amd_iommu_init.c 30.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/gfp.h>
#include <linux/list.h>
24
#include <linux/sysdev.h>
25 26
#include <linux/interrupt.h>
#include <linux/msi.h>
27 28
#include <asm/pci-direct.h>
#include <asm/amd_iommu_types.h>
29
#include <asm/amd_iommu.h>
30
#include <asm/iommu.h>
31
#include <asm/gart.h>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

/*
 * definitions for the ACPI scanning code
 */
#define IVRS_HEADER_LENGTH 48

#define ACPI_IVHD_TYPE                  0x10
#define ACPI_IVMD_TYPE_ALL              0x20
#define ACPI_IVMD_TYPE                  0x21
#define ACPI_IVMD_TYPE_RANGE            0x22

#define IVHD_DEV_ALL                    0x01
#define IVHD_DEV_SELECT                 0x02
#define IVHD_DEV_SELECT_RANGE_START     0x03
#define IVHD_DEV_RANGE_END              0x04
#define IVHD_DEV_ALIAS                  0x42
#define IVHD_DEV_ALIAS_RANGE            0x43
#define IVHD_DEV_EXT_SELECT             0x46
#define IVHD_DEV_EXT_SELECT_RANGE       0x47

J
Joerg Roedel 已提交
52 53 54 55
#define IVHD_FLAG_HT_TUN_EN_MASK        0x01
#define IVHD_FLAG_PASSPW_EN_MASK        0x02
#define IVHD_FLAG_RESPASSPW_EN_MASK     0x04
#define IVHD_FLAG_ISOC_EN_MASK          0x08
56 57 58 59 60 61 62 63 64 65 66 67 68

#define IVMD_FLAG_EXCL_RANGE            0x08
#define IVMD_FLAG_UNITY_MAP             0x01

#define ACPI_DEVFLAG_INITPASS           0x01
#define ACPI_DEVFLAG_EXTINT             0x02
#define ACPI_DEVFLAG_NMI                0x04
#define ACPI_DEVFLAG_SYSMGT1            0x10
#define ACPI_DEVFLAG_SYSMGT2            0x20
#define ACPI_DEVFLAG_LINT0              0x40
#define ACPI_DEVFLAG_LINT1              0x80
#define ACPI_DEVFLAG_ATSDIS             0x10000000

69 70 71 72 73 74 75 76 77 78 79
/*
 * ACPI table definitions
 *
 * These data structures are laid over the table to parse the important values
 * out of it.
 */

/*
 * structure describing one IOMMU in the ACPI table. Typically followed by one
 * or more ivhd_entrys.
 */
80 81 82 83 84 85 86 87 88 89 90 91
struct ivhd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 cap_ptr;
	u64 mmio_phys;
	u16 pci_seg;
	u16 info;
	u32 reserved;
} __attribute__((packed));

92 93 94 95
/*
 * A device entry describing which devices a specific IOMMU translates and
 * which requestor ids they use.
 */
96 97 98 99 100 101 102
struct ivhd_entry {
	u8 type;
	u16 devid;
	u8 flags;
	u32 ext;
} __attribute__((packed));

103 104 105 106
/*
 * An AMD IOMMU memory definition structure. It defines things like exclusion
 * ranges for devices and regions that should be unity mapped.
 */
107 108 109 110 111 112 113 114 115 116 117
struct ivmd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 aux;
	u64 resv;
	u64 range_start;
	u64 range_length;
} __attribute__((packed));

118 119
static int __initdata amd_iommu_detected;

120 121
u16 amd_iommu_last_bdf;			/* largest PCI device id we have
					   to handle */
122
LIST_HEAD(amd_iommu_unity_map);		/* a list of required unity mappings
123 124
					   we find in ACPI */
unsigned amd_iommu_aperture_order = 26; /* size of aperture in power of 2 */
125 126
bool amd_iommu_isolate = true;		/* if true, device isolation is
					   enabled */
127
bool amd_iommu_unmap_flush;		/* if true, flush on every unmap */
128

129
LIST_HEAD(amd_iommu_list);		/* list of all AMD IOMMUs in the
130
					   system */
131

132 133 134 135 136 137
/*
 * Pointer to the device table which is shared by all AMD IOMMUs
 * it is indexed by the PCI device id or the HT unit id and contains
 * information about the domain the device belongs to as well as the
 * page table root pointer.
 */
138
struct dev_table_entry *amd_iommu_dev_table;
139 140 141 142 143 144

