent_clock(struct timespec *ts)
{
	__read_persistent_clock(ts);

	/* Sanitize it in case real time clock is set below EPOCH */
	if (ts->tv_sec < 0) {
		ts->tv_sec = 0;
		ts->tv_nsec = 0;
	}
		
}

732
/* clocksource code */
733
static cycle_t rtc_read(struct clocksource *cs)
734 735 736 737
{
	return (cycle_t)get_rtc();
}

738
static cycle_t timebase_read(struct clocksource *cs)
739 740 741 742
{
	return (cycle_t)get_tb();
}

743
void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
744
			 struct clocksource *clock, u32 mult, cycle_t cycle_last)
745
{
J
John Stultz 已提交
746
	u64 new_tb_to_xs, new_stamp_xsec;
747
	u32 frac_sec;
748 749 750 751 752 753 754 755

	if (clock != &clocksource_timebase)
		return;

	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();

756 757
	/* 19342813113834067 ~= 2^(20+64) / 1e9 */
	new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
J
John Stultz 已提交
758
	new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
J
John Stultz 已提交
759
	do_div(new_stamp_xsec, 1000000000);
J
John Stultz 已提交
760
	new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
J
John Stultz 已提交
761

762 763 764 765
	BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
	/* this is tv_nsec / 1e9 as a 0.32 fraction */
	frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;

J
John Stultz 已提交
766 767 768 769 770 771 772 773 774 775 776
	/*
	 * tb_update_count is used to allow the userspace gettimeofday code
	 * to assure itself that it sees a consistent view of the tb_to_xs and
	 * stamp_xsec variables.  It reads the tb_update_count, then reads
	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
	 * the two values of tb_update_count match and are even then the
	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
	 * loops back and reads them again until this criteria is met.
	 * We expect the caller to have done the first increment of
	 * vdso_data->tb_update_count already.
	 */
777
	vdso_data->tb_orig_stamp = cycle_last;
J
John Stultz 已提交
778 779
	vdso_data->stamp_xsec = new_stamp_xsec;
	vdso_data->tb_to_xs = new_tb_to_xs;
780 781
	vdso_data->wtom_clock_sec = wtm->tv_sec;
	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
J
John Stultz 已提交
782
	vdso_data->stamp_xtime = *wall_time;
783
	vdso_data->stamp_sec_fraction = frac_sec;
J
John Stultz 已提交
784 785
	smp_wmb();
	++(vdso_data->tb_update_count);
786 787 788 789 790 791 792 793
}

void update_vsyscall_tz(void)
{
	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
}

794
static void __init clocksource_init(void)
795 796 797 798 799 800 801 802
{
	struct clocksource *clock;

	if (__USE_RTC())
		clock = &clocksource_rtc;
	else
		clock = &clocksource_timebase;

803
	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
804 805 806 807 808 809 810 811 812
		printk(KERN_ERR "clocksource: %s is already registered\n",
		       clock->name);
		return;
	}

	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
	       clock->name, clock->mult, clock->shift);
}

813 814 815
static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev)
{
816
	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
817
	set_dec(evt);
818 819 820 821 822

	/* We may have raced with new irq work */
	if (test_irq_work_pending())
		set_dec(1);

823 824 825 826 827 828 829 830 831 832
	return 0;
}

static void decrementer_set_mode(enum clock_event_mode mode,
				 struct clock_event_device *dev)
{
	if (mode != CLOCK_EVT_MODE_ONESHOT)
		decrementer_set_next_event(DECREMENTER_MAX, dev);
}

833 834 835
/* Interrupt handler for the timer broadcast IPI */
void tick_broadcast_ipi_handler(void)
{
836
	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
837 838 839

	*next_tb = get_tb_or_rtc();
	__timer_interrupt();
840 841
}

842 843
static void register_decrementer_clockevent(int cpu)
{
844
	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
845 846

	*dec = decrementer_clockevent;
847
	dec->cpumask = cpumask_of(cpu);
848

849 850
	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
		    dec->name, dec->mult, dec->shift, cpu);
851 852 853 854

	clockevents_register_device(dec);
}

855
static void __init init_decrementer_clockevent(void)
856 857 858
{
	int cpu = smp_processor_id();

859 860
	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);

861 862
	decrementer_clockevent.max_delta_ns =
		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
863 864
	decrementer_clockevent.min_delta_ns =
		clockevent_delta2ns(2, &decrementer_clockevent);
865 866 867 868 869 870

	register_decrementer_clockevent(cpu);
}

void secondary_cpu_time_init(void)
{
871 872 873 874 875
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

876 877 878 879 880
	/* FIME: Should make unrelatred change to move snapshot_timebase
	 * call here ! */
	register_decrementer_clockevent(smp_processor_id());
}

881
/* This function is only called on the boot processor */
L
Linus Torvalds 已提交
882 883 884
void __init time_init(void)
{
	struct div_result res;
885
	u64 scale;
886 887
	unsigned shift;

888 889 890 891 892 893
	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		ppc_tb_freq = 1000000000;
	} else {
		/* Normal PowerPC with timebase register */
		ppc_md.calibrate_decr();
894
		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
895
		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
896
		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
897 898
		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
	}
899 900

