snapshot.c 66.9 KB
Newer Older
1
/*
2
 * linux/kernel/power/snapshot.c
3
 *
4
 * This file provides system snapshot/restore functionality for swsusp.
5
 *
P
Pavel Machek 已提交
6
 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7
 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8
 *
9
 * This file is released under the GPLv2.
10 11 12
 *
 */

13
#include <linux/version.h>
14 15 16 17 18 19 20 21 22
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/pm.h>
#include <linux/device.h>
23
#include <linux/init.h>
24 25 26 27
#include <linux/bootmem.h>
#include <linux/syscalls.h>
#include <linux/console.h>
#include <linux/highmem.h>
28
#include <linux/list.h>
29
#include <linux/slab.h>
30
#include <linux/compiler.h>
31 32 33 34 35 36 37 38 39

#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/io.h>

#include "power.h"

40 41 42 43
static int swsusp_page_is_free(struct page *);
static void swsusp_set_page_forbidden(struct page *);
static void swsusp_unset_page_forbidden(struct page *);

44 45 46 47 48 49 50 51 52 53 54 55
/*
 * Number of bytes to reserve for memory allocations made by device drivers
 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 * cause image creation to fail (tunable via /sys/power/reserved_size).
 */
unsigned long reserved_size;

void __init hibernate_reserved_size_init(void)
{
	reserved_size = SPARE_PAGES * PAGE_SIZE;
}

56 57
/*
 * Preferred image size in bytes (tunable via /sys/power/image_size).
58 59 60
 * When it is set to N, swsusp will do its best to ensure the image
 * size will not exceed N bytes, but if that is impossible, it will
 * try to create the smallest image possible.
61
 */
62 63 64 65
unsigned long image_size;

void __init hibernate_image_size_init(void)
{
66
	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
67
}
68

69 70 71 72 73
/* List of PBEs needed for restoring the pages that were allocated before
 * the suspend and included in the suspend image, but have also been
 * allocated by the "resume" kernel, so their contents cannot be written
 * directly to their "original" page frames.
 */
74 75
struct pbe *restore_pblist;

76
/* Pointer to an auxiliary buffer (1 page) */
77
static void *buffer;
78

79 80 81
/**
 *	@safe_needed - on resume, for storing the PBE list and the image,
 *	we can only use memory pages that do not conflict with the pages
82 83
 *	used before suspend.  The unsafe pages have PageNosaveFree set
 *	and we count them using unsafe_pages.
84
 *
85 86
 *	Each allocated image page is marked as PageNosave and PageNosaveFree
 *	so that swsusp_free() can release it.
87 88
 */

89 90 91 92 93
#define PG_ANY		0
#define PG_SAFE		1
#define PG_UNSAFE_CLEAR	1
#define PG_UNSAFE_KEEP	0

94
static unsigned int allocated_unsafe_pages;
95

96
static void *get_image_page(gfp_t gfp_mask, int safe_needed)
97 98 99 100 101
{
	void *res;

	res = (void *)get_zeroed_page(gfp_mask);
	if (safe_needed)
102
		while (res && swsusp_page_is_free(virt_to_page(res))) {
103
			/* The page is unsafe, mark it for swsusp_free() */
104
			swsusp_set_page_forbidden(virt_to_page(res));
105
			allocated_unsafe_pages++;
106 107 108
			res = (void *)get_zeroed_page(gfp_mask);
		}
	if (res) {
109 110
		swsusp_set_page_forbidden(virt_to_page(res));
		swsusp_set_page_free(virt_to_page(res));
111 112 113 114 115 116
	}
	return res;
}

unsigned long get_safe_page(gfp_t gfp_mask)
{
117 118 119
	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
}

120 121
static struct page *alloc_image_page(gfp_t gfp_mask)
{
122 123 124 125
	struct page *page;

	page = alloc_page(gfp_mask);
	if (page) {
126 127
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
128 129
	}
	return page;
130 131 132 133
}

/**
 *	free_image_page - free page represented by @addr, allocated with
134
 *	get_image_page (page flags set by it must be cleared)
135 136 137 138
 */

static inline void free_image_page(void *addr, int clear_nosave_free)
{
139 140 141 142 143 144
	struct page *page;

	BUG_ON(!virt_addr_valid(addr));

	page = virt_to_page(addr);

145
	swsusp_unset_page_forbidden(page);
146
	if (clear_nosave_free)
147
		swsusp_unset_page_free(page);
148 149

	__free_page(page);
150 151
}

152 153 154 155 156 157 158
/* struct linked_page is used to build chains of pages */

#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))

struct linked_page {
	struct linked_page *next;
	char data[LINKED_PAGE_DATA_SIZE];
159
} __packed;
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

static inline void
free_list_of_pages(struct linked_page *list, int clear_page_nosave)
{
	while (list) {
		struct linked_page *lp = list->next;

		free_image_page(list, clear_page_nosave);
		list = lp;
	}
}

/**
  *	struct chain_allocator is used for allocating small objects out of
  *	a linked list of pages called 'the chain'.
  *
  *	The chain grows each time when there is no room for a new object in
  *	the current page.  The allocated objects cannot be freed individually.
  *	It is only possible to free them all at once, by freeing the entire
  *	chain.
  *
  *	NOTE: The chain allocator may be inefficient if the allocated objects
  *	are not much smaller than PAGE_SIZE.
  */

struct chain_allocator {
	struct linked_page *chain;	/* the chain */
	unsigned int used_space;	/* total size of objects allocated out
					 * of the current page
					 */
	gfp_t gfp_mask;		/* mask for allocating pages */
	int safe_needed;	/* if set, only "safe" pages are allocated */
};

static void
chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
{
	ca->chain = NULL;
	ca->used_space = LINKED_PAGE_DATA_SIZE;
	ca->gfp_mask = gfp_mask;
	ca->safe_needed = safe_needed;
}

static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
{
	void *ret;

	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
		struct linked_page *lp;

210
		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
		if (!lp)
			return NULL;

		lp->next = ca->chain;
		ca->chain = lp;
		ca->used_space = 0;
	}
	ret = ca->chain->data + ca->used_space;
	ca->used_space += size;
	return ret;
}

/**
 *	Data types related to memory bitmaps.
 *
 *	Memory bitmap is a structure consiting of many linked lists of
 *	objects.  The main list's elements are of type struct zone_bitmap
 *	and each of them corresonds to one zone.  For each zone bitmap
 *	object there is a list of objects of type struct bm_block that
230
 *	represent each blocks of bitmap in which information is stored.
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
 *
 *	struct memory_bitmap contains a pointer to the main list of zone
 *	bitmap objects, a struct bm_position used for browsing the bitmap,
 *	and a pointer to the list of pages used for allocating all of the
 *	zone bitmap objects and bitmap block objects.
 *
 *	NOTE: It has to be possible to lay out the bitmap in memory
 *	using only allocations of order 0.  Additionally, the bitmap is
 *	designed to work with arbitrary number of zones (this is over the
 *	top for now, but let's avoid making unnecessary assumptions ;-).
 *
 *	struct zone_bitmap contains a pointer to a list of bitmap block
 *	objects and a pointer to the bitmap block object that has been
 *	most recently used for setting bits.  Additionally, it contains the
 *	pfns that correspond to the start and end of the represented zone.
 *
 *	struct bm_block contains a pointer to the memory page in which
248 249 250
 *	information is stored (in the form of a block of bitmap)
 *	It also contains the pfns that correspond to the start and end of
 *	the represented memory area.
251 252 253 254 255 256 257 258 259 260 261
 *
 *	The memory bitmap is organized as a radix tree to guarantee fast random
 *	access to the bits. There is one radix tree for each zone (as returned
 *	from create_mem_extents).
 *
 *	One radix tree is represented by one struct mem_zone_bm_rtree. There are
 *	two linked lists for the nodes of the tree, one for the inner nodes and
 *	one for the leave nodes. The linked leave nodes are used for fast linear
 *	access of the memory bitmap.
 *
 *	The struct rtree_node represents one node of the radix tree.
262 263 264 265
 */

#define BM_END_OF_MAP	(~0UL)

W
Wu Fengguang 已提交
266
#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
267 268
#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
269

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
/*
 * struct rtree_node is a wrapper struct to link the nodes
 * of the rtree together for easy linear iteration over
 * bits and easy freeing
 */
struct rtree_node {
	struct list_head list;
	unsigned long *data;
};

/*
 * struct mem_zone_bm_rtree represents a bitmap used for one
 * populated memory zone.
 */
struct mem_zone_bm_rtree {
	struct list_head list;		/* Link Zones together         */
	struct list_head nodes;		/* Radix Tree inner nodes      */
	struct list_head leaves;	/* Radix Tree leaves           */
	unsigned long start_pfn;	/* Zone start page frame       */
	unsigned long end_pfn;		/* Zone end page frame + 1     */
	struct rtree_node *rtree;	/* Radix Tree Root             */
	int levels;			/* Number of Radix Tree Levels */
	unsigned int blocks;		/* Number of Bitmap Blocks     */
};

