snapshot.c 50.7 KB
Newer Older
1
/*
2
 * linux/kernel/power/snapshot.c
3
 *
4
 * This file provides system snapshot/restore functionality for swsusp.
5 6
 *
 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7
 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8
 *
9
 * This file is released under the GPLv2.
10 11 12
 *
 */

13
#include <linux/version.h>
14 15 16 17 18 19 20 21 22
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/pm.h>
#include <linux/device.h>
23
#include <linux/init.h>
24 25 26 27
#include <linux/bootmem.h>
#include <linux/syscalls.h>
#include <linux/console.h>
#include <linux/highmem.h>
28
#include <linux/list.h>
29 30 31 32 33 34 35 36 37

#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/io.h>

#include "power.h"

38 39 40 41
static int swsusp_page_is_free(struct page *);
static void swsusp_set_page_forbidden(struct page *);
static void swsusp_unset_page_forbidden(struct page *);

42 43 44 45 46
/* List of PBEs needed for restoring the pages that were allocated before
 * the suspend and included in the suspend image, but have also been
 * allocated by the "resume" kernel, so their contents cannot be written
 * directly to their "original" page frames.
 */
47 48
struct pbe *restore_pblist;

49
/* Pointer to an auxiliary buffer (1 page) */
50
static void *buffer;
51

52 53 54
/**
 *	@safe_needed - on resume, for storing the PBE list and the image,
 *	we can only use memory pages that do not conflict with the pages
55 56
 *	used before suspend.  The unsafe pages have PageNosaveFree set
 *	and we count them using unsafe_pages.
57
 *
58 59
 *	Each allocated image page is marked as PageNosave and PageNosaveFree
 *	so that swsusp_free() can release it.
60 61
 */

62 63 64 65 66
#define PG_ANY		0
#define PG_SAFE		1
#define PG_UNSAFE_CLEAR	1
#define PG_UNSAFE_KEEP	0

67
static unsigned int allocated_unsafe_pages;
68

69
static void *get_image_page(gfp_t gfp_mask, int safe_needed)
70 71 72 73 74
{
	void *res;

	res = (void *)get_zeroed_page(gfp_mask);
	if (safe_needed)
75
		while (res && swsusp_page_is_free(virt_to_page(res))) {
76
			/* The page is unsafe, mark it for swsusp_free() */
77
			swsusp_set_page_forbidden(virt_to_page(res));
78
			allocated_unsafe_pages++;
79 80 81
			res = (void *)get_zeroed_page(gfp_mask);
		}
	if (res) {
82 83
		swsusp_set_page_forbidden(virt_to_page(res));
		swsusp_set_page_free(virt_to_page(res));
84 85 86 87 88 89
	}
	return res;
}

unsigned long get_safe_page(gfp_t gfp_mask)
{
90 91 92
	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
}

93 94
static struct page *alloc_image_page(gfp_t gfp_mask)
{
95 96 97 98
	struct page *page;

	page = alloc_page(gfp_mask);
	if (page) {
99 100
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
101 102
	}
	return page;
103 104 105 106
}

/**
 *	free_image_page - free page represented by @addr, allocated with
107
 *	get_image_page (page flags set by it must be cleared)
108 109 110 111
 */

static inline void free_image_page(void *addr, int clear_nosave_free)
{
112 113 114 115 116 117
	struct page *page;

	BUG_ON(!virt_addr_valid(addr));

	page = virt_to_page(addr);

118
	swsusp_unset_page_forbidden(page);
119
	if (clear_nosave_free)
120
		swsusp_unset_page_free(page);
121 122

	__free_page(page);
123 124
}

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
/* struct linked_page is used to build chains of pages */

#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))

struct linked_page {
	struct linked_page *next;
	char data[LINKED_PAGE_DATA_SIZE];
} __attribute__((packed));

static inline void
free_list_of_pages(struct linked_page *list, int clear_page_nosave)
{
	while (list) {
		struct linked_page *lp = list->next;

		free_image_page(list, clear_page_nosave);
		list = lp;
	}
}

/**
  *	struct chain_allocator is used for allocating small objects out of
  *	a linked list of pages called 'the chain'.
  *
  *	The chain grows each time when there is no room for a new object in
  *	the current page.  The allocated objects cannot be freed individually.
  *	It is only possible to free them all at once, by freeing the entire
  *	chain.
  *
  *	NOTE: The chain allocator may be inefficient if the allocated objects
  *	are not much smaller than PAGE_SIZE.
  */

struct chain_allocator {
	struct linked_page *chain;	/* the chain */
	unsigned int used_space;	/* total size of objects allocated out
					 * of the current page
					 */
	gfp_t gfp_mask;		/* mask for allocating pages */
	int safe_needed;	/* if set, only "safe" pages are allocated */
};

static void
chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
{
	ca->chain = NULL;
	ca->used_space = LINKED_PAGE_DATA_SIZE;
	ca->gfp_mask = gfp_mask;
	ca->safe_needed = safe_needed;
}

static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
{
	void *ret;

	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
		struct linked_page *lp;

183
		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
		if (!lp)
			return NULL;

		lp->next = ca->chain;
		ca->chain = lp;
		ca->used_space = 0;
	}
	ret = ca->chain->data + ca->used_space;
	ca->used_space += size;
	return ret;
}

/**
 *	Data types related to memory bitmaps.
 *
 *	Memory bitmap is a structure consiting of many linked lists of
 *	objects.  The main list's elements are of type struct zone_bitmap
 *	and each of them corresonds to one zone.  For each zone bitmap
 *	object there is a list of objects of type struct bm_block that
203
 *	represent each blocks of bitmap in which information is stored.
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
 *
 *	struct memory_bitmap contains a pointer to the main list of zone
 *	bitmap objects, a struct bm_position used for browsing the bitmap,
 *	and a pointer to the list of pages used for allocating all of the
 *	zone bitmap objects and bitmap block objects.
 *
 *	NOTE: It has to be possible to lay out the bitmap in memory
 *	using only allocations of order 0.  Additionally, the bitmap is
 *	designed to work with arbitrary number of zones (this is over the
 *	top for now, but let's avoid making unnecessary assumptions ;-).
 *
 *	struct zone_bitmap contains a pointer to a list of bitmap block
 *	objects and a pointer to the bitmap block object that has been
 *	most recently used for setting bits.  Additionally, it contains the
 *	pfns that correspond to the start and end of the represented zone.
 *
 *	struct bm_block contains a pointer to the memory page in which
221 222 223
 *	information is stored (in the form of a block of bitmap)
 *	It also contains the pfns that correspond to the start and end of
 *	the represented memory area.
224 225 226 227 228 229 230
 */

#define BM_END_OF_MAP	(~0UL)

#define BM_BITS_PER_BLOCK	(PAGE_SIZE << 3)

struct bm_block {
231
	struct list_head hook;	/* hook into a list of bitmap blocks */
232 233
	unsigned long start_pfn;	/* pfn represented by the first bit */
	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
234
	unsigned long *data;	/* bitmap representing pages */
235 236
};