/*
 * The alias table is a driver specific data structure which contains the
 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
 * More than one device can share the same requestor id.
 */
145
u16 *amd_iommu_alias_table;
146 147 148 149 150

/*
 * The rlookup table is used to find the IOMMU which is responsible
 * for a specific device. It is also indexed by the PCI device id.
 */
151
struct amd_iommu **amd_iommu_rlookup_table;
152 153 154 155 156

/*
 * The pd table (protection domain table) is used to find the protection domain
 * data structure a device belongs to. Indexed with the PCI device id too.
 */
157
struct protection_domain **amd_iommu_pd_table;
158 159 160 161 162

/*
 * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
 * to know which ones are already in use.
 */
163 164
unsigned long *amd_iommu_pd_alloc_bitmap;

165 166 167
static u32 dev_table_size;	/* size of the device table */
static u32 alias_table_size;	/* size of the alias table */
static u32 rlookup_table_size;	/* size if the rlookup table */
168

169 170 171 172 173 174
static inline void update_last_devid(u16 devid)
{
	if (devid > amd_iommu_last_bdf)
		amd_iommu_last_bdf = devid;
}

175 176 177 178 179 180 181 182
static inline unsigned long tbl_size(int entry_size)
{
	unsigned shift = PAGE_SHIFT +
			 get_order(amd_iommu_last_bdf * entry_size);

	return 1UL << shift;
}

183 184 185 186 187 188 189 190
/****************************************************************************
 *
 * AMD IOMMU MMIO register space handling functions
 *
 * These functions are used to program the IOMMU device registers in
 * MMIO space required for that driver.
 *
 ****************************************************************************/
191

192 193 194 195
/*
 * This function set the exclusion range in the IOMMU. DMA accesses to the
 * exclusion range are passed through untranslated
 */
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
static void __init iommu_set_exclusion_range(struct amd_iommu *iommu)
{
	u64 start = iommu->exclusion_start & PAGE_MASK;
	u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
	u64 entry;

	if (!iommu->exclusion_start)
		return;

	entry = start | MMIO_EXCL_ENABLE_MASK;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
			&entry, sizeof(entry));

	entry = limit;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
			&entry, sizeof(entry));
}

214
/* Programs the physical address of the device table into the IOMMU hardware */
215 216
static void __init iommu_set_device_table(struct amd_iommu *iommu)
{
217
	u64 entry;
218 219 220 221 222 223 224 225 226

	BUG_ON(iommu->mmio_base == NULL);

	entry = virt_to_phys(amd_iommu_dev_table);
	entry |= (dev_table_size >> 12) - 1;
	memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
			&entry, sizeof(entry));
}

227
/* Generic functions to enable/disable certain features of the IOMMU. */
228 229 230 231 232 233 234 235 236 237 238 239 240
static void __init iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
{
	u32 ctrl;

	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
	ctrl |= (1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

static void __init iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
{
	u32 ctrl;

241
	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
242 243 244 245
	ctrl &= ~(1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

246
/* Function to enable the hardware */
247
static void __init iommu_enable(struct amd_iommu *iommu)
248
{
249 250
	printk(KERN_INFO "AMD IOMMU: Enabling IOMMU at %s cap 0x%hx\n",
	       dev_name(&iommu->dev->dev), iommu->cap_ptr);
251 252 253 254

	iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
}

255 256 257 258 259
static void iommu_disable(struct amd_iommu *iommu)
{
	iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
}

260 261 262 263
/*
 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
 * the system has one.
 */
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
static u8 * __init iommu_map_mmio_space(u64 address)
{
	u8 *ret;

	if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu"))
		return NULL;

	ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
	if (ret != NULL)
		return ret;

	release_mem_region(address, MMIO_REGION_LENGTH);

	return NULL;
}

static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
{
	if (iommu->mmio_base)
		iounmap(iommu->mmio_base);
	release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
}

287 288 289 290 291 292 293 294 295
/****************************************************************************
 *
 * The functions below belong to the first pass of AMD IOMMU ACPI table
 * parsing. In this pass we try to find out the highest device id this
 * code has to handle. Upon this information the size of the shared data
 * structures is determined later.
 *
 ****************************************************************************/

296 297 298 299 300 301 302 303
/*
 * This function calculates the length of a given IVHD entry
 */
static inline int ivhd_entry_length(u8 *ivhd)
{
	return 0x04 << (*ivhd >> 6);
}