295 296 297
/* strcut bm_position is used for browsing memory bitmaps */

struct bm_position {
298 299 300 301
	struct mem_zone_bm_rtree *zone;
	struct rtree_node *node;
	unsigned long node_pfn;
	int node_bit;
302 303 304
};

struct memory_bitmap {
305
	struct list_head zones;
306 307 308 309 310 311 312 313 314
	struct linked_page *p_list;	/* list of pages used to store zone
					 * bitmap objects and bitmap block
					 * objects
					 */
	struct bm_position cur;	/* most recently used bit position */
};

/* Functions that operate on memory bitmaps */

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
#if BITS_PER_LONG == 32
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
#else
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
#endif
#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)

/*
 *	alloc_rtree_node - Allocate a new node and add it to the radix tree.
 *
 *	This function is used to allocate inner nodes as well as the
 *	leave nodes of the radix tree. It also adds the node to the
 *	corresponding linked list passed in by the *list parameter.
 */
static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
					   struct chain_allocator *ca,
					   struct list_head *list)
{
	struct rtree_node *node;

	node = chain_alloc(ca, sizeof(struct rtree_node));
	if (!node)
		return NULL;

	node->data = get_image_page(gfp_mask, safe_needed);
	if (!node->data)
		return NULL;

	list_add_tail(&node->list, list);

	return node;
}

/*
 *	add_rtree_block - Add a new leave node to the radix tree
 *
 *	The leave nodes need to be allocated in order to keep the leaves
 *	linked list in order. This is guaranteed by the zone->blocks
 *	counter.
 */
static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
			   int safe_needed, struct chain_allocator *ca)
{
	struct rtree_node *node, *block, **dst;
	unsigned int levels_needed, block_nr;
	int i;

	block_nr = zone->blocks;
	levels_needed = 0;

	/* How many levels do we need for this block nr? */
	while (block_nr) {
		levels_needed += 1;
		block_nr >>= BM_RTREE_LEVEL_SHIFT;
	}

	/* Make sure the rtree has enough levels */
	for (i = zone->levels; i < levels_needed; i++) {
		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
					&zone->nodes);
		if (!node)
			return -ENOMEM;

		node->data[0] = (unsigned long)zone->rtree;
		zone->rtree = node;
		zone->levels += 1;
	}

	/* Allocate new block */
	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
	if (!block)
		return -ENOMEM;

	/* Now walk the rtree to insert the block */
	node = zone->rtree;
	dst = &zone->rtree;
	block_nr = zone->blocks;
	for (i = zone->levels; i > 0; i--) {
		int index;

		if (!node) {
			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
						&zone->nodes);
			if (!node)
				return -ENOMEM;
			*dst = node;
		}

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		dst = (struct rtree_node **)&((*dst)->data[index]);
		node = *dst;
	}

	zone->blocks += 1;
	*dst = block;

	return 0;
}

static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free);

/*
 *	create_zone_bm_rtree - create a radix tree for one zone
 *
 *	Allocated the mem_zone_bm_rtree structure and initializes it.
 *	This function also allocated and builds the radix tree for the
 *	zone.
 */
static struct mem_zone_bm_rtree *
create_zone_bm_rtree(gfp_t gfp_mask, int safe_needed,
		     struct chain_allocator *ca,
		     unsigned long start, unsigned long end)
{
	struct mem_zone_bm_rtree *zone;
	unsigned int i, nr_blocks;
	unsigned long pages;

	pages = end - start;
	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
	if (!zone)
		return NULL;

	INIT_LIST_HEAD(&zone->nodes);
	INIT_LIST_HEAD(&zone->leaves);
	zone->start_pfn = start;
	zone->end_pfn = end;
	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);

	for (i = 0; i < nr_blocks; i++) {
		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
			return NULL;
		}
	}

	return zone;
}

/*
 *	free_zone_bm_rtree - Free the memory of the radix tree
 *
 *	Free all node pages of the radix tree. The mem_zone_bm_rtree
 *	structure itself is not freed here nor are the rtree_node
 *	structs.
 */
static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		free_image_page(node->data, clear_nosave_free);

	list_for_each_entry(node, &zone->leaves, list)
		free_image_page(node->data, clear_nosave_free);
}

475 476
static void memory_bm_position_reset(struct memory_bitmap *bm)
{
477 478 479 480 481 482
	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
				  list);
	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
				  struct rtree_node, list);
	bm->cur.node_pfn = 0;
	bm->cur.node_bit = 0;
483 484 485 486
}

static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);

487 488 489 490 491 492
struct mem_extent {
	struct list_head hook;
	unsigned long start;
	unsigned long end;
};

493
/**
494 495
 *	free_mem_extents - free a list of memory extents
 *	@list - list of extents to empty
496
 */
497 498 499
static void free_mem_extents(struct list_head *list)
{
	struct mem_extent *ext, *aux;
500

501 502 503 504 505 506 507 508 509 510 511 512 513
	list_for_each_entry_safe(ext, aux, list, hook) {
		list_del(&ext->hook);
		kfree(ext);
	}
}

/**
 *	create_mem_extents - create a list of memory extents representing
 *	                     contiguous ranges of PFNs
 *	@list - list to put the extents into
 *	@gfp_mask - mask to use for memory allocations
 */
static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
514
{
515
	struct zone *zone;
516

517
	INIT_LIST_HEAD(list);
518

519
	for_each_populated_zone(zone) {
520 521 522 523
		unsigned long zone_start, zone_end;
		struct mem_extent *ext, *cur, *aux;

		zone_start = zone->zone_start_pfn;
524
		zone_end = zone_end_pfn(zone);
525 526 527 528

		list_for_each_entry(ext, list, hook)
			if (zone_start <= ext->end)
				break;
529

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
		if (&ext->hook == list || zone_end < ext->start) {
			/* New extent is necessary */
			struct mem_extent *new_ext;

			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
			if (!new_ext) {
				free_mem_extents(list);
				return -ENOMEM;
			}
			new_ext->start = zone_start;
			new_ext->end = zone_end;
			list_add_tail(&new_ext->hook, &ext->hook);
			continue;
		}

		/* Merge this zone's range of PFNs with the existing one */
		if (zone_start < ext->start)
			ext->start = zone_start;
		if (zone_end > ext->end)
			ext->end = zone_end;

		/* More merging may be possible */
		cur = ext;
		list_for_each_entry_safe_continue(cur, aux, list, hook) {
			if (zone_end < cur->start)
				break;
			if (zone_end < cur->end)
				ext->end = cur->end;
			list_del(&cur->hook);
			kfree(cur);
		}
561
	}
562 563

	return 0;
564 565 566 567 568 569 570 571 572
}

/**
  *	memory_bm_create - allocate memory for a memory bitmap
  */
static int
memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
{
	struct chain_allocator ca;
573 574 575
	struct list_head mem_extents;
	struct mem_extent *ext;
	int error;
576 577

	chain_init(&ca, gfp_mask, safe_needed);
578
	INIT_LIST_HEAD(&bm->zones);
579

580 581 582
	error = create_mem_extents(&mem_extents, gfp_mask);
	if (error)
		return error;
583

584
	list_for_each_entry(ext, &mem_extents, hook) {
585 586 587 588
		struct mem_zone_bm_rtree *zone;

		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
					    ext->start, ext->end);
589 590
		if (!zone) {
			error = -ENOMEM;
591
			goto Error;
592
		}
593
		list_add_tail(&zone->list, &bm->zones);
594
	}
595

596 597
	bm->p_list = ca.chain;
	memory_bm_position_reset(bm);
598 599 600
 Exit:
	free_mem_extents(&mem_extents);
	return error;
601

602
 Error:
603 604
	bm->p_list = ca.chain;
	memory_bm_free(bm, PG_UNSAFE_CLEAR);
605
	goto Exit;
606 607 608 609 610 611 612
}

/**
  *	memory_bm_free - free memory occupied by the memory bitmap @bm
  */
static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
{
613
	struct mem_zone_bm_rtree *zone;
614

615 616 617
	list_for_each_entry(zone, &bm->zones, list)
		free_zone_bm_rtree(zone, clear_nosave_free);

618
	free_list_of_pages(bm->p_list, clear_nosave_free);
619

620
	INIT_LIST_HEAD(&bm->zones);
621 622 623
}

/**
624 625
 *	memory_bm_find_bit - Find the bit for pfn in the memory
 *			     bitmap
626
 *
627 628 629 630
 *	Find the bit in the bitmap @bm that corresponds to given pfn.
 *	The cur.zone, cur.block and cur.node_pfn member of @bm are
 *	updated.
 *	It walks the radix tree to find the page which contains the bit for
631 632
 *	pfn and returns the bit position in **addr and *bit_nr.
 */
633 634
static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
			      void **addr, unsigned int *bit_nr)
635 636 637 638 639
{
	struct mem_zone_bm_rtree *curr, *zone;
	struct rtree_node *node;
	int i, block_nr;

640 641 642 643 644
	zone = bm->cur.zone;

	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
		goto zone_found;

645 646 647 648 649 650 651 652 653 654 655 656 657
	zone = NULL;

	/* Find the right zone */
	list_for_each_entry(curr, &bm->zones, list) {
		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
			zone = curr;
			break;
		}
	}

	if (!zone)
		return -EFAULT;