237 238 239 240 241
static inline unsigned long bm_block_bits(struct bm_block *bb)
{
	return bb->end_pfn - bb->start_pfn;
}

242 243 244 245 246 247 248 249
/* strcut bm_position is used for browsing memory bitmaps */

struct bm_position {
	struct bm_block *block;
	int bit;
};

struct memory_bitmap {
250
	struct list_head blocks;	/* list of bitmap blocks */
251 252 253 254 255 256 257 258 259 260 261
	struct linked_page *p_list;	/* list of pages used to store zone
					 * bitmap objects and bitmap block
					 * objects
					 */
	struct bm_position cur;	/* most recently used bit position */
};

/* Functions that operate on memory bitmaps */

static void memory_bm_position_reset(struct memory_bitmap *bm)
{
262
	bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
263
	bm->cur.bit = 0;
264 265 266 267 268 269
}

static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);

/**
 *	create_bm_block_list - create a list of block bitmap objects
270 271 272
 *	@nr_blocks - number of blocks to allocate
 *	@list - list to put the allocated blocks into
 *	@ca - chain allocator to be used for allocating memory
273
 */
274 275 276
static int create_bm_block_list(unsigned long pages,
				struct list_head *list,
				struct chain_allocator *ca)
277
{
278
	unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
279 280 281 282 283 284

	while (nr_blocks-- > 0) {
		struct bm_block *bb;

		bb = chain_alloc(ca, sizeof(struct bm_block));
		if (!bb)
285 286
			return -ENOMEM;
		list_add(&bb->hook, list);
287
	}
288 289

	return 0;
290 291
}

292 293 294 295 296 297
struct mem_extent {
	struct list_head hook;
	unsigned long start;
	unsigned long end;
};

298
/**
299 300
 *	free_mem_extents - free a list of memory extents
 *	@list - list of extents to empty
301
 */
302 303 304
static void free_mem_extents(struct list_head *list)
{
	struct mem_extent *ext, *aux;
305

306 307 308 309 310 311 312 313 314 315 316 317 318
	list_for_each_entry_safe(ext, aux, list, hook) {
		list_del(&ext->hook);
		kfree(ext);
	}
}

/**
 *	create_mem_extents - create a list of memory extents representing
 *	                     contiguous ranges of PFNs
 *	@list - list to put the extents into
 *	@gfp_mask - mask to use for memory allocations
 */
static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
319
{
320
	struct zone *zone;
321

322
	INIT_LIST_HEAD(list);
323

324 325 326 327 328 329 330 331 332 333 334 335 336
	for_each_zone(zone) {
		unsigned long zone_start, zone_end;
		struct mem_extent *ext, *cur, *aux;

		if (!populated_zone(zone))
			continue;

		zone_start = zone->zone_start_pfn;
		zone_end = zone->zone_start_pfn + zone->spanned_pages;

		list_for_each_entry(ext, list, hook)
			if (zone_start <= ext->end)
				break;
337

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
		if (&ext->hook == list || zone_end < ext->start) {
			/* New extent is necessary */
			struct mem_extent *new_ext;

			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
			if (!new_ext) {
				free_mem_extents(list);
				return -ENOMEM;
			}
			new_ext->start = zone_start;
			new_ext->end = zone_end;
			list_add_tail(&new_ext->hook, &ext->hook);
			continue;
		}

		/* Merge this zone's range of PFNs with the existing one */
		if (zone_start < ext->start)
			ext->start = zone_start;
		if (zone_end > ext->end)
			ext->end = zone_end;

		/* More merging may be possible */
		cur = ext;
		list_for_each_entry_safe_continue(cur, aux, list, hook) {
			if (zone_end < cur->start)
				break;
			if (zone_end < cur->end)
				ext->end = cur->end;
			list_del(&cur->hook);
			kfree(cur);
		}
369
	}
370 371

	return 0;
372 373 374 375 376 377 378 379 380
}

/**
  *	memory_bm_create - allocate memory for a memory bitmap
  */
static int
memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
{
	struct chain_allocator ca;
381 382 383
	struct list_head mem_extents;
	struct mem_extent *ext;
	int error;
384 385

	chain_init(&ca, gfp_mask, safe_needed);
386
	INIT_LIST_HEAD(&bm->blocks);
387

388 389 390
	error = create_mem_extents(&mem_extents, gfp_mask);
	if (error)
		return error;
391

392 393 394 395
	list_for_each_entry(ext, &mem_extents, hook) {
		struct bm_block *bb;
		unsigned long pfn = ext->start;
		unsigned long pages = ext->end - ext->start;
396

397
		bb = list_entry(bm->blocks.prev, struct bm_block, hook);
398

399 400 401
		error = create_bm_block_list(pages, bm->blocks.prev, &ca);
		if (error)
			goto Error;
402

403 404 405 406 407 408
		list_for_each_entry_continue(bb, &bm->blocks, hook) {
			bb->data = get_image_page(gfp_mask, safe_needed);
			if (!bb->data) {
				error = -ENOMEM;
				goto Error;
			}
409 410

			bb->start_pfn = pfn;
411
			if (pages >= BM_BITS_PER_BLOCK) {
412
				pfn += BM_BITS_PER_BLOCK;
413
				pages -= BM_BITS_PER_BLOCK;
414 415
			} else {
				/* This is executed only once in the loop */
416
				pfn += pages;
417 418 419 420
			}
			bb->end_pfn = pfn;
		}
	}
421

422 423
	bm->p_list = ca.chain;
	memory_bm_position_reset(bm);
424 425 426
 Exit:
	free_mem_extents(&mem_extents);
	return error;
427

428
 Error:
429 430
	bm->p_list = ca.chain;
	memory_bm_free(bm, PG_UNSAFE_CLEAR);
431
	goto Exit;
432 433 434 435 436 437 438
}

/**
  *	memory_bm_free - free memory occupied by the memory bitmap @bm
  */
static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
{
439
	struct bm_block *bb;
440

441 442 443
	list_for_each_entry(bb, &bm->blocks, hook)
		if (bb->data)
			free_image_page(bb->data, clear_nosave_free);
444 445

	free_list_of_pages(bm->p_list, clear_nosave_free);
446 447

	INIT_LIST_HEAD(&bm->blocks);
448 449 450
}

/**
451
 *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
452 453 454
 *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
 *	of @bm->cur_zone_bm are updated.
 */
455
static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
456
				void **addr, unsigned int *bit_nr)
457 458 459
{
	struct bm_block *bb;

460 461 462 463 464
	/*
	 * Check if the pfn corresponds to the current bitmap block and find
	 * the block where it fits if this is not the case.
	 */
	bb = bm->cur.block;
465
	if (pfn < bb->start_pfn)
466 467 468
		list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
			if (pfn >= bb->start_pfn)
				break;
469

470 471 472 473
	if (pfn >= bb->end_pfn)
		list_for_each_entry_continue(bb, &bm->blocks, hook)
			if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
				break;
474