304 305 306 307
/*
 * This function reads the last device id the IOMMU has to handle from the PCI
 * capability header for this IOMMU
 */
308 309 310 311 312
static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
{
	u32 cap;

	cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
313
	update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
314 315 316 317

	return 0;
}

318 319 320 321
/*
 * After reading the highest device id from the IOMMU PCI capability header
 * this function looks if there is a higher device id defined in the ACPI table
 */
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
{
	u8 *p = (void *)h, *end = (void *)h;
	struct ivhd_entry *dev;

	p += sizeof(*h);
	end += h->length;

	find_last_devid_on_pci(PCI_BUS(h->devid),
			PCI_SLOT(h->devid),
			PCI_FUNC(h->devid),
			h->cap_ptr);

	while (p < end) {
		dev = (struct ivhd_entry *)p;
		switch (dev->type) {
		case IVHD_DEV_SELECT:
		case IVHD_DEV_RANGE_END:
		case IVHD_DEV_ALIAS:
		case IVHD_DEV_EXT_SELECT:
342
			/* all the above subfield types refer to device ids */
343
			update_last_devid(dev->devid);
344 345 346 347
			break;
		default:
			break;
		}
348
		p += ivhd_entry_length(p);
349 350 351 352 353 354 355
	}

	WARN_ON(p != end);

	return 0;
}

356 357 358 359 360
/*
 * Iterate over all IVHD entries in the ACPI table and find the highest device
 * id which we need to handle. This is the first of three functions which parse
 * the ACPI table. So we check the checksum here.
 */
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
static int __init find_last_devid_acpi(struct acpi_table_header *table)
{
	int i;
	u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;

	/*
	 * Validate checksum here so we don't need to do it when
	 * we actually parse the table
	 */
	for (i = 0; i < table->length; ++i)
		checksum += p[i];
	if (checksum != 0)
		/* ACPI table corrupt */
		return -ENODEV;

	p += IVRS_HEADER_LENGTH;

	end += table->length;
	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (h->type) {
		case ACPI_IVHD_TYPE:
			find_last_devid_from_ivhd(h);
			break;
		default:
			break;
		}
		p += h->length;
	}
	WARN_ON(p != end);

	return 0;
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409
/****************************************************************************
 *
 * The following functions belong the the code path which parses the ACPI table
 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
 * data structures, initialize the device/alias/rlookup table and also
 * basically initialize the hardware.
 *
 ****************************************************************************/

/*
 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
 * write commands to that buffer later and the IOMMU will execute them
 * asynchronously
 */
410 411
static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
{
412
	u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
413 414 415 416 417 418 419
			get_order(CMD_BUFFER_SIZE));

	if (cmd_buf == NULL)
		return NULL;

	iommu->cmd_buf_size = CMD_BUFFER_SIZE;

420 421 422 423 424 425 426 427 428 429 430 431 432 433
	return cmd_buf;
}

/*
 * This function writes the command buffer address to the hardware and
 * enables it.
 */
static void iommu_enable_command_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->cmd_buf == NULL);

	entry = (u64)virt_to_phys(iommu->cmd_buf);
434
	entry |= MMIO_CMD_SIZE_512;
435

436
	memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
437
		    &entry, sizeof(entry));
438

439 440 441 442
	/* set head and tail to zero manually */
	writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

443 444 445 446 447
	iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
}

static void __init free_command_buffer(struct amd_iommu *iommu)
{
448 449
	free_pages((unsigned long)iommu->cmd_buf,
		   get_order(iommu->cmd_buf_size));
450 451
}

452 453 454 455 456 457 458 459 460
/* allocates the memory where the IOMMU will log its events to */
static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
{
	iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
						get_order(EVT_BUFFER_SIZE));

	if (iommu->evt_buf == NULL)
		return NULL;

461 462 463 464 465 466 467 468 469
	return iommu->evt_buf;
}

static void iommu_enable_event_buffer(struct amd_iommu *iommu)
{
	u64 entry;

	BUG_ON(iommu->evt_buf == NULL);

470
	entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
471

472 473 474
	memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
		    &entry, sizeof(entry));

475
	iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
476 477 478 479 480 481 482
}

static void __init free_event_buffer(struct amd_iommu *iommu)
{
	free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
}