658
zone_found:
659 660 661 662
	/*
	 * We have a zone. Now walk the radix tree to find the leave
	 * node for our pfn.
	 */
663 664 665 666 667

	node = bm->cur.node;
	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
		goto node_found;

668 669 670 671 672 673 674 675 676 677 678 679
	node      = zone->rtree;
	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;

	for (i = zone->levels; i > 0; i--) {
		int index;

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		BUG_ON(node->data[index] == 0);
		node = (struct rtree_node *)node->data[index];
	}

680 681 682 683 684 685
node_found:
	/* Update last position */
	bm->cur.zone = zone;
	bm->cur.node = node;
	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;

686 687 688 689 690 691 692
	/* Set return values */
	*addr = node->data;
	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;

	return 0;
}

693 694 695 696
static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
697
	int error;
698

699 700
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
701 702 703
	set_bit(bit, addr);
}

704 705 706 707 708 709 710
static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
	int error;

	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
711 712 713
	if (!error)
		set_bit(bit, addr);

714 715 716
	return error;
}

717 718 719 720
static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
721
	int error;
722

723 724
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
725 726 727
	clear_bit(bit, addr);
}

728 729 730 731 732 733 734 735
static void memory_bm_clear_current(struct memory_bitmap *bm)
{
	int bit;

	bit = max(bm->cur.node_bit - 1, 0);
	clear_bit(bit, bm->cur.node->data);
}

736 737 738 739
static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
740
	int error;
741

742 743
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
744
	return test_bit(bit, addr);
745 746
}

747 748 749 750
static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
751

752
	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
753 754
}

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
/*
 *	rtree_next_node - Jumps to the next leave node
 *
 *	Sets the position to the beginning of the next node in the
 *	memory bitmap. This is either the next node in the current
 *	zone's radix tree or the first node in the radix tree of the
 *	next zone.
 *
 *	Returns true if there is a next node, false otherwise.
 */
static bool rtree_next_node(struct memory_bitmap *bm)
{
	bm->cur.node = list_entry(bm->cur.node->list.next,
				  struct rtree_node, list);
	if (&bm->cur.node->list != &bm->cur.zone->leaves) {
		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
		bm->cur.node_bit  = 0;
		return true;
	}

	/* No more nodes, goto next zone */
	bm->cur.zone = list_entry(bm->cur.zone->list.next,
				  struct mem_zone_bm_rtree, list);
	if (&bm->cur.zone->list != &bm->zones) {
		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
					  struct rtree_node, list);
		bm->cur.node_pfn = 0;
		bm->cur.node_bit = 0;
		return true;
	}

	/* No more zones */
	return false;
}

790 791
/**
 *	memory_bm_rtree_next_pfn - Find the next set bit in the bitmap @bm
792 793 794 795
 *
 *	Starting from the last returned position this function searches
 *	for the next set bit in the memory bitmap and returns its
 *	number. If no more bit is set BM_END_OF_MAP is returned.
796 797 798
 *
 *	It is required to run memory_bm_position_reset() before the
 *	first call to this function.
799
 */
800
static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
{
	unsigned long bits, pfn, pages;
	int bit;

	do {
		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
		bit	  = find_next_bit(bm->cur.node->data, bits,
					  bm->cur.node_bit);
		if (bit < bits) {
			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
			bm->cur.node_bit = bit + 1;
			return pfn;
		}
	} while (rtree_next_node(bm));

	return BM_END_OF_MAP;
}

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
/**
 *	This structure represents a range of page frames the contents of which
 *	should not be saved during the suspend.
 */

struct nosave_region {
	struct list_head list;
	unsigned long start_pfn;
	unsigned long end_pfn;
};

static LIST_HEAD(nosave_regions);

/**
 *	register_nosave_region - register a range of page frames the contents
 *	of which should not be saved during the suspend (to be used in the early
 *	initialization code)
 */

void __init
840 841
__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
			 int use_kmalloc)
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
{
	struct nosave_region *region;

	if (start_pfn >= end_pfn)
		return;

	if (!list_empty(&nosave_regions)) {
		/* Try to extend the previous region (they should be sorted) */
		region = list_entry(nosave_regions.prev,
					struct nosave_region, list);
		if (region->end_pfn == start_pfn) {
			region->end_pfn = end_pfn;
			goto Report;
		}
	}
857 858 859 860 861 862
	if (use_kmalloc) {
		/* during init, this shouldn't fail */
		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
		BUG_ON(!region);
	} else
		/* This allocation cannot fail */
863
		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
864 865 866 867
	region->start_pfn = start_pfn;
	region->end_pfn = end_pfn;
	list_add_tail(&region->list, &nosave_regions);
 Report:
868 869 870
	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
		(unsigned long long) start_pfn << PAGE_SHIFT,
		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
}

/*
 * Set bits in this map correspond to the page frames the contents of which
 * should not be saved during the suspend.
 */
static struct memory_bitmap *forbidden_pages_map;

/* Set bits in this map correspond to free page frames. */
static struct memory_bitmap *free_pages_map;

/*
 * Each page frame allocated for creating the image is marked by setting the
 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 */

void swsusp_set_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
}

static int swsusp_page_is_free(struct page *page)
{
	return free_pages_map ?
		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
}

void swsusp_unset_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
}

static void swsusp_set_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
}

int swsusp_page_is_forbidden(struct page *page)
{
	return forbidden_pages_map ?
		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
}

static void swsusp_unset_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
}

/**
 *	mark_nosave_pages - set bits corresponding to the page frames the
 *	contents of which should not be saved in a given bitmap.
 */

static void mark_nosave_pages(struct memory_bitmap *bm)
{
	struct nosave_region *region;

	if (list_empty(&nosave_regions))
		return;

	list_for_each_entry(region, &nosave_regions, list) {
		unsigned long pfn;

938 939 940 941
		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
				- 1);
942 943

		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
944 945 946 947 948 949 950 951 952
			if (pfn_valid(pfn)) {
				/*
				 * It is safe to ignore the result of
				 * mem_bm_set_bit_check() here, since we won't
				 * touch the PFNs for which the error is
				 * returned anyway.
				 */
				mem_bm_set_bit_check(bm, pfn);
			}
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
	}
}

/**
 *	create_basic_memory_bitmaps - create bitmaps needed for marking page
 *	frames that should not be saved and free page frames.  The pointers
 *	forbidden_pages_map and free_pages_map are only modified if everything
 *	goes well, because we don't want the bits to be used before both bitmaps
 *	are set up.
 */

int create_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;
	int error = 0;

969 970 971 972
	if (forbidden_pages_map && free_pages_map)
		return 0;
	else
		BUG_ON(forbidden_pages_map || free_pages_map);
973

974
	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
975 976 977
	if (!bm1)
		return -ENOMEM;

978
	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
979 980 981
	if (error)
		goto Free_first_object;

982
	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
983 984 985
	if (!bm2)
		goto Free_first_bitmap;

986
	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
987 988 989 990 991 992 993
	if (error)
		goto Free_second_object;

	forbidden_pages_map = bm1;
	free_pages_map = bm2;
	mark_nosave_pages(forbidden_pages_map);

R
Rafael J. Wysocki 已提交
994
	pr_debug("PM: Basic memory bitmaps created\n");
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

	return 0;

 Free_second_object:
	kfree(bm2);
 Free_first_bitmap:
 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 Free_first_object:
	kfree(bm1);
	return -ENOMEM;
}

/**
 *	free_basic_memory_bitmaps - free memory bitmaps allocated by
 *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
 *	so that the bitmaps themselves are not referred to while they are being
 *	freed.
 */

void free_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;

1018 1019
	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
		return;
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

	bm1 = forbidden_pages_map;
	bm2 = free_pages_map;
	forbidden_pages_map = NULL;
	free_pages_map = NULL;
	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
	kfree(bm1);
	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
	kfree(bm2);

R
Rafael J. Wysocki 已提交
1030
	pr_debug("PM: Basic memory bitmaps freed\n");
1031 1032
}

1033 1034 1035 1036 1037 1038 1039 1040
/**
 *	snapshot_additional_pages - estimate the number of additional pages
 *	be needed for setting up the suspend image data structures for given
 *	zone (usually the returned value is greater than the exact number)
 */

unsigned int snapshot_additional_pages(struct zone *zone)
{
1041
	unsigned int rtree, nodes;
1042

1043 1044 1045 1046 1047 1048 1049 1050
	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
			      LINKED_PAGE_DATA_SIZE);
	while (nodes > 1) {
		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
		rtree += nodes;
	}

1051
	return 2 * rtree;
1052 1053
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
#ifdef CONFIG_HIGHMEM
/**
 *	count_free_highmem_pages - compute the total number of free highmem
 *	pages, system-wide.
 */

static unsigned int count_free_highmem_pages(void)
{
	struct zone *zone;
	unsigned int cnt = 0;

1065 1066
	for_each_populated_zone(zone)
		if (is_highmem(zone))
1067
			cnt += zone_page_state(zone, NR_FREE_PAGES);
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

	return cnt;
}

/**
 *	saveable_highmem_page - Determine whether a highmem page should be
 *	included in the suspend image.
 *
 *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 *	and it isn't a part of a free chunk of pages.
 */
1079
static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1080 1081 1082 1083 1084 1085 1086
{
	struct page *page;

	if (!pfn_valid(pfn))
		return NULL;

	page = pfn_to_page(pfn);
1087 1088
	if (page_zone(page) != zone)
		return NULL;
1089 1090 1091