475 476 477 478 479
	if (&bb->hook == &bm->blocks)
		return -EFAULT;

	/* The block has been found */
	bm->cur.block = bb;
480
	pfn -= bb->start_pfn;
481
	bm->cur.bit = pfn + 1;
482 483
	*bit_nr = pfn;
	*addr = bb->data;
484
	return 0;
485 486 487 488 489 490
}

static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
491
	int error;
492

493 494
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
495 496 497
	set_bit(bit, addr);
}

498 499 500 501 502 503 504 505 506 507 508 509
static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
	int error;

	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	if (!error)
		set_bit(bit, addr);
	return error;
}

510 511 512 513
static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
514
	int error;
515

516 517
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
518 519 520 521 522 523 524
	clear_bit(bit, addr);
}

static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
525
	int error;
526

527 528
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
529
	return test_bit(bit, addr);
530 531
}

532 533 534 535 536 537 538 539
static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;

	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553
/**
 *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
 *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
 *	returned.
 *
 *	It is required to run memory_bm_position_reset() before the first call to
 *	this function.
 */

static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
{
	struct bm_block *bb;
	int bit;

554
	bb = bm->cur.block;
555
	do {
556 557 558 559 560 561 562 563 564 565
		bit = bm->cur.bit;
		bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
		if (bit < bm_block_bits(bb))
			goto Return_pfn;

		bb = list_entry(bb->hook.next, struct bm_block, hook);
		bm->cur.block = bb;
		bm->cur.bit = 0;
	} while (&bb->hook != &bm->blocks);

566 567 568
	memory_bm_position_reset(bm);
	return BM_END_OF_MAP;

R
Rafael J. Wysocki 已提交
569
 Return_pfn:
570 571
	bm->cur.bit = bit + 1;
	return bb->start_pfn + bit;
572 573
}

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
/**
 *	This structure represents a range of page frames the contents of which
 *	should not be saved during the suspend.
 */

struct nosave_region {
	struct list_head list;
	unsigned long start_pfn;
	unsigned long end_pfn;
};

static LIST_HEAD(nosave_regions);

/**
 *	register_nosave_region - register a range of page frames the contents
 *	of which should not be saved during the suspend (to be used in the early
 *	initialization code)
 */

void __init
594 595
__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
			 int use_kmalloc)
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
{
	struct nosave_region *region;

	if (start_pfn >= end_pfn)
		return;

	if (!list_empty(&nosave_regions)) {
		/* Try to extend the previous region (they should be sorted) */
		region = list_entry(nosave_regions.prev,
					struct nosave_region, list);
		if (region->end_pfn == start_pfn) {
			region->end_pfn = end_pfn;
			goto Report;
		}
	}
611 612 613 614 615 616 617
	if (use_kmalloc) {
		/* during init, this shouldn't fail */
		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
		BUG_ON(!region);
	} else
		/* This allocation cannot fail */
		region = alloc_bootmem_low(sizeof(struct nosave_region));
618 619 620 621
	region->start_pfn = start_pfn;
	region->end_pfn = end_pfn;
	list_add_tail(&region->list, &nosave_regions);
 Report:
R
Rafael J. Wysocki 已提交
622
	printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
		start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
}

/*
 * Set bits in this map correspond to the page frames the contents of which
 * should not be saved during the suspend.
 */
static struct memory_bitmap *forbidden_pages_map;

/* Set bits in this map correspond to free page frames. */
static struct memory_bitmap *free_pages_map;

/*
 * Each page frame allocated for creating the image is marked by setting the
 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 */

void swsusp_set_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
}

static int swsusp_page_is_free(struct page *page)
{
	return free_pages_map ?
		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
}

void swsusp_unset_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
}

static void swsusp_set_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
}

int swsusp_page_is_forbidden(struct page *page)
{
	return forbidden_pages_map ?
		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
}

static void swsusp_unset_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
}

/**
 *	mark_nosave_pages - set bits corresponding to the page frames the
 *	contents of which should not be saved in a given bitmap.
 */

static void mark_nosave_pages(struct memory_bitmap *bm)
{
	struct nosave_region *region;

	if (list_empty(&nosave_regions))
		return;

	list_for_each_entry(region, &nosave_regions, list) {
		unsigned long pfn;

R
Rafael J. Wysocki 已提交
691
		pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
692 693 694 695
				region->start_pfn << PAGE_SHIFT,
				region->end_pfn << PAGE_SHIFT);

		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
696 697 698 699 700 701 702 703 704
			if (pfn_valid(pfn)) {
				/*
				 * It is safe to ignore the result of
				 * mem_bm_set_bit_check() here, since we won't
				 * touch the PFNs for which the error is
				 * returned anyway.
				 */
				mem_bm_set_bit_check(bm, pfn);
			}
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
	}
}

/**
 *	create_basic_memory_bitmaps - create bitmaps needed for marking page
 *	frames that should not be saved and free page frames.  The pointers
 *	forbidden_pages_map and free_pages_map are only modified if everything
 *	goes well, because we don't want the bits to be used before both bitmaps
 *	are set up.
 */

int create_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;
	int error = 0;

	BUG_ON(forbidden_pages_map || free_pages_map);

723
	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
724 725 726
	if (!bm1)
		return -ENOMEM;

727
	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
728 729 730
	if (error)
		goto Free_first_object;

731
	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
732 733 734
	if (!bm2)
		goto Free_first_bitmap;

735
	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
736 737 738 739 740 741 742
	if (error)
		goto Free_second_object;

	forbidden_pages_map = bm1;
	free_pages_map = bm2;
	mark_nosave_pages(forbidden_pages_map);

R
Rafael J. Wysocki 已提交
743
	pr_debug("PM: Basic memory bitmaps created\n");
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777

	return 0;

 Free_second_object:
	kfree(bm2);
 Free_first_bitmap:
 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 Free_first_object:
	kfree(bm1);
	return -ENOMEM;
}

/**
 *	free_basic_memory_bitmaps - free memory bitmaps allocated by
 *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
 *	so that the bitmaps themselves are not referred to while they are being
 *	freed.
 */

void free_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;

	BUG_ON(!(forbidden_pages_map && free_pages_map));

	bm1 = forbidden_pages_map;
	bm2 = free_pages_map;
	forbidden_pages_map = NULL;
	free_pages_map = NULL;
	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
	kfree(bm1);
	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
	kfree(bm2);

R
Rafael J. Wysocki 已提交
778
	pr_debug("PM: Basic memory bitmaps freed\n");
779 780
}

781 782 783 784 785 786 787 788 789 790 791 792
/**
 *	snapshot_additional_pages - estimate the number of additional pages
 *	be needed for setting up the suspend image data structures for given
 *	zone (usually the returned value is greater than the exact number)
 */

unsigned int snapshot_additional_pages(struct zone *zone)
{
	unsigned int res;

	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
	res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
793
	return 2 * res;
794 795
}