483
/* sets a specific bit in the device table entry. */
484 485 486 487 488 489 490 491
static void set_dev_entry_bit(u16 devid, u8 bit)
{
	int i = (bit >> 5) & 0x07;
	int _bit = bit & 0x1f;

	amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
}

492 493 494 495 496 497
/* Writes the specific IOMMU for a device into the rlookup table */
static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
{
	amd_iommu_rlookup_table[devid] = iommu;
}

498 499 500 501
/*
 * This function takes the device specific flags read from the ACPI
 * table and sets up the device table entry with that information
 */
502 503
static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
					   u16 devid, u32 flags, u32 ext_flags)
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
{
	if (flags & ACPI_DEVFLAG_INITPASS)
		set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
	if (flags & ACPI_DEVFLAG_EXTINT)
		set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
	if (flags & ACPI_DEVFLAG_NMI)
		set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
	if (flags & ACPI_DEVFLAG_SYSMGT1)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
	if (flags & ACPI_DEVFLAG_SYSMGT2)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
	if (flags & ACPI_DEVFLAG_LINT0)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
	if (flags & ACPI_DEVFLAG_LINT1)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);

520
	set_iommu_for_device(iommu, devid);
521 522
}

523 524 525 526
/*
 * Reads the device exclusion range from ACPI and initialize IOMMU with
 * it
 */
527 528 529 530 531 532 533 534
static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
{
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
		return;

	if (iommu) {
535 536 537 538 539
		/*
		 * We only can configure exclusion ranges per IOMMU, not
		 * per device. But we can enable the exclusion range per
		 * device. This is done here
		 */
540 541 542 543 544 545
		set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
		iommu->exclusion_start = m->range_start;
		iommu->exclusion_length = m->range_length;
	}
}

546 547 548 549 550
/*
 * This function reads some important data from the IOMMU PCI space and
 * initializes the driver data structure with it. It reads the hardware
 * capabilities and the first/last device entries
 */
551 552 553
static void __init init_iommu_from_pci(struct amd_iommu *iommu)
{
	int cap_ptr = iommu->cap_ptr;
554
	u32 range, misc;
555

556 557 558 559
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
			      &iommu->cap);
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
			      &range);
560 561
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
			      &misc);
562

563 564 565 566
	iommu->first_device = calc_devid(MMIO_GET_BUS(range),
					 MMIO_GET_FD(range));
	iommu->last_device = calc_devid(MMIO_GET_BUS(range),
					MMIO_GET_LD(range));
567
	iommu->evt_msi_num = MMIO_MSI_NUM(misc);
568 569
}

570 571 572 573
/*
 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
 * initializes the hardware and our data structures with it.
 */
574 575 576 577 578 579 580
static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
					struct ivhd_header *h)
{
	u8 *p = (u8 *)h;
	u8 *end = p, flags = 0;
	u16 dev_i, devid = 0, devid_start = 0, devid_to = 0;
	u32 ext_flags = 0;
581
	bool alias = false;
582 583 584 585 586 587
	struct ivhd_entry *e;

	/*
	 * First set the recommended feature enable bits from ACPI
	 * into the IOMMU control registers
	 */
J
Joerg Roedel 已提交
588
	h->flags & IVHD_FLAG_HT_TUN_EN_MASK ?
589 590 591
		iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
		iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);

J
Joerg Roedel 已提交
592
	h->flags & IVHD_FLAG_PASSPW_EN_MASK ?
593 594 595
		iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_PASSPW_EN);

J
Joerg Roedel 已提交
596
	h->flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
597 598 599
		iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);

J
Joerg Roedel 已提交
600
	h->flags & IVHD_FLAG_ISOC_EN_MASK ?
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
		iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
		iommu_feature_disable(iommu, CONTROL_ISOC_EN);

	/*
	 * make IOMMU memory accesses cache coherent
	 */
	iommu_feature_enable(iommu, CONTROL_COHERENT_EN);