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
901
	tb_ticks_per_sec = ppc_tb_freq;
902
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
903
	calc_cputime_factors();
904
	setup_cputime_one_jiffy();
905

L
Linus Torvalds 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
	/*
	 * Compute scale factor for sched_clock.
	 * The calibrate_decr() function has set tb_ticks_per_sec,
	 * which is the timebase frequency.
	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
	 * the 128-bit result as a 64.64 fixed-point number.
	 * We then shift that number right until it is less than 1.0,
	 * giving us the scale factor and shift count to use in
	 * sched_clock().
	 */
	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
	scale = res.result_low;
	for (shift = 0; res.result_high != 0; ++shift) {
		scale = (scale >> 1) | (res.result_high << 63);
		res.result_high >>= 1;
	}
	tb_to_ns_scale = scale;
	tb_to_ns_shift = shift;
924
	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
925
	boot_tb = get_tb_or_rtc();
L
Linus Torvalds 已提交
926

927
	/* If platform provided a timezone (pmac), we correct the time */
928
	if (timezone_offset) {
929 930
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
931
	}
932

933 934
	vdso_data->tb_update_count = 0;
	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
L
Linus Torvalds 已提交
935

936 937 938 939 940
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

941 942
	/* Register the clocksource */
	clocksource_init();
943

944
	init_decrementer_clockevent();
945
	tick_setup_hrtimer_broadcast();
L
Linus Torvalds 已提交
946 947 948 949 950 951 952
}


#define FEBRUARY	2
#define	STARTOFTIME	1970
#define SECDAY		86400L
#define SECYR		(SECDAY * 365)
953 954
#define	leapyear(year)		((year) % 4 == 0 && \
				 ((year) % 100 != 0 || (year) % 400 == 0))
L
Linus Torvalds 已提交
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
#define	days_in_month(a) 	(month_days[(a) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

/*
 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
 */
void GregorianDay(struct rtc_time * tm)
{
	int leapsToDate;
	int lastYear;
	int day;
	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };

972
	lastYear = tm->tm_year - 1;
L
Linus Torvalds 已提交
973 974 975 976

	/*
	 * Number of leap corrections to apply up to end of last year
	 */
977
	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
L
Linus Torvalds 已提交
978 979 980 981 982

	/*
	 * This year is a leap year if it is divisible by 4 except when it is
	 * divisible by 100 unless it is divisible by 400
	 *
983
	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
L
Linus Torvalds 已提交
984
	 */
985
	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
L
Linus Torvalds 已提交
986 987 988 989

	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
		   tm->tm_mday;

990
	tm->tm_wday = day % 7;
L
Linus Torvalds 已提交
991
}
992
EXPORT_SYMBOL_GPL(GregorianDay);
L
Linus Torvalds 已提交
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027

void to_tm(int tim, struct rtc_time * tm)
{
	register int    i;
	register long   hms, day;

	day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i;

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;

	/*
	 * Determine the day of week
	 */
	GregorianDay(tm);
}
1028
EXPORT_SYMBOL(to_tm);
L
Linus Torvalds 已提交
1029 1030 1031 1032 1033

/*
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 * result.
 */
1034 1035
void div128_by_32(u64 dividend_high, u64 dividend_low,
		  unsigned divisor, struct div_result *dr)
L
Linus Torvalds 已提交
1036
{
1037 1038 1039
	unsigned long a, b, c, d;
	unsigned long w, x, y, z;
	u64 ra, rb, rc;
L
Linus Torvalds 已提交
1040 1041 1042 1043 1044 1045

	a = dividend_high >> 32;
	b = dividend_high & 0xffffffff;
	c = dividend_low >> 32;
	d = dividend_low & 0xffffffff;

1046 1047 1048 1049 1050
	w = a / divisor;
	ra = ((u64)(a - (w * divisor)) << 32) + b;

	rb = ((u64) do_div(ra, divisor) << 32) + c;
	x = ra;
L
Linus Torvalds 已提交
1051

1052 1053 1054 1055 1056
	rc = ((u64) do_div(rb, divisor) << 32) + d;
	y = rb;

	do_div(rc, divisor);
	z = rc;
L
Linus Torvalds 已提交
1057

1058 1059
	dr->result_high = ((u64)w << 32) + x;
	dr->result_low  = ((u64)y << 32) + z;
L
Linus Torvalds 已提交
1060 1061

}
1062

1063 1064 1065 1066 1067 1068 1069 1070 1071
/* We don't need to calibrate delay, we use the CPU timebase for that */
void calibrate_delay(void)
{
	/* Some generic code (such as spinlock debug) use loops_per_jiffy
	 * as the number of __delay(1) in a jiffy, so make it so
	 */
	loops_per_jiffy = tb_ticks_per_jiffy;
}

1072 1073 1074 1075 1076 1077 1078 1079 1080
static int __init rtc_init(void)
{
	struct platform_device *pdev;

	if (!ppc_md.get_rtc_time)
		return -ENODEV;

	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);

1081
	return PTR_ERR_OR_ZERO(pdev);
1082 1083 1084
}

module_init(rtc_init);