	BUG_ON(!PageHighMem(page));

1092 1093
	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
	    PageReserved(page))
1094 1095
		return NULL;

1096 1097 1098
	if (page_is_guard(page))
		return NULL;

1099 1100 1101 1102 1103 1104 1105 1106
	return page;
}

/**
 *	count_highmem_pages - compute the total number of saveable highmem
 *	pages.
 */

1107
static unsigned int count_highmem_pages(void)
1108 1109 1110 1111
{
	struct zone *zone;
	unsigned int n = 0;

1112
	for_each_populated_zone(zone) {
1113 1114 1115 1116 1117 1118
		unsigned long pfn, max_zone_pfn;

		if (!is_highmem(zone))
			continue;

		mark_free_pages(zone);
1119
		max_zone_pfn = zone_end_pfn(zone);
1120
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1121
			if (saveable_highmem_page(zone, pfn))
1122 1123 1124 1125 1126
				n++;
	}
	return n;
}
#else
1127 1128 1129 1130
static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
{
	return NULL;
}
1131 1132
#endif /* CONFIG_HIGHMEM */

1133
/**
1134 1135
 *	saveable_page - Determine whether a non-highmem page should be included
 *	in the suspend image.
1136
 *
1137 1138 1139
 *	We should save the page if it isn't Nosave, and is not in the range
 *	of pages statically defined as 'unsaveable', and it isn't a part of
 *	a free chunk of pages.
1140
 */
1141
static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1142
{
P
Pavel Machek 已提交
1143
	struct page *page;
1144 1145

	if (!pfn_valid(pfn))
1146
		return NULL;
1147 1148

	page = pfn_to_page(pfn);
1149 1150
	if (page_zone(page) != zone)
		return NULL;
1151

1152 1153
	BUG_ON(PageHighMem(page));

1154
	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1155
		return NULL;
1156

1157 1158
	if (PageReserved(page)
	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1159
		return NULL;
1160

1161 1162 1163
	if (page_is_guard(page))
		return NULL;

1164
	return page;
1165 1166
}

1167 1168 1169 1170 1171
/**
 *	count_data_pages - compute the total number of saveable non-highmem
 *	pages.
 */

1172
static unsigned int count_data_pages(void)
1173 1174
{
	struct zone *zone;
1175
	unsigned long pfn, max_zone_pfn;
P
Pavel Machek 已提交
1176
	unsigned int n = 0;
1177

1178
	for_each_populated_zone(zone) {
1179 1180
		if (is_highmem(zone))
			continue;
1181

1182
		mark_free_pages(zone);
1183
		max_zone_pfn = zone_end_pfn(zone);
1184
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1185
			if (saveable_page(zone, pfn))
1186
				n++;
1187
	}
1188
	return n;
1189 1190
}

1191 1192 1193 1194
/* This is needed, because copy_page and memcpy are not usable for copying
 * task structs.
 */
static inline void do_copy_page(long *dst, long *src)
1195 1196 1197 1198 1199 1200 1201
{
	int n;

	for (n = PAGE_SIZE / sizeof(long); n; n--)
		*dst++ = *src++;
}

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220

/**
 *	safe_copy_page - check if the page we are going to copy is marked as
 *		present in the kernel page tables (this always is the case if
 *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
 *		kernel_page_present() always returns 'true').
 */
static void safe_copy_page(void *dst, struct page *s_page)
{
	if (kernel_page_present(s_page)) {
		do_copy_page(dst, page_address(s_page));
	} else {
		kernel_map_pages(s_page, 1, 1);
		do_copy_page(dst, page_address(s_page));
		kernel_map_pages(s_page, 1, 0);
	}
}


1221 1222 1223 1224 1225
#ifdef CONFIG_HIGHMEM
static inline struct page *
page_is_saveable(struct zone *zone, unsigned long pfn)
{
	return is_highmem(zone) ?
1226
		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1227 1228
}

1229
static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1230 1231 1232 1233 1234 1235 1236
{
	struct page *s_page, *d_page;
	void *src, *dst;

	s_page = pfn_to_page(src_pfn);
	d_page = pfn_to_page(dst_pfn);
	if (PageHighMem(s_page)) {
1237 1238
		src = kmap_atomic(s_page);
		dst = kmap_atomic(d_page);
1239
		do_copy_page(dst, src);
1240 1241
		kunmap_atomic(dst);
		kunmap_atomic(src);
1242 1243 1244 1245 1246
	} else {
		if (PageHighMem(d_page)) {
			/* Page pointed to by src may contain some kernel
			 * data modified by kmap_atomic()
			 */
1247
			safe_copy_page(buffer, s_page);
1248
			dst = kmap_atomic(d_page);
1249
			copy_page(dst, buffer);
1250
			kunmap_atomic(dst);
1251
		} else {
1252
			safe_copy_page(page_address(d_page), s_page);
1253 1254 1255 1256
		}
	}
}
#else
1257
#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1258

1259
static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1260
{
1261 1262
	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
				pfn_to_page(src_pfn));
1263 1264 1265
}
#endif /* CONFIG_HIGHMEM */

1266 1267
static void
copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1268 1269
{
	struct zone *zone;
1270
	unsigned long pfn;
1271

1272
	for_each_populated_zone(zone) {
1273 1274
		unsigned long max_zone_pfn;

1275
		mark_free_pages(zone);
1276
		max_zone_pfn = zone_end_pfn(zone);
1277
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1278
			if (page_is_saveable(zone, pfn))
1279
				memory_bm_set_bit(orig_bm, pfn);
1280
	}
1281 1282
	memory_bm_position_reset(orig_bm);
	memory_bm_position_reset(copy_bm);
F
Fengguang Wu 已提交
1283
	for(;;) {
1284
		pfn = memory_bm_next_pfn(orig_bm);
F
Fengguang Wu 已提交
1285 1286 1287 1288
		if (unlikely(pfn == BM_END_OF_MAP))
			break;
		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
	}
1289 1290
}

1291 1292 1293 1294
/* Total number of image pages */
static unsigned int nr_copy_pages;
/* Number of pages needed for saving the original pfns of the image pages */
static unsigned int nr_meta_pages;
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
/*
 * Numbers of normal and highmem page frames allocated for hibernation image
 * before suspending devices.
 */
unsigned int alloc_normal, alloc_highmem;
/*
 * Memory bitmap used for marking saveable pages (during hibernation) or
 * hibernation image pages (during restore)
 */
static struct memory_bitmap orig_bm;
/*
 * Memory bitmap used during hibernation for marking allocated page frames that
 * will contain copies of saveable pages.  During restore it is initially used
 * for marking hibernation image pages, but then the set bits from it are
 * duplicated in @orig_bm and it is released.  On highmem systems it is next
 * used for marking "safe" highmem pages, but it has to be reinitialized for
 * this purpose.
 */
static struct memory_bitmap copy_bm;
1314

1315
/**
1316
 *	swsusp_free - free pages allocated for the suspend.
1317
 *
1318 1319
 *	Suspend pages are alocated before the atomic copy is made, so we
 *	need to release them after the resume.
1320 1321 1322 1323
 */

void swsusp_free(void)
{
1324
	unsigned long fb_pfn, fr_pfn;
1325

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	memory_bm_position_reset(forbidden_pages_map);
	memory_bm_position_reset(free_pages_map);

loop:
	fr_pfn = memory_bm_next_pfn(free_pages_map);
	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);

	/*
	 * Find the next bit set in both bitmaps. This is guaranteed to
	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
	 */
	do {
		if (fb_pfn < fr_pfn)
			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
		if (fr_pfn < fb_pfn)
			fr_pfn = memory_bm_next_pfn(free_pages_map);
	} while (fb_pfn != fr_pfn);

	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
		struct page *page = pfn_to_page(fr_pfn);

		memory_bm_clear_current(forbidden_pages_map);
		memory_bm_clear_current(free_pages_map);
		__free_page(page);
		goto loop;
1351
	}
1352

1353 1354
	nr_copy_pages = 0;
	nr_meta_pages = 0;
1355
	restore_pblist = NULL;
1356
	buffer = NULL;
1357 1358
	alloc_normal = 0;
	alloc_highmem = 0;
1359 1360
}

1361 1362 1363 1364
/* Helper functions used for the shrinking of memory. */

#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)