	/*
	 * Done. Now parse the device entries
	 */
	p += sizeof(struct ivhd_header);
	end += h->length;

	while (p < end) {
		e = (struct ivhd_entry *)p;
		switch (e->type) {
		case IVHD_DEV_ALL:
			for (dev_i = iommu->first_device;
					dev_i <= iommu->last_device; ++dev_i)
621 622
				set_dev_entry_from_acpi(iommu, dev_i,
							e->flags, 0);
623 624 625
			break;
		case IVHD_DEV_SELECT:
			devid = e->devid;
626
			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
627 628 629 630 631
			break;
		case IVHD_DEV_SELECT_RANGE_START:
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = 0;
632
			alias = false;
633 634 635 636
			break;
		case IVHD_DEV_ALIAS:
			devid = e->devid;
			devid_to = e->ext >> 8;
637
			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
638 639 640 641 642 643 644
			amd_iommu_alias_table[devid] = devid_to;
			break;
		case IVHD_DEV_ALIAS_RANGE:
			devid_start = e->devid;
			flags = e->flags;
			devid_to = e->ext >> 8;
			ext_flags = 0;
645
			alias = true;
646 647 648
			break;
		case IVHD_DEV_EXT_SELECT:
			devid = e->devid;
649 650
			set_dev_entry_from_acpi(iommu, devid, e->flags,
						e->ext);
651 652 653 654 655
			break;
		case IVHD_DEV_EXT_SELECT_RANGE:
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = e->ext;
656
			alias = false;
657 658 659 660 661 662
			break;
		case IVHD_DEV_RANGE_END:
			devid = e->devid;
			for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
				if (alias)
					amd_iommu_alias_table[dev_i] = devid_to;
663
				set_dev_entry_from_acpi(iommu,
664 665 666 667 668 669 670 671
						amd_iommu_alias_table[dev_i],
						flags, ext_flags);
			}
			break;
		default:
			break;
		}

672
		p += ivhd_entry_length(p);
673 674 675
	}
}

676
/* Initializes the device->iommu mapping for the driver */
677 678 679 680 681 682 683 684 685 686
static int __init init_iommu_devices(struct amd_iommu *iommu)
{
	u16 i;

	for (i = iommu->first_device; i <= iommu->last_device; ++i)
		set_iommu_for_device(iommu, i);

	return 0;
}

687 688 689
static void __init free_iommu_one(struct amd_iommu *iommu)
{
	free_command_buffer(iommu);
690
	free_event_buffer(iommu);
691 692 693 694 695 696 697
	iommu_unmap_mmio_space(iommu);
}

static void __init free_iommu_all(void)
{
	struct amd_iommu *iommu, *next;

698
	for_each_iommu_safe(iommu, next) {
699 700 701 702 703 704
		list_del(&iommu->list);
		free_iommu_one(iommu);
		kfree(iommu);
	}
}

705 706 707 708 709
/*
 * This function clues the initialization function for one IOMMU
 * together and also allocates the command buffer and programs the
 * hardware. It does NOT enable the IOMMU. This is done afterwards.
 */
710 711 712 713 714 715 716 717
static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
{
	spin_lock_init(&iommu->lock);
	list_add_tail(&iommu->list, &amd_iommu_list);

	/*
	 * Copy data from ACPI table entry to the iommu struct
	 */
718 719 720 721
	iommu->dev = pci_get_bus_and_slot(PCI_BUS(h->devid), h->devid & 0xff);
	if (!iommu->dev)
		return 1;

722
	iommu->cap_ptr = h->cap_ptr;
723
	iommu->pci_seg = h->pci_seg;
724 725 726 727 728 729 730 731 732
	iommu->mmio_phys = h->mmio_phys;
	iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
	if (!iommu->mmio_base)
		return -ENOMEM;

	iommu->cmd_buf = alloc_command_buffer(iommu);
	if (!iommu->cmd_buf)
		return -ENOMEM;

733 734 735 736
	iommu->evt_buf = alloc_event_buffer(iommu);
	if (!iommu->evt_buf)
		return -ENOMEM;

737 738
	iommu->int_enabled = false;

739 740 741 742
	init_iommu_from_pci(iommu);
	init_iommu_from_acpi(iommu, h);
	init_iommu_devices(iommu);

743
	return pci_enable_device(iommu->dev);
744 745
}

746 747 748 749
/*
 * Iterates over all IOMMU entries in the ACPI table, allocates the
 * IOMMU structure and initializes it with init_iommu_one()
 */
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
static int __init init_iommu_all(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;
	struct amd_iommu *iommu;
	int ret;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (*p) {
		case ACPI_IVHD_TYPE:
			iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
			if (iommu == NULL)
				return -ENOMEM;
			ret = init_iommu_one(iommu, h);
			if (ret)
				return ret;
			break;
		default:
			break;
		}
		p += h->length;

