sh_eth.c 39.3 KB
Newer Older
1 2 3
/*
 *  SuperH Ethernet device driver
 *
4
 *  Copyright (C) 2006-2008 Nobuhiro Iwamatsu
5
 *  Copyright (C) 2008-2009 Renesas Solutions Corp.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *
 *  This program is free software; you can redistribute it and/or modify it
 *  under the terms and conditions of the GNU General Public License,
 *  version 2, as published by the Free Software Foundation.
 *
 *  This program is distributed in the hope it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 *  more details.
 *  You should have received a copy of the GNU General Public License along with
 *  this program; if not, write to the Free Software Foundation, Inc.,
 *  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 *  The full GNU General Public License is included in this distribution in
 *  the file called "COPYING".
 */

#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/mdio-bitbang.h>
#include <linux/netdevice.h>
#include <linux/phy.h>
#include <linux/cache.h>
#include <linux/io.h>
33
#include <linux/pm_runtime.h>
34
#include <linux/slab.h>
N
Nobuhiro Iwamatsu 已提交
35
#include <asm/cacheflush.h>
36 37 38

#include "sh_eth.h"

39
/* There is CPU dependent code */
40 41 42 43 44 45 46 47
#if defined(CONFIG_CPU_SUBTYPE_SH7724)
#define SH_ETH_RESET_DEFAULT	1
static void sh_eth_set_duplex(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	u32 ioaddr = ndev->base_addr;

	if (mdp->duplex) /* Full */
48
		writel(readl(ioaddr + ECMR) | ECMR_DM, ioaddr + ECMR);
49
	else		/* Half */
50
		writel(readl(ioaddr + ECMR) & ~ECMR_DM, ioaddr + ECMR);
51 52 53 54 55 56 57 58 59
}

static void sh_eth_set_rate(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	u32 ioaddr = ndev->base_addr;

	switch (mdp->speed) {
	case 10: /* 10BASE */
60
		writel(readl(ioaddr + ECMR) & ~ECMR_RTM, ioaddr + ECMR);
61 62
		break;
	case 100:/* 100BASE */
63
		writel(readl(ioaddr + ECMR) | ECMR_RTM, ioaddr + ECMR);
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
		break;
	default:
		break;
	}
}

/* SH7724 */
static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
	.set_duplex	= sh_eth_set_duplex,
	.set_rate	= sh_eth_set_rate,

	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,

	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
			  EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,

	.apr		= 1,
	.mpr		= 1,
	.tpauser	= 1,
	.hw_swap	= 1,
88 89
	.rpadir		= 1,
	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
90
};
91 92 93 94 95 96 97 98
#elif defined(CONFIG_CPU_SUBTYPE_SH7757)
#define SH_ETH_RESET_DEFAULT	1
static void sh_eth_set_duplex(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	u32 ioaddr = ndev->base_addr;

	if (mdp->duplex) /* Full */
99
		writel(readl(ioaddr + ECMR) | ECMR_DM, ioaddr + ECMR);
100
	else		/* Half */
101
		writel(readl(ioaddr + ECMR) & ~ECMR_DM, ioaddr + ECMR);
102 103 104 105 106 107 108 109 110
}

static void sh_eth_set_rate(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	u32 ioaddr = ndev->base_addr;

	switch (mdp->speed) {
	case 10: /* 10BASE */
111
		writel(0, ioaddr + RTRATE);
112 113
		break;
	case 100:/* 100BASE */
114
		writel(1, ioaddr + RTRATE);
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
		break;
	default:
		break;
	}
}

/* SH7757 */
static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
	.set_duplex		= sh_eth_set_duplex,
	.set_rate		= sh_eth_set_rate,

	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
	.rmcr_value	= 0x00000001,

	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
			  EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,

	.apr		= 1,
	.mpr		= 1,
	.tpauser	= 1,
	.hw_swap	= 1,
	.no_ade		= 1,
};
140 141

#elif defined(CONFIG_CPU_SUBTYPE_SH7763)
142 143 144 145
#define SH_ETH_HAS_TSU	1
static void sh_eth_chip_reset(struct net_device *ndev)
{
	/* reset device */
146
	writel(ARSTR_ARSTR, ARSTR);
147 148 149 150 151 152 153 154
	mdelay(1);
}

static void sh_eth_reset(struct net_device *ndev)
{
	u32 ioaddr = ndev->base_addr;
	int cnt = 100;

155 156
	writel(EDSR_ENALL, ioaddr + EDSR);
	writel(readl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR);
157
	while (cnt > 0) {
158
		if (!(readl(ioaddr + EDMR) & 0x3))
159 160 161 162
			break;
		mdelay(1);
		cnt--;
	}
163
	if (cnt == 0)
164 165 166
		printk(KERN_ERR "Device reset fail\n");