1365
/**
1366 1367 1368
 * preallocate_image_pages - Allocate a number of pages for hibernation image
 * @nr_pages: Number of page frames to allocate.
 * @mask: GFP flags to use for the allocation.
1369
 *
1370 1371 1372 1373 1374 1375 1376
 * Return value: Number of page frames actually allocated
 */
static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
{
	unsigned long nr_alloc = 0;

	while (nr_pages > 0) {
1377 1378 1379 1380
		struct page *page;

		page = alloc_image_page(mask);
		if (!page)
1381
			break;
1382 1383 1384 1385 1386
		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
		if (PageHighMem(page))
			alloc_highmem++;
		else
			alloc_normal++;
1387 1388 1389 1390 1391 1392 1393
		nr_pages--;
		nr_alloc++;
	}

	return nr_alloc;
}

1394 1395
static unsigned long preallocate_image_memory(unsigned long nr_pages,
					      unsigned long avail_normal)
1396
{
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	unsigned long alloc;

	if (avail_normal <= alloc_normal)
		return 0;

	alloc = avail_normal - alloc_normal;
	if (nr_pages < alloc)
		alloc = nr_pages;

	return preallocate_image_pages(alloc, GFP_IMAGE);
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
}

#ifdef CONFIG_HIGHMEM
static unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
}

/**
 *  __fraction - Compute (an approximation of) x * (multiplier / base)
1417
 */
1418 1419 1420 1421 1422 1423
static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
{
	x *= multiplier;
	do_div(x, base);
	return (unsigned long)x;
}
1424

1425 1426 1427
static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
						unsigned long highmem,
						unsigned long total)
1428
{
1429 1430 1431
	unsigned long alloc = __fraction(nr_pages, highmem, total);

	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1432
}
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
#else /* CONFIG_HIGHMEM */
static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return 0;
}

static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
						unsigned long highmem,
						unsigned long total)
{
	return 0;
}
#endif /* CONFIG_HIGHMEM */
1446

1447
/**
1448 1449 1450 1451
 * free_unnecessary_pages - Release preallocated pages not needed for the image
 */
static void free_unnecessary_pages(void)
{
1452
	unsigned long save, to_free_normal, to_free_highmem;
1453

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
	save = count_data_pages();
	if (alloc_normal >= save) {
		to_free_normal = alloc_normal - save;
		save = 0;
	} else {
		to_free_normal = 0;
		save -= alloc_normal;
	}
	save += count_highmem_pages();
	if (alloc_highmem >= save) {
		to_free_highmem = alloc_highmem - save;
1465 1466
	} else {
		to_free_highmem = 0;
1467 1468 1469 1470 1471
		save -= alloc_highmem;
		if (to_free_normal > save)
			to_free_normal -= save;
		else
			to_free_normal = 0;
1472 1473 1474 1475
	}

	memory_bm_position_reset(&copy_bm);

1476
	while (to_free_normal > 0 || to_free_highmem > 0) {
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
		struct page *page = pfn_to_page(pfn);

		if (PageHighMem(page)) {
			if (!to_free_highmem)
				continue;
			to_free_highmem--;
			alloc_highmem--;
		} else {
			if (!to_free_normal)
				continue;
			to_free_normal--;
			alloc_normal--;
		}
		memory_bm_clear_bit(&copy_bm, pfn);
		swsusp_unset_page_forbidden(page);
		swsusp_unset_page_free(page);
		__free_page(page);
	}
}

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
/**
 * minimum_image_size - Estimate the minimum acceptable size of an image
 * @saveable: Number of saveable pages in the system.
 *
 * We want to avoid attempting to free too much memory too hard, so estimate the
 * minimum acceptable size of a hibernation image to use as the lower limit for
 * preallocating memory.
 *
 * We assume that the minimum image size should be proportional to
 *
 * [number of saveable pages] - [number of pages that can be freed in theory]
 *
 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1511
 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
 * minus mapped file pages.
 */
static unsigned long minimum_image_size(unsigned long saveable)
{
	unsigned long size;

	size = global_page_state(NR_SLAB_RECLAIMABLE)
		+ global_page_state(NR_ACTIVE_ANON)
		+ global_page_state(NR_INACTIVE_ANON)
		+ global_page_state(NR_ACTIVE_FILE)
		+ global_page_state(NR_INACTIVE_FILE)
		- global_page_state(NR_FILE_MAPPED);

	return saveable <= size ? 0 : saveable - size;
}

1528 1529
/**
 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1530 1531 1532 1533 1534
 *
 * To create a hibernation image it is necessary to make a copy of every page
 * frame in use.  We also need a number of page frames to be free during
 * hibernation for allocations made while saving the image and for device
 * drivers, in case they need to allocate memory from their hibernation
1535 1536 1537 1538
 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
 * total number of available page frames and allocate at least
1539
 *
1540 1541
 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1542 1543 1544 1545 1546
 *
 * of them, which corresponds to the maximum size of a hibernation image.
 *
 * If image_size is set below the number following from the above formula,
 * the preallocation of memory is continued until the total number of saveable
1547 1548
 * pages in the system is below the requested image size or the minimum
 * acceptable image size returned by minimum_image_size(), whichever is greater.
1549
 */
1550
int hibernate_preallocate_memory(void)
1551 1552
{
	struct zone *zone;
1553
	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1554
	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1555
	struct timeval start, stop;
1556
	int error;
1557

1558
	printk(KERN_INFO "PM: Preallocating image memory... ");
1559 1560
	do_gettimeofday(&start);

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	alloc_normal = 0;
	alloc_highmem = 0;

1572
	/* Count the number of saveable data pages. */
1573
	save_highmem = count_highmem_pages();
1574
	saveable = count_data_pages();
1575

1576 1577 1578 1579 1580
	/*
	 * Compute the total number of page frames we can use (count) and the
	 * number of pages needed for image metadata (size).
	 */
	count = saveable;
1581 1582
	saveable += save_highmem;
	highmem = save_highmem;
1583 1584 1585 1586 1587 1588 1589 1590
	size = 0;
	for_each_populated_zone(zone) {
		size += snapshot_additional_pages(zone);
		if (is_highmem(zone))
			highmem += zone_page_state(zone, NR_FREE_PAGES);
		else
			count += zone_page_state(zone, NR_FREE_PAGES);
	}
1591
	avail_normal = count;
1592 1593 1594
	count += highmem;
	count -= totalreserve_pages;

1595 1596 1597
	/* Add number of pages required for page keys (s390 only). */
	size += page_key_additional_pages(saveable);

1598
	/* Compute the maximum number of saveable pages to leave in memory. */
1599 1600
	max_size = (count - (size + PAGES_FOR_IO)) / 2
			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1601
	/* Compute the desired number of image pages specified by image_size. */
1602 1603 1604 1605
	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
	if (size > max_size)
		size = max_size;
	/*
1606 1607 1608
	 * If the desired number of image pages is at least as large as the
	 * current number of saveable pages in memory, allocate page frames for
	 * the image and we're done.
1609
	 */
1610 1611
	if (size >= saveable) {
		pages = preallocate_image_highmem(save_highmem);
1612
		pages += preallocate_image_memory(saveable - pages, avail_normal);
1613
		goto out;
1614
	}
1615

1616 1617
	/* Estimate the minimum size of the image. */
	pages = minimum_image_size(saveable);
1618 1619 1620 1621 1622 1623 1624 1625 1626
	/*
	 * To avoid excessive pressure on the normal zone, leave room in it to
	 * accommodate an image of the minimum size (unless it's already too
	 * small, in which case don't preallocate pages from it at all).
	 */
	if (avail_normal > pages)
		avail_normal -= pages;
	else
		avail_normal = 0;
1627 1628 1629
	if (size < pages)
		size = min_t(unsigned long, pages, max_size);

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	/*
	 * Let the memory management subsystem know that we're going to need a
	 * large number of page frames to allocate and make it free some memory.
	 * NOTE: If this is not done, performance will be hurt badly in some
	 * test cases.
	 */
	shrink_all_memory(saveable - size);

	/*
	 * The number of saveable pages in memory was too high, so apply some
	 * pressure to decrease it.  First, make room for the largest possible
	 * image and fail if that doesn't work.  Next, try to decrease the size
1642 1643
	 * of the image as much as indicated by 'size' using allocations from
	 * highmem and non-highmem zones separately.
1644 1645
	 */
	pages_highmem = preallocate_image_highmem(highmem / 2);
1646 1647 1648 1649 1650
	alloc = count - max_size;
	if (alloc > pages_highmem)
		alloc -= pages_highmem;
	else
		alloc = 0;
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	pages = preallocate_image_memory(alloc, avail_normal);
	if (pages < alloc) {
		/* We have exhausted non-highmem pages, try highmem. */
		alloc -= pages;
		pages += pages_highmem;
		pages_highmem = preallocate_image_highmem(alloc);
		if (pages_highmem < alloc)
			goto err_out;
		pages += pages_highmem;
		/*
		 * size is the desired number of saveable pages to leave in
		 * memory, so try to preallocate (all memory - size) pages.
		 */
		alloc = (count - pages) - size;
		pages += preallocate_image_highmem(alloc);
	} else {
		/*
		 * There are approximately max_size saveable pages at this point
		 * and we want to reduce this number down to size.
		 */
		alloc = max_size - size;
		size = preallocate_highmem_fraction(alloc, highmem, count);
		pages_highmem += size;
		alloc -= size;
		size = preallocate_image_memory(alloc, avail_normal);
		pages_highmem += preallocate_image_highmem(alloc - size);
		pages += pages_highmem + size;
	}
1679