	}
	WARN_ON(p != end);

	return 0;
}

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
/****************************************************************************
 *
 * The following functions initialize the MSI interrupts for all IOMMUs
 * in the system. Its a bit challenging because there could be multiple
 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
 * pci_dev.
 *
 ****************************************************************************/

static int __init iommu_setup_msi(struct amd_iommu *iommu)
{
	int r;

	if (pci_enable_msi(iommu->dev))
		return 1;

	r = request_irq(iommu->dev->irq, amd_iommu_int_handler,
			IRQF_SAMPLE_RANDOM,
			"AMD IOMMU",
			NULL);

	if (r) {
		pci_disable_msi(iommu->dev);
		return 1;
	}

808
	iommu->int_enabled = true;
809 810
	iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);

811 812 813 814 815 816 817 818
	return 0;
}

static int __init iommu_init_msi(struct amd_iommu *iommu)
{
	if (iommu->int_enabled)
		return 0;

819
	if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
820 821 822 823 824
		return iommu_setup_msi(iommu);

	return 1;
}

825 826 827 828 829 830 831 832
/****************************************************************************
 *
 * The next functions belong to the third pass of parsing the ACPI
 * table. In this last pass the memory mapping requirements are
 * gathered (like exclusion and unity mapping reanges).
 *
 ****************************************************************************/

833 834 835 836 837 838 839 840 841 842
static void __init free_unity_maps(void)
{
	struct unity_map_entry *entry, *next;

	list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
		list_del(&entry->list);
		kfree(entry);
	}
}

843
/* called when we find an exclusion range definition in ACPI */
844 845 846 847 848 849 850 851 852
static int __init init_exclusion_range(struct ivmd_header *m)
{
	int i;

	switch (m->type) {
	case ACPI_IVMD_TYPE:
		set_device_exclusion_range(m->devid, m);
		break;
	case ACPI_IVMD_TYPE_ALL:
853
		for (i = 0; i <= amd_iommu_last_bdf; ++i)
854 855 856 857 858 859 860 861 862 863 864 865 866
			set_device_exclusion_range(i, m);
		break;
	case ACPI_IVMD_TYPE_RANGE:
		for (i = m->devid; i <= m->aux; ++i)
			set_device_exclusion_range(i, m);
		break;
	default:
		break;
	}

	return 0;
}

867
/* called for unity map ACPI definition */
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
static int __init init_unity_map_range(struct ivmd_header *m)
{
	struct unity_map_entry *e = 0;

	e = kzalloc(sizeof(*e), GFP_KERNEL);
	if (e == NULL)
		return -ENOMEM;

	switch (m->type) {
	default:
	case ACPI_IVMD_TYPE:
		e->devid_start = e->devid_end = m->devid;
		break;
	case ACPI_IVMD_TYPE_ALL:
		e->devid_start = 0;
		e->devid_end = amd_iommu_last_bdf;
		break;
	case ACPI_IVMD_TYPE_RANGE:
		e->devid_start = m->devid;
		e->devid_end = m->aux;
		break;
	}
	e->address_start = PAGE_ALIGN(m->range_start);
	e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
	e->prot = m->flags >> 1;

	list_add_tail(&e->list, &amd_iommu_unity_map);

	return 0;
}

899
/* iterates over all memory definitions we find in the ACPI table */
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
static int __init init_memory_definitions(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivmd_header *m;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		m = (struct ivmd_header *)p;
		if (m->flags & IVMD_FLAG_EXCL_RANGE)
			init_exclusion_range(m);
		else if (m->flags & IVMD_FLAG_UNITY_MAP)
			init_unity_map_range(m);

		p += m->length;
	}

	return 0;
}

921 922 923 924 925 926 927 928 929 930 931 932 933 934
/*
 * Init the device table to not allow DMA access for devices and
 * suppress all page faults
 */
static void init_device_table(void)
{
	u16 devid;

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
		set_dev_entry_bit(devid, DEV_ENTRY_VALID);
		set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
	}
}

935 936 937 938
/*
 * This function finally enables all IOMMUs found in the system after
 * they have been initialized
 */
939 940 941 942
static void __init enable_iommus(void)
{
	struct amd_iommu *iommu;