796 797 798 799 800 801 802 803 804 805 806 807 808
#ifdef CONFIG_HIGHMEM
/**
 *	count_free_highmem_pages - compute the total number of free highmem
 *	pages, system-wide.
 */

static unsigned int count_free_highmem_pages(void)
{
	struct zone *zone;
	unsigned int cnt = 0;

	for_each_zone(zone)
		if (populated_zone(zone) && is_highmem(zone))
809
			cnt += zone_page_state(zone, NR_FREE_PAGES);
810 811 812 813 814 815 816 817 818 819 820

	return cnt;
}

/**
 *	saveable_highmem_page - Determine whether a highmem page should be
 *	included in the suspend image.
 *
 *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 *	and it isn't a part of a free chunk of pages.
 */
821
static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
822 823 824 825 826 827 828
{
	struct page *page;

	if (!pfn_valid(pfn))
		return NULL;

	page = pfn_to_page(pfn);
829 830
	if (page_zone(page) != zone)
		return NULL;
831 832 833

	BUG_ON(!PageHighMem(page));

834 835
	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
	    PageReserved(page))
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
		return NULL;

	return page;
}

/**
 *	count_highmem_pages - compute the total number of saveable highmem
 *	pages.
 */

unsigned int count_highmem_pages(void)
{
	struct zone *zone;
	unsigned int n = 0;

	for_each_zone(zone) {
		unsigned long pfn, max_zone_pfn;

		if (!is_highmem(zone))
			continue;

		mark_free_pages(zone);
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
860
			if (saveable_highmem_page(zone, pfn))
861 862 863 864 865
				n++;
	}
	return n;
}
#else
866 867 868 869
static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
{
	return NULL;
}
870 871
#endif /* CONFIG_HIGHMEM */

872
/**
873 874
 *	saveable_page - Determine whether a non-highmem page should be included
 *	in the suspend image.
875
 *
876 877 878
 *	We should save the page if it isn't Nosave, and is not in the range
 *	of pages statically defined as 'unsaveable', and it isn't a part of
 *	a free chunk of pages.
879
 */
880
static struct page *saveable_page(struct zone *zone, unsigned long pfn)
881
{
P
Pavel Machek 已提交
882
	struct page *page;
883 884

	if (!pfn_valid(pfn))
885
		return NULL;
886 887

	page = pfn_to_page(pfn);
888 889
	if (page_zone(page) != zone)
		return NULL;
890

891 892
	BUG_ON(PageHighMem(page));

893
	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
894
		return NULL;
895

896 897
	if (PageReserved(page)
	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
898
		return NULL;
899

900
	return page;
901 902
}

903 904 905 906 907
/**
 *	count_data_pages - compute the total number of saveable non-highmem
 *	pages.
 */

908
unsigned int count_data_pages(void)
909 910
{
	struct zone *zone;
911
	unsigned long pfn, max_zone_pfn;
P
Pavel Machek 已提交
912
	unsigned int n = 0;
913

914
	for_each_zone(zone) {
915 916
		if (is_highmem(zone))
			continue;
917

918
		mark_free_pages(zone);
919 920
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
921
			if (saveable_page(zone, pfn))
922
				n++;
923
	}
924
	return n;
925 926
}

927 928 929 930
/* This is needed, because copy_page and memcpy are not usable for copying
 * task structs.
 */
static inline void do_copy_page(long *dst, long *src)
931 932 933 934 935 936 937
{
	int n;

	for (n = PAGE_SIZE / sizeof(long); n; n--)
		*dst++ = *src++;
}

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956

/**
 *	safe_copy_page - check if the page we are going to copy is marked as
 *		present in the kernel page tables (this always is the case if
 *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
 *		kernel_page_present() always returns 'true').
 */
static void safe_copy_page(void *dst, struct page *s_page)
{
	if (kernel_page_present(s_page)) {
		do_copy_page(dst, page_address(s_page));
	} else {
		kernel_map_pages(s_page, 1, 1);
		do_copy_page(dst, page_address(s_page));
		kernel_map_pages(s_page, 1, 0);
	}
}


957 958 959 960 961
#ifdef CONFIG_HIGHMEM
static inline struct page *
page_is_saveable(struct zone *zone, unsigned long pfn)
{
	return is_highmem(zone) ?
962
		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
963 964
}

965
static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
{
	struct page *s_page, *d_page;
	void *src, *dst;

	s_page = pfn_to_page(src_pfn);
	d_page = pfn_to_page(dst_pfn);
	if (PageHighMem(s_page)) {
		src = kmap_atomic(s_page, KM_USER0);
		dst = kmap_atomic(d_page, KM_USER1);
		do_copy_page(dst, src);
		kunmap_atomic(src, KM_USER0);
		kunmap_atomic(dst, KM_USER1);
	} else {
		if (PageHighMem(d_page)) {
			/* Page pointed to by src may contain some kernel
			 * data modified by kmap_atomic()
			 */
983
			safe_copy_page(buffer, s_page);
984
			dst = kmap_atomic(d_page, KM_USER0);
985 986 987
			memcpy(dst, buffer, PAGE_SIZE);
			kunmap_atomic(dst, KM_USER0);
		} else {
988
			safe_copy_page(page_address(d_page), s_page);
989 990 991 992
		}
	}
}
#else
993
#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
994

995
static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
996
{
997 998
	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
				pfn_to_page(src_pfn));
999 1000 1001
}
#endif /* CONFIG_HIGHMEM */

1002 1003
static void
copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1004 1005
{
	struct zone *zone;
1006
	unsigned long pfn;
1007

1008
	for_each_zone(zone) {
1009 1010
		unsigned long max_zone_pfn;

1011
		mark_free_pages(zone);
1012
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1013
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1014
			if (page_is_saveable(zone, pfn))
1015
				memory_bm_set_bit(orig_bm, pfn);
1016
	}
1017 1018
	memory_bm_position_reset(orig_bm);
	memory_bm_position_reset(copy_bm);
F
Fengguang Wu 已提交
1019
	for(;;) {
1020
		pfn = memory_bm_next_pfn(orig_bm);
F
Fengguang Wu 已提交
1021 1022 1023 1024
		if (unlikely(pfn == BM_END_OF_MAP))
			break;
		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
	}
1025 1026
}

1027 1028 1029 1030 1031
/* Total number of image pages */
static unsigned int nr_copy_pages;
/* Number of pages needed for saving the original pfns of the image pages */
static unsigned int nr_meta_pages;

1032
/**
1033
 *	swsusp_free - free pages allocated for the suspend.
1034
 *
1035 1036
 *	Suspend pages are alocated before the atomic copy is made, so we
 *	need to release them after the resume.
1037 1038 1039 1040 1041
 */

void swsusp_free(void)
{
	struct zone *zone;
1042
	unsigned long pfn, max_zone_pfn;
1043 1044

	for_each_zone(zone) {
1045 1046 1047 1048 1049
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
			if (pfn_valid(pfn)) {
				struct page *page = pfn_to_page(pfn);