1680 1681 1682 1683 1684 1685
	/*
	 * We only need as many page frames for the image as there are saveable
	 * pages in memory, but we have allocated more.  Release the excessive
	 * ones now.
	 */
	free_unnecessary_pages();
1686 1687

 out:
1688
	do_gettimeofday(&stop);
1689 1690
	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
	swsusp_show_speed(&start, &stop, pages, "Allocated");
1691 1692

	return 0;
1693 1694 1695 1696 1697

 err_out:
	printk(KERN_CONT "\n");
	swsusp_free();
	return -ENOMEM;
1698 1699
}

1700 1701 1702 1703 1704 1705 1706 1707
#ifdef CONFIG_HIGHMEM
/**
  *	count_pages_for_highmem - compute the number of non-highmem pages
  *	that will be necessary for creating copies of highmem pages.
  */

static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
{
1708
	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720

	if (free_highmem >= nr_highmem)
		nr_highmem = 0;
	else
		nr_highmem -= free_highmem;

	return nr_highmem;
}
#else
static unsigned int
count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
#endif /* CONFIG_HIGHMEM */
1721 1722

/**
1723 1724
 *	enough_free_mem - Make sure we have enough free memory for the
 *	snapshot image.
1725 1726
 */

1727
static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1728
{
1729
	struct zone *zone;
1730
	unsigned int free = alloc_normal;
1731

1732
	for_each_populated_zone(zone)
1733
		if (!is_highmem(zone))
1734
			free += zone_page_state(zone, NR_FREE_PAGES);
1735

1736
	nr_pages += count_pages_for_highmem(nr_highmem);
1737 1738
	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
		nr_pages, PAGES_FOR_IO, free);
1739

1740
	return free > nr_pages + PAGES_FOR_IO;
1741 1742
}

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
#ifdef CONFIG_HIGHMEM
/**
 *	get_highmem_buffer - if there are some highmem pages in the suspend
 *	image, we may need the buffer to copy them and/or load their data.
 */

static inline int get_highmem_buffer(int safe_needed)
{
	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
	return buffer ? 0 : -ENOMEM;
}

/**
 *	alloc_highmem_image_pages - allocate some highmem pages for the image.
 *	Try to allocate as many pages as needed, but if the number of free
 *	highmem pages is lesser than that, allocate them all.
 */

static inline unsigned int
1762
alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
{
	unsigned int to_alloc = count_free_highmem_pages();

	if (to_alloc > nr_highmem)
		to_alloc = nr_highmem;

	nr_highmem -= to_alloc;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_image_page(__GFP_HIGHMEM);
		memory_bm_set_bit(bm, page_to_pfn(page));
	}
	return nr_highmem;
}
#else
static inline int get_highmem_buffer(int safe_needed) { return 0; }

static inline unsigned int
1782
alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
#endif /* CONFIG_HIGHMEM */

/**
 *	swsusp_alloc - allocate memory for the suspend image
 *
 *	We first try to allocate as many highmem pages as there are
 *	saveable highmem pages in the system.  If that fails, we allocate
 *	non-highmem pages for the copies of the remaining highmem ones.
 *
 *	In this approach it is likely that the copies of highmem pages will
 *	also be located in the high memory, because of the way in which
 *	copy_data_pages() works.
 */

1797 1798
static int
swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1799
		unsigned int nr_pages, unsigned int nr_highmem)
1800
{
1801
	if (nr_highmem > 0) {
1802
		if (get_highmem_buffer(PG_ANY))
1803 1804 1805 1806 1807
			goto err_out;
		if (nr_highmem > alloc_highmem) {
			nr_highmem -= alloc_highmem;
			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
		}
1808
	}
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
	if (nr_pages > alloc_normal) {
		nr_pages -= alloc_normal;
		while (nr_pages-- > 0) {
			struct page *page;

			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
			if (!page)
				goto err_out;
			memory_bm_set_bit(copy_bm, page_to_pfn(page));
		}
1819
	}
1820

1821
	return 0;
1822

1823
 err_out:
1824
	swsusp_free();
1825
	return -ENOMEM;
1826 1827
}

1828
asmlinkage __visible int swsusp_save(void)
1829
{
1830
	unsigned int nr_pages, nr_highmem;
1831

1832
	printk(KERN_INFO "PM: Creating hibernation image:\n");
1833

1834
	drain_local_pages(NULL);
1835
	nr_pages = count_data_pages();
1836
	nr_highmem = count_highmem_pages();
R
Rafael J. Wysocki 已提交
1837
	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1838

1839
	if (!enough_free_mem(nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1840
		printk(KERN_ERR "PM: Not enough free memory\n");
1841 1842 1843
		return -ENOMEM;
	}

1844
	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1845
		printk(KERN_ERR "PM: Memory allocation failed\n");
1846
		return -ENOMEM;
1847
	}
1848 1849 1850 1851

	/* During allocating of suspend pagedir, new cold pages may appear.
	 * Kill them.
	 */
1852
	drain_local_pages(NULL);
1853
	copy_data_pages(&copy_bm, &orig_bm);
1854 1855 1856 1857 1858 1859 1860

	/*
	 * End of critical section. From now on, we can write to memory,
	 * but we should not touch disk. This specially means we must _not_
	 * touch swap space! Except we must write out our image of course.
	 */

1861
	nr_pages += nr_highmem;
1862
	nr_copy_pages = nr_pages;
1863
	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1864

R
Rafael J. Wysocki 已提交
1865 1866
	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
		nr_pages);
1867

1868 1869
	return 0;
}
1870

1871 1872
#ifndef CONFIG_ARCH_HIBERNATION_HEADER
static int init_header_complete(struct swsusp_info *info)
1873
{
1874
	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1875
	info->version_code = LINUX_VERSION_CODE;
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	return 0;
}

static char *check_image_kernel(struct swsusp_info *info)
{
	if (info->version_code != LINUX_VERSION_CODE)
		return "kernel version";
	if (strcmp(info->uts.sysname,init_utsname()->sysname))
		return "system type";
	if (strcmp(info->uts.release,init_utsname()->release))
		return "kernel release";
	if (strcmp(info->uts.version,init_utsname()->version))
		return "version";
	if (strcmp(info->uts.machine,init_utsname()->machine))
		return "machine";
	return NULL;
}
#endif /* CONFIG_ARCH_HIBERNATION_HEADER */

1895 1896 1897 1898 1899
unsigned long snapshot_get_image_size(void)
{
	return nr_copy_pages + nr_meta_pages + 1;
}

1900 1901 1902
static int init_header(struct swsusp_info *info)
{
	memset(info, 0, sizeof(struct swsusp_info));
1903
	info->num_physpages = get_num_physpages();
1904
	info->image_pages = nr_copy_pages;
1905
	info->pages = snapshot_get_image_size();
1906 1907
	info->size = info->pages;
	info->size <<= PAGE_SHIFT;
1908
	return init_header_complete(info);
1909 1910 1911
}

/**
1912 1913
 *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
 *	are stored in the array @buf[] (1 page at a time)
1914 1915
 */

1916
static inline void
1917
pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1918 1919 1920
{
	int j;

1921
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1922 1923
		buf[j] = memory_bm_next_pfn(bm);
		if (unlikely(buf[j] == BM_END_OF_MAP))
1924
			break;
1925 1926
		/* Save page key for data page (s390 only). */
		page_key_read(buf + j);
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	}
}

/**
 *	snapshot_read_next - used for reading the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to read up to the returned number of bytes from the memory
J
Jiri Slaby 已提交
1939
 *	location computed by the data_of() macro.
1940 1941 1942 1943 1944 1945 1946
 *
 *	The function returns 0 to indicate the end of data stream condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

J
Jiri Slaby 已提交
1947
int snapshot_read_next(struct snapshot_handle *handle)
1948
{
1949
	if (handle->cur > nr_meta_pages + nr_copy_pages)
1950
		return 0;
1951

1952 1953
	if (!buffer) {
		/* This makes the buffer be freed by swsusp_free() */
1954
		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1955 1956 1957
		if (!buffer)
			return -ENOMEM;
	}
J
Jiri Slaby 已提交
1958
	if (!handle->cur) {
1959 1960 1961 1962 1963
		int error;

		error = init_header((struct swsusp_info *)buffer);
		if (error)
			return error;
1964
		handle->buffer = buffer;
1965 1966
		memory_bm_position_reset(&orig_bm);
		memory_bm_position_reset(&copy_bm);
J
Jiri Slaby 已提交
1967
	} else if (handle->cur <= nr_meta_pages) {
1968
		clear_page(buffer);
J
Jiri Slaby 已提交
1969 1970 1971
		pack_pfns(buffer, &orig_bm);
	} else {
		struct page *page;
1972

J
Jiri Slaby 已提交
1973 1974 1975 1976 1977 1978 1979
		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
		if (PageHighMem(page)) {
			/* Highmem pages are copied to the buffer,
			 * because we can't return with a kmapped
			 * highmem page (we may not be called again).
			 */
			void *kaddr;
1980

1981
			kaddr = kmap_atomic(page);
1982
			copy_page(buffer, kaddr);
1983
			kunmap_atomic(kaddr);
J
Jiri Slaby 已提交
1984 1985 1986
			handle->buffer = buffer;
		} else {
			handle->buffer = page_address(page);
1987 1988
		}
	}
J
Jiri Slaby 已提交
1989 1990
	handle->cur++;
	return PAGE_SIZE;
1991 1992 1993 1994 1995 1996 1997 1998
}