943
	for_each_iommu(iommu) {
944 945 946
		iommu_set_device_table(iommu);
		iommu_enable_command_buffer(iommu);
		iommu_enable_event_buffer(iommu);
947
		iommu_set_exclusion_range(iommu);
948
		iommu_init_msi(iommu);
949 950 951 952
		iommu_enable(iommu);
	}
}

953 954 955 956 957 958 959 960
static void disable_iommus(void)
{
	struct amd_iommu *iommu;

	for_each_iommu(iommu)
		iommu_disable(iommu);
}

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
/*
 * Suspend/Resume support
 * disable suspend until real resume implemented
 */

static int amd_iommu_resume(struct sys_device *dev)
{
	return 0;
}

static int amd_iommu_suspend(struct sys_device *dev, pm_message_t state)
{
	return -EINVAL;
}

static struct sysdev_class amd_iommu_sysdev_class = {
	.name = "amd_iommu",
	.suspend = amd_iommu_suspend,
	.resume = amd_iommu_resume,
};

static struct sys_device device_amd_iommu = {
	.id = 0,
	.cls = &amd_iommu_sysdev_class,
};

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
/*
 * This is the core init function for AMD IOMMU hardware in the system.
 * This function is called from the generic x86 DMA layer initialization
 * code.
 *
 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
 * three times:
 *
 *	1 pass) Find the highest PCI device id the driver has to handle.
 *		Upon this information the size of the data structures is
 *		determined that needs to be allocated.
 *
 *	2 pass) Initialize the data structures just allocated with the
 *		information in the ACPI table about available AMD IOMMUs
 *		in the system. It also maps the PCI devices in the
 *		system to specific IOMMUs
 *
 *	3 pass) After the basic data structures are allocated and
 *		initialized we update them with information about memory
 *		remapping requirements parsed out of the ACPI table in
 *		this last pass.
 *
 * After that the hardware is initialized and ready to go. In the last
 * step we do some Linux specific things like registering the driver in
 * the dma_ops interface and initializing the suspend/resume support
 * functions. Finally it prints some information about AMD IOMMUs and
 * the driver state and enables the hardware.
 */
1015 1016 1017 1018 1019
int __init amd_iommu_init(void)
{
	int i, ret = 0;


1020
	if (no_iommu) {
1021 1022 1023 1024
		printk(KERN_INFO "AMD IOMMU disabled by kernel command line\n");
		return 0;
	}

1025 1026 1027
	if (!amd_iommu_detected)
		return -ENODEV;

1028 1029 1030 1031 1032 1033 1034 1035
	/*
	 * First parse ACPI tables to find the largest Bus/Dev/Func
	 * we need to handle. Upon this information the shared data
	 * structures for the IOMMUs in the system will be allocated
	 */
	if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
		return -ENODEV;

1036 1037 1038
	dev_table_size     = tbl_size(DEV_TABLE_ENTRY_SIZE);
	alias_table_size   = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
	rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
1039 1040 1041 1042

	ret = -ENOMEM;

	/* Device table - directly used by all IOMMUs */
1043
	amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
				      get_order(dev_table_size));
	if (amd_iommu_dev_table == NULL)
		goto out;

	/*
	 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
	 * IOMMU see for that device
	 */
	amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
			get_order(alias_table_size));
	if (amd_iommu_alias_table == NULL)
		goto free;

	/* IOMMU rlookup table - find the IOMMU for a specific device */
1058 1059
	amd_iommu_rlookup_table = (void *)__get_free_pages(
			GFP_KERNEL | __GFP_ZERO,
1060 1061 1062 1063 1064 1065 1066 1067
			get_order(rlookup_table_size));
	if (amd_iommu_rlookup_table == NULL)
		goto free;

	/*
	 * Protection Domain table - maps devices to protection domains
	 * This table has the same size as the rlookup_table
	 */
1068
	amd_iommu_pd_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1069 1070 1071 1072
				     get_order(rlookup_table_size));
	if (amd_iommu_pd_table == NULL)
		goto free;

1073 1074
	amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
					    GFP_KERNEL | __GFP_ZERO,
1075 1076 1077 1078
					    get_order(MAX_DOMAIN_ID/8));
	if (amd_iommu_pd_alloc_bitmap == NULL)
		goto free;

1079 1080 1081
	/* init the device table */
	init_device_table();

1082
	/*
1083
	 * let all alias entries point to itself
1084
	 */
1085
	for (i = 0; i <= amd_iommu_last_bdf; ++i)
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
		amd_iommu_alias_table[i] = i;