1050 1051 1052 1053
				if (swsusp_page_is_forbidden(page) &&
				    swsusp_page_is_free(page)) {
					swsusp_unset_page_forbidden(page);
					swsusp_unset_page_free(page);
1054
					__free_page(page);
1055 1056 1057
				}
			}
	}
1058 1059
	nr_copy_pages = 0;
	nr_meta_pages = 0;
1060
	restore_pblist = NULL;
1061
	buffer = NULL;
1062 1063
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
#ifdef CONFIG_HIGHMEM
/**
  *	count_pages_for_highmem - compute the number of non-highmem pages
  *	that will be necessary for creating copies of highmem pages.
  */

static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
{
	unsigned int free_highmem = count_free_highmem_pages();

	if (free_highmem >= nr_highmem)
		nr_highmem = 0;
	else
		nr_highmem -= free_highmem;

	return nr_highmem;
}
#else
static unsigned int
count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
#endif /* CONFIG_HIGHMEM */
1085 1086

/**
1087 1088
 *	enough_free_mem - Make sure we have enough free memory for the
 *	snapshot image.
1089 1090
 */

1091
static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1092
{
1093
	struct zone *zone;
1094
	unsigned int free = 0, meta = 0;
1095

1096 1097 1098
	for_each_zone(zone) {
		meta += snapshot_additional_pages(zone);
		if (!is_highmem(zone))
1099
			free += zone_page_state(zone, NR_FREE_PAGES);
1100
	}
1101

1102
	nr_pages += count_pages_for_highmem(nr_highmem);
R
Rafael J. Wysocki 已提交
1103
	pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n",
1104 1105 1106
		nr_pages, PAGES_FOR_IO, meta, free);

	return free > nr_pages + PAGES_FOR_IO + meta;
1107 1108
}

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
#ifdef CONFIG_HIGHMEM
/**
 *	get_highmem_buffer - if there are some highmem pages in the suspend
 *	image, we may need the buffer to copy them and/or load their data.
 */

static inline int get_highmem_buffer(int safe_needed)
{
	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
	return buffer ? 0 : -ENOMEM;
}

/**
 *	alloc_highmem_image_pages - allocate some highmem pages for the image.
 *	Try to allocate as many pages as needed, but if the number of free
 *	highmem pages is lesser than that, allocate them all.
 */

static inline unsigned int
alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
{
	unsigned int to_alloc = count_free_highmem_pages();

	if (to_alloc > nr_highmem)
		to_alloc = nr_highmem;

	nr_highmem -= to_alloc;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_image_page(__GFP_HIGHMEM);
		memory_bm_set_bit(bm, page_to_pfn(page));
	}
	return nr_highmem;
}
#else
static inline int get_highmem_buffer(int safe_needed) { return 0; }

static inline unsigned int
alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
#endif /* CONFIG_HIGHMEM */

/**
 *	swsusp_alloc - allocate memory for the suspend image
 *
 *	We first try to allocate as many highmem pages as there are
 *	saveable highmem pages in the system.  If that fails, we allocate
 *	non-highmem pages for the copies of the remaining highmem ones.
 *
 *	In this approach it is likely that the copies of highmem pages will
 *	also be located in the high memory, because of the way in which
 *	copy_data_pages() works.
 */

1163 1164
static int
swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1165
		unsigned int nr_pages, unsigned int nr_highmem)
1166
{
1167
	int error;
1168

1169 1170 1171
	error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
	if (error)
		goto Free;
1172

1173 1174 1175
	error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
	if (error)
		goto Free;
1176

1177 1178 1179 1180 1181 1182 1183
	if (nr_highmem > 0) {
		error = get_highmem_buffer(PG_ANY);
		if (error)
			goto Free;

		nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
	}
1184
	while (nr_pages-- > 0) {
1185 1186
		struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);

1187 1188
		if (!page)
			goto Free;
1189

1190
		memory_bm_set_bit(copy_bm, page_to_pfn(page));
1191
	}
1192
	return 0;
1193

R
Rafael J. Wysocki 已提交
1194
 Free:
1195 1196
	swsusp_free();
	return -ENOMEM;
1197 1198
}

1199 1200 1201
/* Memory bitmap used for marking saveable pages (during suspend) or the
 * suspend image pages (during resume)
 */
1202
static struct memory_bitmap orig_bm;
1203 1204 1205 1206 1207 1208
/* Memory bitmap used on suspend for marking allocated pages that will contain
 * the copies of saveable pages.  During resume it is initially used for
 * marking the suspend image pages, but then its set bits are duplicated in
 * @orig_bm and it is released.  Next, on systems with high memory, it may be
 * used for marking "safe" highmem pages, but it has to be reinitialized for
 * this purpose.
1209 1210 1211
 */
static struct memory_bitmap copy_bm;

1212
asmlinkage int swsusp_save(void)
1213
{
1214
	unsigned int nr_pages, nr_highmem;
1215

R
Rafael J. Wysocki 已提交
1216
	printk(KERN_INFO "PM: Creating hibernation image: \n");
1217

1218
	drain_local_pages(NULL);
1219
	nr_pages = count_data_pages();
1220
	nr_highmem = count_highmem_pages();
R
Rafael J. Wysocki 已提交
1221
	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1222

1223
	if (!enough_free_mem(nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1224
		printk(KERN_ERR "PM: Not enough free memory\n");
1225 1226 1227
		return -ENOMEM;
	}

1228
	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1229
		printk(KERN_ERR "PM: Memory allocation failed\n");
1230
		return -ENOMEM;
1231
	}
1232 1233 1234 1235

	/* During allocating of suspend pagedir, new cold pages may appear.
	 * Kill them.
	 */
1236
	drain_local_pages(NULL);
1237
	copy_data_pages(&copy_bm, &orig_bm);
1238 1239 1240 1241 1242 1243 1244

	/*
	 * End of critical section. From now on, we can write to memory,
	 * but we should not touch disk. This specially means we must _not_
	 * touch swap space! Except we must write out our image of course.
	 */

1245
	nr_pages += nr_highmem;
1246
	nr_copy_pages = nr_pages;
1247
	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1248

R
Rafael J. Wysocki 已提交
1249 1250
	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
		nr_pages);
1251

1252 1253
	return 0;
}
1254

1255 1256
#ifndef CONFIG_ARCH_HIBERNATION_HEADER
static int init_header_complete(struct swsusp_info *info)
1257
{
1258
	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1259
	info->version_code = LINUX_VERSION_CODE;
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	return 0;
}

static char *check_image_kernel(struct swsusp_info *info)
{
	if (info->version_code != LINUX_VERSION_CODE)
		return "kernel version";
	if (strcmp(info->uts.sysname,init_utsname()->sysname))
		return "system type";
	if (strcmp(info->uts.release,init_utsname()->release))
		return "kernel release";
	if (strcmp(info->uts.version,init_utsname()->version))
		return "version";
	if (strcmp(info->uts.machine,init_utsname()->machine))
		return "machine";
	return NULL;
}
#endif /* CONFIG_ARCH_HIBERNATION_HEADER */

1279 1280 1281 1282 1283
unsigned long snapshot_get_image_size(void)
{
	return nr_copy_pages + nr_meta_pages + 1;
}