/**
 *	mark_unsafe_pages - mark the pages that cannot be used for storing
 *	the image during resume, because they conflict with the pages that
 *	had been used before suspend
 */

1999
static int mark_unsafe_pages(struct memory_bitmap *bm)
2000 2001
{
	struct zone *zone;
2002
	unsigned long pfn, max_zone_pfn;
2003 2004

	/* Clear page flags */
2005
	for_each_populated_zone(zone) {
2006
		max_zone_pfn = zone_end_pfn(zone);
2007 2008
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
			if (pfn_valid(pfn))
2009
				swsusp_unset_page_free(pfn_to_page(pfn));
2010 2011
	}

2012 2013 2014 2015 2016 2017
	/* Mark pages that correspond to the "original" pfns as "unsafe" */
	memory_bm_position_reset(bm);
	do {
		pfn = memory_bm_next_pfn(bm);
		if (likely(pfn != BM_END_OF_MAP)) {
			if (likely(pfn_valid(pfn)))
2018
				swsusp_set_page_free(pfn_to_page(pfn));
2019 2020 2021 2022
			else
				return -EFAULT;
		}
	} while (pfn != BM_END_OF_MAP);
2023

2024
	allocated_unsafe_pages = 0;
2025

2026 2027 2028
	return 0;
}

2029 2030
static void
duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
2031
{
2032 2033 2034 2035 2036 2037 2038
	unsigned long pfn;

	memory_bm_position_reset(src);
	pfn = memory_bm_next_pfn(src);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_set_bit(dst, pfn);
		pfn = memory_bm_next_pfn(src);
2039 2040 2041
	}
}

2042
static int check_header(struct swsusp_info *info)
2043
{
2044
	char *reason;
2045

2046
	reason = check_image_kernel(info);
2047
	if (!reason && info->num_physpages != get_num_physpages())
2048 2049
		reason = "memory size";
	if (reason) {
R
Rafael J. Wysocki 已提交
2050
		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2051 2052 2053 2054 2055 2056 2057 2058 2059
		return -EPERM;
	}
	return 0;
}

/**
 *	load header - check the image header and copy data from it
 */

2060 2061
static int
load_header(struct swsusp_info *info)
2062 2063 2064
{
	int error;

2065
	restore_pblist = NULL;
2066 2067 2068 2069 2070 2071 2072 2073 2074
	error = check_header(info);
	if (!error) {
		nr_copy_pages = info->image_pages;
		nr_meta_pages = info->pages - info->image_pages - 1;
	}
	return error;
}

/**
2075 2076
 *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
 *	the corresponding bit in the memory bitmap @bm
2077
 */
2078
static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2079 2080 2081
{
	int j;

2082 2083 2084 2085
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
		if (unlikely(buf[j] == BM_END_OF_MAP))
			break;

2086 2087 2088
		/* Extract and buffer page key for data page (s390 only). */
		page_key_memorize(buf + j);

2089 2090 2091 2092
		if (memory_bm_pfn_present(bm, buf[j]))
			memory_bm_set_bit(bm, buf[j]);
		else
			return -EFAULT;
2093
	}
2094 2095

	return 0;
2096 2097
}

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
/* List of "safe" pages that may be used to store data loaded from the suspend
 * image
 */
static struct linked_page *safe_pages_list;

#ifdef CONFIG_HIGHMEM
/* struct highmem_pbe is used for creating the list of highmem pages that
 * should be restored atomically during the resume from disk, because the page
 * frames they have occupied before the suspend are in use.
 */
struct highmem_pbe {
	struct page *copy_page;	/* data is here now */
	struct page *orig_page;	/* data was here before the suspend */
	struct highmem_pbe *next;
};

/* List of highmem PBEs needed for restoring the highmem pages that were
 * allocated before the suspend and included in the suspend image, but have
 * also been allocated by the "resume" kernel, so their contents cannot be
 * written directly to their "original" page frames.
 */
static struct highmem_pbe *highmem_pblist;

/**
 *	count_highmem_image_pages - compute the number of highmem pages in the
 *	suspend image.  The bits in the memory bitmap @bm that correspond to the
 *	image pages are assumed to be set.
 */

static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
{
	unsigned long pfn;
	unsigned int cnt = 0;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (PageHighMem(pfn_to_page(pfn)))
			cnt++;

		pfn = memory_bm_next_pfn(bm);
	}
	return cnt;
}

/**
 *	prepare_highmem_image - try to allocate as many highmem pages as
 *	there are highmem image pages (@nr_highmem_p points to the variable
 *	containing the number of highmem image pages).  The pages that are
 *	"safe" (ie. will not be overwritten when the suspend image is
 *	restored) have the corresponding bits set in @bm (it must be
 *	unitialized).
 *
 *	NOTE: This function should not be called if there are no highmem
 *	image pages.
 */

static unsigned int safe_highmem_pages;

static struct memory_bitmap *safe_highmem_bm;

static int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
	unsigned int to_alloc;

	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
		return -ENOMEM;

	if (get_highmem_buffer(PG_SAFE))
		return -ENOMEM;

	to_alloc = count_free_highmem_pages();
	if (to_alloc > *nr_highmem_p)
		to_alloc = *nr_highmem_p;
	else
		*nr_highmem_p = to_alloc;

	safe_highmem_pages = 0;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_page(__GFP_HIGHMEM);
2181
		if (!swsusp_page_is_free(page)) {
2182 2183 2184 2185 2186
			/* The page is "safe", set its bit the bitmap */
			memory_bm_set_bit(bm, page_to_pfn(page));
			safe_highmem_pages++;
		}
		/* Mark the page as allocated */
2187 2188
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
	}
	memory_bm_position_reset(bm);
	safe_highmem_bm = bm;
	return 0;
}

/**
 *	get_highmem_page_buffer - for given highmem image page find the buffer
 *	that suspend_write_next() should set for its caller to write to.
 *
 *	If the page is to be saved to its "original" page frame or a copy of
 *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
 *	the copy of the page is to be made in normal memory, so the address of
 *	the copy is returned.
 *
 *	If @buffer is returned, the caller of suspend_write_next() will write
 *	the page's contents to @buffer, so they will have to be copied to the
 *	right location on the next call to suspend_write_next() and it is done
 *	with the help of copy_last_highmem_page().  For this purpose, if
 *	@buffer is returned, @last_highmem page is set to the page to which
 *	the data will have to be copied from @buffer.
 */

static struct page *last_highmem_page;

static void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
	struct highmem_pbe *pbe;
	void *kaddr;

2220
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
		 */
		last_highmem_page = page;
		return buffer;
	}
	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
	 */
	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
	if (!pbe) {
		swsusp_free();
2233
		return ERR_PTR(-ENOMEM);
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
	}
	pbe->orig_page = page;
	if (safe_highmem_pages > 0) {
		struct page *tmp;

		/* Copy of the page will be stored in high memory */
		kaddr = buffer;
		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
		safe_highmem_pages--;
		last_highmem_page = tmp;
		pbe->copy_page = tmp;
	} else {
		/* Copy of the page will be stored in normal memory */
		kaddr = safe_pages_list;
		safe_pages_list = safe_pages_list->next;
		pbe->copy_page = virt_to_page(kaddr);
	}
	pbe->next = highmem_pblist;
	highmem_pblist = pbe;
	return kaddr;
}

/**
 *	copy_last_highmem_page - copy the contents of a highmem image from
 *	@buffer, where the caller of snapshot_write_next() has place them,
 *	to the right location represented by @last_highmem_page .
 */

static void copy_last_highmem_page(void)
{
	if (last_highmem_page) {
		void *dst;

2267
		dst = kmap_atomic(last_highmem_page);
2268
		copy_page(dst, buffer);
2269
		kunmap_atomic(dst);
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
		last_highmem_page = NULL;
	}
}

static inline int last_highmem_page_copied(void)
{
	return !last_highmem_page;
}

static inline void free_highmem_data(void)
{
	if (safe_highmem_bm)
		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);

	if (buffer)
		free_image_page(buffer, PG_UNSAFE_CLEAR);
}
#else
static inline int get_safe_write_buffer(void) { return 0; }

static unsigned int
count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }

static inline int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
	return 0;
}

static inline void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
2302
	return ERR_PTR(-EINVAL);
2303 2304 2305 2306 2307 2308 2309
}

static inline void copy_last_highmem_page(void) {}
static inline int last_highmem_page_copied(void) { return 1; }
static inline void free_highmem_data(void) {}
#endif /* CONFIG_HIGHMEM */

2310
/**
2311 2312 2313 2314
 *	prepare_image - use the memory bitmap @bm to mark the pages that will
 *	be overwritten in the process of restoring the system memory state
 *	from the suspend image ("unsafe" pages) and allocate memory for the
 *	image.
2315
 *
2316 2317 2318
 *	The idea is to allocate a new memory bitmap first and then allocate
 *	as many pages as needed for the image data, but not to assign these
 *	pages to specific tasks initially.  Instead, we just mark them as
2319 2320 2321
 *	allocated and create a lists of "safe" pages that will be used
 *	later.  On systems with high memory a list of "safe" highmem pages is
 *	also created.
2322 2323
 */