	/*
	 * never allocate domain 0 because its used as the non-allocated and
	 * error value placeholder
	 */
	amd_iommu_pd_alloc_bitmap[0] = 1;

	/*
	 * now the data structures are allocated and basically initialized
	 * start the real acpi table scan
	 */
	ret = -ENODEV;
	if (acpi_table_parse("IVRS", init_iommu_all) != 0)
		goto free;

	if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
		goto free;

1105
	ret = sysdev_class_register(&amd_iommu_sysdev_class);
1106 1107 1108
	if (ret)
		goto free;

1109
	ret = sysdev_register(&device_amd_iommu);
1110 1111 1112
	if (ret)
		goto free;

1113
	ret = amd_iommu_init_dma_ops();
1114 1115 1116
	if (ret)
		goto free;

1117 1118
	enable_iommus();

1119 1120 1121 1122 1123 1124 1125 1126 1127
	printk(KERN_INFO "AMD IOMMU: aperture size is %d MB\n",
			(1 << (amd_iommu_aperture_order-20)));

	printk(KERN_INFO "AMD IOMMU: device isolation ");
	if (amd_iommu_isolate)
		printk("enabled\n");
	else
		printk("disabled\n");

1128
	if (amd_iommu_unmap_flush)
1129 1130 1131 1132
		printk(KERN_INFO "AMD IOMMU: IO/TLB flush on unmap enabled\n");
	else
		printk(KERN_INFO "AMD IOMMU: Lazy IO/TLB flushing enabled\n");

1133 1134 1135 1136
out:
	return ret;

free:
1137 1138
	free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
		   get_order(MAX_DOMAIN_ID/8));
1139

1140 1141
	free_pages((unsigned long)amd_iommu_pd_table,
		   get_order(rlookup_table_size));
1142

1143 1144
	free_pages((unsigned long)amd_iommu_rlookup_table,
		   get_order(rlookup_table_size));
1145

1146 1147
	free_pages((unsigned long)amd_iommu_alias_table,
		   get_order(alias_table_size));
1148

1149 1150
	free_pages((unsigned long)amd_iommu_dev_table,
		   get_order(dev_table_size));
1151 1152 1153 1154 1155 1156 1157 1158

	free_iommu_all();

	free_unity_maps();

	goto out;
}

1159 1160 1161 1162 1163 1164 1165
/****************************************************************************
 *
 * Early detect code. This code runs at IOMMU detection time in the DMA
 * layer. It just looks if there is an IVRS ACPI table to detect AMD
 * IOMMUs
 *
 ****************************************************************************/
1166 1167 1168 1169 1170 1171 1172
static int __init early_amd_iommu_detect(struct acpi_table_header *table)
{
	return 0;
}

void __init amd_iommu_detect(void)
{
1173
	if (swiotlb || no_iommu || (iommu_detected && !gart_iommu_aperture))
1174 1175 1176 1177
		return;

	if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
		iommu_detected = 1;
1178
		amd_iommu_detected = 1;
I
Ingo Molnar 已提交
1179
#ifdef CONFIG_GART_IOMMU
1180 1181
		gart_iommu_aperture_disabled = 1;
		gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
1182
#endif
1183 1184 1185
	}
}

1186 1187 1188 1189 1190 1191 1192
/****************************************************************************
 *
 * Parsing functions for the AMD IOMMU specific kernel command line
 * options.
 *
 ****************************************************************************/

1193 1194 1195
static int __init parse_amd_iommu_options(char *str)
{
	for (; *str; ++str) {
1196
		if (strncmp(str, "isolate", 7) == 0)
1197
			amd_iommu_isolate = true;
1198
		if (strncmp(str, "share", 5) == 0)
1199
			amd_iommu_isolate = false;
1200
		if (strncmp(str, "fullflush", 9) == 0)
1201
			amd_iommu_unmap_flush = true;
1202 1203 1204 1205 1206 1207 1208
	}

	return 1;
}

static int __init parse_amd_iommu_size_options(char *str)
{
1209 1210 1211 1212
	unsigned order = PAGE_SHIFT + get_order(memparse(str, &str));

	if ((order > 24) && (order < 31))
		amd_iommu_aperture_order = order;
1213 1214 1215 1216 1217 1218

	return 1;
}

__setup("amd_iommu=", parse_amd_iommu_options);
__setup("amd_iommu_size=", parse_amd_iommu_size_options);