1284 1285 1286
static int init_header(struct swsusp_info *info)
{
	memset(info, 0, sizeof(struct swsusp_info));
1287 1288
	info->num_physpages = num_physpages;
	info->image_pages = nr_copy_pages;
1289
	info->pages = snapshot_get_image_size();
1290 1291
	info->size = info->pages;
	info->size <<= PAGE_SHIFT;
1292
	return init_header_complete(info);
1293 1294 1295
}

/**
1296 1297
 *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
 *	are stored in the array @buf[] (1 page at a time)
1298 1299
 */

1300
static inline void
1301
pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1302 1303 1304
{
	int j;

1305
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1306 1307
		buf[j] = memory_bm_next_pfn(bm);
		if (unlikely(buf[j] == BM_END_OF_MAP))
1308
			break;
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	}
}

/**
 *	snapshot_read_next - used for reading the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	The @count parameter should contain the number of bytes the caller
 *	wants to read from the snapshot.  It must not be zero.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to read up to the returned number of bytes from the memory
 *	location computed by the data_of() macro.  The number returned
 *	may be smaller than @count, but this only happens if the read would
 *	cross a page boundary otherwise.
 *
 *	The function returns 0 to indicate the end of data stream condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

int snapshot_read_next(struct snapshot_handle *handle, size_t count)
{
1336
	if (handle->cur > nr_meta_pages + nr_copy_pages)
1337
		return 0;
1338

1339 1340
	if (!buffer) {
		/* This makes the buffer be freed by swsusp_free() */
1341
		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1342 1343 1344 1345
		if (!buffer)
			return -ENOMEM;
	}
	if (!handle->offset) {
1346 1347 1348 1349 1350
		int error;

		error = init_header((struct swsusp_info *)buffer);
		if (error)
			return error;
1351
		handle->buffer = buffer;
1352 1353
		memory_bm_position_reset(&orig_bm);
		memory_bm_position_reset(&copy_bm);
1354
	}
1355 1356
	if (handle->prev < handle->cur) {
		if (handle->cur <= nr_meta_pages) {
1357
			memset(buffer, 0, PAGE_SIZE);
1358
			pack_pfns(buffer, &orig_bm);
1359
		} else {
1360
			struct page *page;
1361

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
			page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
			if (PageHighMem(page)) {
				/* Highmem pages are copied to the buffer,
				 * because we can't return with a kmapped
				 * highmem page (we may not be called again).
				 */
				void *kaddr;

				kaddr = kmap_atomic(page, KM_USER0);
				memcpy(buffer, kaddr, PAGE_SIZE);
				kunmap_atomic(kaddr, KM_USER0);
				handle->buffer = buffer;
			} else {
				handle->buffer = page_address(page);
			}
1377
		}
1378
		handle->prev = handle->cur;
1379
	}
1380 1381 1382 1383 1384
	handle->buf_offset = handle->cur_offset;
	if (handle->cur_offset + count >= PAGE_SIZE) {
		count = PAGE_SIZE - handle->cur_offset;
		handle->cur_offset = 0;
		handle->cur++;
1385
	} else {
1386
		handle->cur_offset += count;
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	}
	handle->offset += count;
	return count;
}

/**
 *	mark_unsafe_pages - mark the pages that cannot be used for storing
 *	the image during resume, because they conflict with the pages that
 *	had been used before suspend
 */

1398
static int mark_unsafe_pages(struct memory_bitmap *bm)
1399 1400
{
	struct zone *zone;
1401
	unsigned long pfn, max_zone_pfn;
1402 1403

	/* Clear page flags */
1404
	for_each_zone(zone) {
1405 1406 1407
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
			if (pfn_valid(pfn))
1408
				swsusp_unset_page_free(pfn_to_page(pfn));
1409 1410
	}

1411 1412 1413 1414 1415 1416
	/* Mark pages that correspond to the "original" pfns as "unsafe" */
	memory_bm_position_reset(bm);
	do {
		pfn = memory_bm_next_pfn(bm);
		if (likely(pfn != BM_END_OF_MAP)) {
			if (likely(pfn_valid(pfn)))
1417
				swsusp_set_page_free(pfn_to_page(pfn));
1418 1419 1420 1421
			else
				return -EFAULT;
		}
	} while (pfn != BM_END_OF_MAP);
1422

1423
	allocated_unsafe_pages = 0;
1424

1425 1426 1427
	return 0;
}

1428 1429
static void
duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1430
{
1431 1432 1433 1434 1435 1436 1437
	unsigned long pfn;

	memory_bm_position_reset(src);
	pfn = memory_bm_next_pfn(src);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_set_bit(dst, pfn);
		pfn = memory_bm_next_pfn(src);
1438 1439 1440
	}
}

1441
static int check_header(struct swsusp_info *info)
1442
{
1443
	char *reason;
1444

1445 1446
	reason = check_image_kernel(info);
	if (!reason && info->num_physpages != num_physpages)
1447 1448
		reason = "memory size";
	if (reason) {
R
Rafael J. Wysocki 已提交
1449
		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1450 1451 1452 1453 1454 1455 1456 1457 1458
		return -EPERM;
	}
	return 0;
}

/**
 *	load header - check the image header and copy data from it
 */

1459 1460
static int
load_header(struct swsusp_info *info)
1461 1462 1463
{
	int error;

1464
	restore_pblist = NULL;
1465 1466 1467 1468 1469 1470 1471 1472 1473
	error = check_header(info);
	if (!error) {
		nr_copy_pages = info->image_pages;
		nr_meta_pages = info->pages - info->image_pages - 1;
	}
	return error;
}

/**
1474 1475
 *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
 *	the corresponding bit in the memory bitmap @bm
1476
 */
1477
static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1478 1479 1480
{
	int j;

1481 1482 1483 1484
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
		if (unlikely(buf[j] == BM_END_OF_MAP))
			break;

1485 1486 1487 1488
		if (memory_bm_pfn_present(bm, buf[j]))
			memory_bm_set_bit(bm, buf[j]);
		else
			return -EFAULT;
1489
	}
1490 1491

	return 0;
1492 1493
}

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
/* List of "safe" pages that may be used to store data loaded from the suspend
 * image
 */
static struct linked_page *safe_pages_list;

#ifdef CONFIG_HIGHMEM
/* struct highmem_pbe is used for creating the list of highmem pages that
 * should be restored atomically during the resume from disk, because the page
 * frames they have occupied before the suspend are in use.
 */
struct highmem_pbe {
	struct page *copy_page;	/* data is here now */
	struct page *orig_page;	/* data was here before the suspend */
	struct highmem_pbe *next;
};

/* List of highmem PBEs needed for restoring the highmem pages that were
 * allocated before the suspend and included in the suspend image, but have
 * also been allocated by the "resume" kernel, so their contents cannot be
 * written directly to their "original" page frames.
 */
static struct highmem_pbe *highmem_pblist;