2324 2325 2326 2327
#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))

static int
prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2328
{
2329
	unsigned int nr_pages, nr_highmem;
2330 2331
	struct linked_page *sp_list, *lp;
	int error;
2332

2333 2334 2335 2336 2337
	/* If there is no highmem, the buffer will not be necessary */
	free_image_page(buffer, PG_UNSAFE_CLEAR);
	buffer = NULL;

	nr_highmem = count_highmem_image_pages(bm);
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
	error = mark_unsafe_pages(bm);
	if (error)
		goto Free;

	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
	if (error)
		goto Free;

	duplicate_memory_bitmap(new_bm, bm);
	memory_bm_free(bm, PG_UNSAFE_KEEP);
2348 2349 2350 2351 2352
	if (nr_highmem > 0) {
		error = prepare_highmem_image(bm, &nr_highmem);
		if (error)
			goto Free;
	}
2353 2354 2355 2356 2357 2358 2359 2360
	/* Reserve some safe pages for potential later use.
	 *
	 * NOTE: This way we make sure there will be enough safe pages for the
	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
	 */
	sp_list = NULL;
	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2361
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2362 2363
	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
	while (nr_pages > 0) {
2364
		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2365
		if (!lp) {
2366
			error = -ENOMEM;
2367 2368 2369 2370 2371
			goto Free;
		}
		lp->next = sp_list;
		sp_list = lp;
		nr_pages--;
2372
	}
2373 2374
	/* Preallocate memory for the image */
	safe_pages_list = NULL;
2375
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2376 2377 2378 2379 2380 2381
	while (nr_pages > 0) {
		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
		if (!lp) {
			error = -ENOMEM;
			goto Free;
		}
2382
		if (!swsusp_page_is_free(virt_to_page(lp))) {
2383 2384 2385
			/* The page is "safe", add it to the list */
			lp->next = safe_pages_list;
			safe_pages_list = lp;
2386
		}
2387
		/* Mark the page as allocated */
2388 2389
		swsusp_set_page_forbidden(virt_to_page(lp));
		swsusp_set_page_free(virt_to_page(lp));
2390
		nr_pages--;
2391
	}
2392 2393 2394 2395 2396
	/* Free the reserved safe pages so that chain_alloc() can use them */
	while (sp_list) {
		lp = sp_list->next;
		free_image_page(sp_list, PG_UNSAFE_CLEAR);
		sp_list = lp;
2397
	}
2398 2399
	return 0;

R
Rafael J. Wysocki 已提交
2400
 Free:
2401
	swsusp_free();
2402 2403 2404
	return error;
}

2405 2406 2407 2408 2409 2410
/**
 *	get_buffer - compute the address that snapshot_write_next() should
 *	set for its caller to write to.
 */

static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2411
{
2412
	struct pbe *pbe;
2413 2414
	struct page *page;
	unsigned long pfn = memory_bm_next_pfn(bm);
2415

2416 2417 2418 2419
	if (pfn == BM_END_OF_MAP)
		return ERR_PTR(-EFAULT);

	page = pfn_to_page(pfn);
2420 2421 2422
	if (PageHighMem(page))
		return get_highmem_page_buffer(page, ca);

2423
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2424 2425
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
2426
		 */
2427 2428 2429 2430
		return page_address(page);

	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
2431
	 */
2432 2433 2434
	pbe = chain_alloc(ca, sizeof(struct pbe));
	if (!pbe) {
		swsusp_free();
2435
		return ERR_PTR(-ENOMEM);
2436
	}
2437 2438
	pbe->orig_address = page_address(page);
	pbe->address = safe_pages_list;
2439 2440 2441
	safe_pages_list = safe_pages_list->next;
	pbe->next = restore_pblist;
	restore_pblist = pbe;
2442
	return pbe->address;
2443 2444
}

2445 2446 2447 2448 2449 2450 2451 2452 2453
/**
 *	snapshot_write_next - used for writing the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to write up to the returned number of bytes to the memory
J
Jiri Slaby 已提交
2454
 *	location computed by the data_of() macro.
2455 2456 2457 2458 2459 2460 2461
 *
 *	The function returns 0 to indicate the "end of file" condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

J
Jiri Slaby 已提交
2462
int snapshot_write_next(struct snapshot_handle *handle)
2463
{
2464
	static struct chain_allocator ca;
2465 2466
	int error = 0;

2467
	/* Check if we have already loaded the entire image */
J
Jiri Slaby 已提交
2468
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2469
		return 0;
2470

J
Jiri Slaby 已提交
2471 2472 2473
	handle->sync_read = 1;

	if (!handle->cur) {
2474 2475 2476 2477
		if (!buffer)
			/* This makes the buffer be freed by swsusp_free() */
			buffer = get_image_page(GFP_ATOMIC, PG_ANY);

2478 2479
		if (!buffer)
			return -ENOMEM;
2480

2481
		handle->buffer = buffer;
J
Jiri Slaby 已提交
2482 2483 2484 2485
	} else if (handle->cur == 1) {
		error = load_header(buffer);
		if (error)
			return error;
2486

J
Jiri Slaby 已提交
2487 2488 2489 2490
		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
		if (error)
			return error;

2491 2492 2493 2494 2495
		/* Allocate buffer for page keys. */
		error = page_key_alloc(nr_copy_pages);
		if (error)
			return error;

J
Jiri Slaby 已提交
2496 2497 2498 2499
	} else if (handle->cur <= nr_meta_pages + 1) {
		error = unpack_orig_pfns(buffer, &copy_bm);
		if (error)
			return error;
2500

J
Jiri Slaby 已提交
2501 2502
		if (handle->cur == nr_meta_pages + 1) {
			error = prepare_image(&orig_bm, &copy_bm);
2503 2504 2505
			if (error)
				return error;

J
Jiri Slaby 已提交
2506 2507 2508
			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
			memory_bm_position_reset(&orig_bm);
			restore_pblist = NULL;
2509
			handle->buffer = get_buffer(&orig_bm, &ca);
J
Jiri Slaby 已提交
2510
			handle->sync_read = 0;
2511 2512
			if (IS_ERR(handle->buffer))
				return PTR_ERR(handle->buffer);
2513 2514
		}
	} else {
J
Jiri Slaby 已提交
2515
		copy_last_highmem_page();
2516 2517
		/* Restore page key for data page (s390 only). */
		page_key_write(handle->buffer);
J
Jiri Slaby 已提交
2518 2519 2520 2521 2522
		handle->buffer = get_buffer(&orig_bm, &ca);
		if (IS_ERR(handle->buffer))
			return PTR_ERR(handle->buffer);
		if (handle->buffer != buffer)
			handle->sync_read = 0;
2523
	}
J
Jiri Slaby 已提交
2524 2525
	handle->cur++;
	return PAGE_SIZE;
2526 2527
}

2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
/**
 *	snapshot_write_finalize - must be called after the last call to
 *	snapshot_write_next() in case the last page in the image happens
 *	to be a highmem page and its contents should be stored in the
 *	highmem.  Additionally, it releases the memory that will not be
 *	used any more.
 */

void snapshot_write_finalize(struct snapshot_handle *handle)
{
	copy_last_highmem_page();
2539 2540 2541
	/* Restore page key for data page (s390 only). */
	page_key_write(handle->buffer);
	page_key_free();
2542
	/* Free only if we have loaded the image entirely */
J
Jiri Slaby 已提交
2543
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2544 2545 2546 2547 2548
		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
		free_highmem_data();
	}
}

2549 2550
int snapshot_image_loaded(struct snapshot_handle *handle)
{
2551
	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2552 2553 2554
			handle->cur <= nr_meta_pages + nr_copy_pages);
}

2555 2556 2557 2558
#ifdef CONFIG_HIGHMEM
/* Assumes that @buf is ready and points to a "safe" page */
static inline void
swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2559
{
2560 2561
	void *kaddr1, *kaddr2;

2562 2563
	kaddr1 = kmap_atomic(p1);
	kaddr2 = kmap_atomic(p2);
2564 2565 2566
	copy_page(buf, kaddr1);
	copy_page(kaddr1, kaddr2);
	copy_page(kaddr2, buf);
2567 2568
	kunmap_atomic(kaddr2);
	kunmap_atomic(kaddr1);
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
}

/**
 *	restore_highmem - for each highmem page that was allocated before
 *	the suspend and included in the suspend image, and also has been
 *	allocated by the "resume" kernel swap its current (ie. "before
 *	resume") contents with the previous (ie. "before suspend") one.
 *
 *	If the resume eventually fails, we can call this function once
 *	again and restore the "before resume" highmem state.
 */

int restore_highmem(void)
{
	struct highmem_pbe *pbe = highmem_pblist;
	void *buf;

	if (!pbe)
		return 0;

	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
	if (!buf)
		return -ENOMEM;

	while (pbe) {
		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
		pbe = pbe->next;
	}
	free_image_page(buf, PG_UNSAFE_CLEAR);
	return 0;
2599
}
2600
#endif /* CONFIG_HIGHMEM */