/**
 *	count_highmem_image_pages - compute the number of highmem pages in the
 *	suspend image.  The bits in the memory bitmap @bm that correspond to the
 *	image pages are assumed to be set.
 */

static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
{
	unsigned long pfn;
	unsigned int cnt = 0;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (PageHighMem(pfn_to_page(pfn)))
			cnt++;

		pfn = memory_bm_next_pfn(bm);
	}
	return cnt;
}

/**
 *	prepare_highmem_image - try to allocate as many highmem pages as
 *	there are highmem image pages (@nr_highmem_p points to the variable
 *	containing the number of highmem image pages).  The pages that are
 *	"safe" (ie. will not be overwritten when the suspend image is
 *	restored) have the corresponding bits set in @bm (it must be
 *	unitialized).
 *
 *	NOTE: This function should not be called if there are no highmem
 *	image pages.
 */

static unsigned int safe_highmem_pages;

static struct memory_bitmap *safe_highmem_bm;

static int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
	unsigned int to_alloc;

	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
		return -ENOMEM;

	if (get_highmem_buffer(PG_SAFE))
		return -ENOMEM;

	to_alloc = count_free_highmem_pages();
	if (to_alloc > *nr_highmem_p)
		to_alloc = *nr_highmem_p;
	else
		*nr_highmem_p = to_alloc;

	safe_highmem_pages = 0;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_page(__GFP_HIGHMEM);
1577
		if (!swsusp_page_is_free(page)) {
1578 1579 1580 1581 1582
			/* The page is "safe", set its bit the bitmap */
			memory_bm_set_bit(bm, page_to_pfn(page));
			safe_highmem_pages++;
		}
		/* Mark the page as allocated */
1583 1584
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	}
	memory_bm_position_reset(bm);
	safe_highmem_bm = bm;
	return 0;
}

/**
 *	get_highmem_page_buffer - for given highmem image page find the buffer
 *	that suspend_write_next() should set for its caller to write to.
 *
 *	If the page is to be saved to its "original" page frame or a copy of
 *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
 *	the copy of the page is to be made in normal memory, so the address of
 *	the copy is returned.
 *
 *	If @buffer is returned, the caller of suspend_write_next() will write
 *	the page's contents to @buffer, so they will have to be copied to the
 *	right location on the next call to suspend_write_next() and it is done
 *	with the help of copy_last_highmem_page().  For this purpose, if
 *	@buffer is returned, @last_highmem page is set to the page to which
 *	the data will have to be copied from @buffer.
 */

static struct page *last_highmem_page;

static void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
	struct highmem_pbe *pbe;
	void *kaddr;

1616
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
		 */
		last_highmem_page = page;
		return buffer;
	}
	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
	 */
	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
	if (!pbe) {
		swsusp_free();
1629
		return ERR_PTR(-ENOMEM);
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	}
	pbe->orig_page = page;
	if (safe_highmem_pages > 0) {
		struct page *tmp;

		/* Copy of the page will be stored in high memory */
		kaddr = buffer;
		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
		safe_highmem_pages--;
		last_highmem_page = tmp;
		pbe->copy_page = tmp;
	} else {
		/* Copy of the page will be stored in normal memory */
		kaddr = safe_pages_list;
		safe_pages_list = safe_pages_list->next;
		pbe->copy_page = virt_to_page(kaddr);
	}
	pbe->next = highmem_pblist;
	highmem_pblist = pbe;
	return kaddr;
}

/**
 *	copy_last_highmem_page - copy the contents of a highmem image from
 *	@buffer, where the caller of snapshot_write_next() has place them,
 *	to the right location represented by @last_highmem_page .
 */

static void copy_last_highmem_page(void)
{
	if (last_highmem_page) {
		void *dst;

		dst = kmap_atomic(last_highmem_page, KM_USER0);
		memcpy(dst, buffer, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
		last_highmem_page = NULL;
	}
}

static inline int last_highmem_page_copied(void)
{
	return !last_highmem_page;
}

static inline void free_highmem_data(void)
{
	if (safe_highmem_bm)
		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);

	if (buffer)
		free_image_page(buffer, PG_UNSAFE_CLEAR);
}
#else
static inline int get_safe_write_buffer(void) { return 0; }

static unsigned int
count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }

static inline int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
	return 0;
}

static inline void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
1698
	return ERR_PTR(-EINVAL);
1699 1700 1701 1702 1703 1704 1705
}

static inline void copy_last_highmem_page(void) {}
static inline int last_highmem_page_copied(void) { return 1; }
static inline void free_highmem_data(void) {}
#endif /* CONFIG_HIGHMEM */

1706
/**
1707 1708 1709 1710
 *	prepare_image - use the memory bitmap @bm to mark the pages that will
 *	be overwritten in the process of restoring the system memory state
 *	from the suspend image ("unsafe" pages) and allocate memory for the
 *	image.
1711
 *
1712 1713 1714
 *	The idea is to allocate a new memory bitmap first and then allocate
 *	as many pages as needed for the image data, but not to assign these
 *	pages to specific tasks initially.  Instead, we just mark them as
1715 1716 1717
 *	allocated and create a lists of "safe" pages that will be used
 *	later.  On systems with high memory a list of "safe" highmem pages is
 *	also created.
1718 1719
 */

1720 1721 1722 1723
#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))

static int
prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1724
{
1725
	unsigned int nr_pages, nr_highmem;
1726 1727
	struct linked_page *sp_list, *lp;
	int error;
1728

1729 1730 1731 1732 1733
	/* If there is no highmem, the buffer will not be necessary */
	free_image_page(buffer, PG_UNSAFE_CLEAR);
	buffer = NULL;

	nr_highmem = count_highmem_image_pages(bm);
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
	error = mark_unsafe_pages(bm);
	if (error)
		goto Free;

	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
	if (error)
		goto Free;

	duplicate_memory_bitmap(new_bm, bm);
	memory_bm_free(bm, PG_UNSAFE_KEEP);
1744 1745 1746 1747 1748
	if (nr_highmem > 0) {
		error = prepare_highmem_image(bm, &nr_highmem);
		if (error)
			goto Free;
	}
1749 1750 1751 1752 1753 1754 1755 1756
	/* Reserve some safe pages for potential later use.
	 *
	 * NOTE: This way we make sure there will be enough safe pages for the
	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
	 */
	sp_list = NULL;
	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1757
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1758 1759
	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
	while (nr_pages > 0) {
1760
		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
1761
		if (!lp) {
1762
			error = -ENOMEM;
1763 1764 1765 1766 1767
			goto Free;
		}
		lp->next = sp_list;
		sp_list = lp;
		nr_pages--;
1768
	}
1769 1770
	/* Preallocate memory for the image */
	safe_pages_list = NULL;
1771
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1772 1773 1774 1775 1776 1777
	while (nr_pages > 0) {
		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
		if (!lp) {
			error = -ENOMEM;
			goto Free;
		}
1778
		if (!swsusp_page_is_free(virt_to_page(lp))) {
1779 1780 1781
			/* The page is "safe", add it to the list */
			lp->next = safe_pages_list;
			safe_pages_list = lp;
1782
		}
1783
		/* Mark the page as allocated */
1784 1785
		swsusp_set_page_forbidden(virt_to_page(lp));
		swsusp_set_page_free(virt_to_page(lp));
1786
		nr_pages--;
1787
	}
1788 1789 1790 1791 1792
	/* Free the reserved safe pages so that chain_alloc() can use them */
	while (sp_list) {
		lp = sp_list->next;
		free_image_page(sp_list, PG_UNSAFE_CLEAR);
		sp_list = lp;
1793
	}
1794 1795
	return 0;

R
Rafael J. Wysocki 已提交
1796
 Free:
1797
	swsusp_free();
1798 1799 1800
	return error;
}

1801 1802 1803 1804 1805 1806
/**
 *	get_buffer - compute the address that snapshot_write_next() should
 *	set for its caller to write to.
 */

static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1807
{
1808
	struct pbe *pbe;
1809 1810
	struct page *page;
	unsigned long pfn = memory_bm_next_pfn(bm);
1811

1812 1813 1814 1815
	if (pfn == BM_END_OF_MAP)
		return ERR_PTR(-EFAULT);

	page = pfn_to_page(pfn);
1816 1817 1818
	if (PageHighMem(page))
		return get_highmem_page_buffer(page, ca);

1819
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
1820 1821
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
1822
		 */
1823 1824 1825 1826
		return page_address(page);

	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
1827
	 */
1828 1829 1830
	pbe = chain_alloc(ca, sizeof(struct pbe));
	if (!pbe) {
		swsusp_free();
1831
		return ERR_PTR(-ENOMEM);
1832
	}
1833 1834
	pbe->orig_address = page_address(page);
	pbe->address = safe_pages_list;
1835 1836 1837
	safe_pages_list = safe_pages_list->next;
	pbe->next = restore_pblist;
	restore_pblist = pbe;
1838
	return pbe->address;
1839 1840
}

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
/**
 *	snapshot_write_next - used for writing the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	The @count parameter should contain the number of bytes the caller
 *	wants to write to the image.  It must not be zero.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to write up to the returned number of bytes to the memory
 *	location computed by the data_of() macro.  The number returned
 *	may be smaller than @count, but this only happens if the write would
 *	cross a page boundary otherwise.
 *
 *	The function returns 0 to indicate the "end of file" condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

int snapshot_write_next(struct snapshot_handle *handle, size_t count)
{
1865
	static struct chain_allocator ca;
1866 1867
	int error = 0;

1868
	/* Check if we have already loaded the entire image */
1869
	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
1870
		return 0;
1871

1872 1873 1874 1875 1876
	if (handle->offset == 0) {
		if (!buffer)
			/* This makes the buffer be freed by swsusp_free() */
			buffer = get_image_page(GFP_ATOMIC, PG_ANY);

1877 1878
		if (!buffer)
			return -ENOMEM;
1879

1880
		handle->buffer = buffer;
1881
	}
A
Andrew Morton 已提交
1882
	handle->sync_read = 1;
1883
	if (handle->prev < handle->cur) {
1884 1885 1886 1887 1888 1889
		if (handle->prev == 0) {
			error = load_header(buffer);
			if (error)
				return error;

			error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
1890 1891
			if (error)
				return error;
1892

1893
		} else if (handle->prev <= nr_meta_pages) {
1894 1895 1896 1897
			error = unpack_orig_pfns(buffer, &copy_bm);
			if (error)
				return error;

1898 1899
			if (handle->prev == nr_meta_pages) {
				error = prepare_image(&orig_bm, &copy_bm);
1900 1901
				if (error)
					return error;
1902 1903 1904 1905 1906

				chain_init(&ca, GFP_ATOMIC, PG_SAFE);
				memory_bm_position_reset(&orig_bm);
				restore_pblist = NULL;
				handle->buffer = get_buffer(&orig_bm, &ca);
A
Andrew Morton 已提交
1907
				handle->sync_read = 0;
1908 1909
				if (IS_ERR(handle->buffer))
					return PTR_ERR(handle->buffer);
1910 1911
			}
		} else {
1912
			copy_last_highmem_page();
1913
			handle->buffer = get_buffer(&orig_bm, &ca);
1914 1915
			if (IS_ERR(handle->buffer))
				return PTR_ERR(handle->buffer);
1916 1917
			if (handle->buffer != buffer)
				handle->sync_read = 0;
1918
		}
1919
		handle->prev = handle->cur;
1920
	}
1921 1922 1923 1924 1925
	handle->buf_offset = handle->cur_offset;
	if (handle->cur_offset + count >= PAGE_SIZE) {
		count = PAGE_SIZE - handle->cur_offset;
		handle->cur_offset = 0;
		handle->cur++;
1926
	} else {
1927
		handle->cur_offset += count;
1928 1929 1930 1931 1932
	}
	handle->offset += count;
	return count;
}

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
/**
 *	snapshot_write_finalize - must be called after the last call to
 *	snapshot_write_next() in case the last page in the image happens
 *	to be a highmem page and its contents should be stored in the
 *	highmem.  Additionally, it releases the memory that will not be
 *	used any more.
 */

void snapshot_write_finalize(struct snapshot_handle *handle)
{
	copy_last_highmem_page();
	/* Free only if we have loaded the image entirely */
	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
		free_highmem_data();
	}
}

1951 1952
int snapshot_image_loaded(struct snapshot_handle *handle)
{
1953
	return !(!nr_copy_pages || !last_highmem_page_copied() ||
1954 1955 1956
			handle->cur <= nr_meta_pages + nr_copy_pages);
}

1957 1958 1959 1960
#ifdef CONFIG_HIGHMEM
/* Assumes that @buf is ready and points to a "safe" page */
static inline void
swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
1961
{
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
	void *kaddr1, *kaddr2;

	kaddr1 = kmap_atomic(p1, KM_USER0);
	kaddr2 = kmap_atomic(p2, KM_USER1);
	memcpy(buf, kaddr1, PAGE_SIZE);
	memcpy(kaddr1, kaddr2, PAGE_SIZE);
	memcpy(kaddr2, buf, PAGE_SIZE);
	kunmap_atomic(kaddr1, KM_USER0);
	kunmap_atomic(kaddr2, KM_USER1);
}

/**
 *	restore_highmem - for each highmem page that was allocated before
 *	the suspend and included in the suspend image, and also has been
 *	allocated by the "resume" kernel swap its current (ie. "before
 *	resume") contents with the previous (ie. "before suspend") one.
 *
 *	If the resume eventually fails, we can call this function once
 *	again and restore the "before resume" highmem state.
 */

int restore_highmem(void)
{
	struct highmem_pbe *pbe = highmem_pblist;
	void *buf;

	if (!pbe)
		return 0;

	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
	if (!buf)
		return -ENOMEM;

	while (pbe) {
		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
		pbe = pbe->next;
	}
	free_image_page(buf, PG_UNSAFE_CLEAR);
	return 0;
2001
}
2002
#endif /* CONFIG_HIGHMEM */