	/* Table Init */
167 168 169 170 171 172 173 174
	writel(0x0, ioaddr + TDLAR);
	writel(0x0, ioaddr + TDFAR);
	writel(0x0, ioaddr + TDFXR);
	writel(0x0, ioaddr + TDFFR);
	writel(0x0, ioaddr + RDLAR);
	writel(0x0, ioaddr + RDFAR);
	writel(0x0, ioaddr + RDFXR);
	writel(0x0, ioaddr + RDFFR);
175 176 177 178 179 180 181 182
}

static void sh_eth_set_duplex(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	u32 ioaddr = ndev->base_addr;

	if (mdp->duplex) /* Full */
183
		writel(readl(ioaddr + ECMR) | ECMR_DM, ioaddr + ECMR);
184
	else		/* Half */
185
		writel(readl(ioaddr + ECMR) & ~ECMR_DM, ioaddr + ECMR);
186 187 188 189 190 191 192 193 194
}

static void sh_eth_set_rate(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	u32 ioaddr = ndev->base_addr;

	switch (mdp->speed) {
	case 10: /* 10BASE */
195
		writel(GECMR_10, ioaddr + GECMR);
196 197
		break;
	case 100:/* 100BASE */
198
		writel(GECMR_100, ioaddr + GECMR);
199 200
		break;
	case 1000: /* 1000BASE */
201
		writel(GECMR_1000, ioaddr + GECMR);
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
		break;
	default:
		break;
	}
}

/* sh7763 */
static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
	.chip_reset	= sh_eth_chip_reset,
	.set_duplex	= sh_eth_set_duplex,
	.set_rate	= sh_eth_set_rate,

	.ecsr_value	= ECSR_ICD | ECSR_MPD,
	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,

	.tx_check	= EESR_TC1 | EESR_FTC,
	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
			  EESR_ECI,
	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
			  EESR_TFE,

	.apr		= 1,
	.mpr		= 1,
	.tpauser	= 1,
	.bculr		= 1,
	.hw_swap	= 1,
	.no_trimd	= 1,
	.no_ade		= 1,
};

#elif defined(CONFIG_CPU_SUBTYPE_SH7619)
#define SH_ETH_RESET_DEFAULT	1
static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,

	.apr		= 1,
	.mpr		= 1,
	.tpauser	= 1,
	.hw_swap	= 1,
};
#elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
#define SH_ETH_RESET_DEFAULT	1
#define SH_ETH_HAS_TSU	1
static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
};
#endif

static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
{
	if (!cd->ecsr_value)
		cd->ecsr_value = DEFAULT_ECSR_INIT;

	if (!cd->ecsipr_value)
		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;

	if (!cd->fcftr_value)
		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
				  DEFAULT_FIFO_F_D_RFD;

	if (!cd->fdr_value)
		cd->fdr_value = DEFAULT_FDR_INIT;

	if (!cd->rmcr_value)
		cd->rmcr_value = DEFAULT_RMCR_VALUE;

	if (!cd->tx_check)
		cd->tx_check = DEFAULT_TX_CHECK;

	if (!cd->eesr_err_check)
		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;

	if (!cd->tx_error_check)
		cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
}

#if defined(SH_ETH_RESET_DEFAULT)
/* Chip Reset */
static void sh_eth_reset(struct net_device *ndev)
{
	u32 ioaddr = ndev->base_addr;

286
	writel(readl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR);
287
	mdelay(3);
288
	writel(readl(ioaddr + EDMR) & ~EDMR_SRST, ioaddr + EDMR);
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
}
#endif

#if defined(CONFIG_CPU_SH4)
static void sh_eth_set_receive_align(struct sk_buff *skb)
{
	int reserve;

	reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
	if (reserve)
		skb_reserve(skb, reserve);
}
#else
static void sh_eth_set_receive_align(struct sk_buff *skb)
{
	skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
}
#endif


309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
/* CPU <-> EDMAC endian convert */
static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
{
	switch (mdp->edmac_endian) {
	case EDMAC_LITTLE_ENDIAN:
		return cpu_to_le32(x);
	case EDMAC_BIG_ENDIAN:
		return cpu_to_be32(x);
	}
	return x;
}

static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
{
	switch (mdp->edmac_endian) {
	case EDMAC_LITTLE_ENDIAN:
		return le32_to_cpu(x);
	case EDMAC_BIG_ENDIAN:
		return be32_to_cpu(x);
	}
	return x;
}

332 333 334 335 336 337 338
/*
 * Program the hardware MAC address from dev->dev_addr.
 */
static void update_mac_address(struct net_device *ndev)
{
	u32 ioaddr = ndev->base_addr;

339
	writel((ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
340 341
		  (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]),
		  ioaddr + MAHR);
342
	writel((ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]),
343 344 345 346 347 348 349 350 351 352 353
		  ioaddr + MALR);
}

/*
 * Get MAC address from SuperH MAC address register
 *
 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
 * When you want use this device, you must set MAC address in bootloader.
 *
 */
354
static void read_mac_address(struct net_device *ndev, unsigned char *mac)
355 356 357
{
	u32 ioaddr = ndev->base_addr;

358 359 360
	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
		memcpy(ndev->dev_addr, mac, 6);
	} else {
361 362 363 364 365 366
		ndev->dev_addr[0] = (readl(ioaddr + MAHR) >> 24);
		ndev->dev_addr[1] = (readl(ioaddr + MAHR) >> 16) & 0xFF;
		ndev->dev_addr[2] = (readl(ioaddr + MAHR) >> 8) & 0xFF;
		ndev->dev_addr[3] = (readl(ioaddr + MAHR) & 0xFF);
		ndev->dev_addr[4] = (readl(ioaddr + MALR) >> 8) & 0xFF;
		ndev->dev_addr[5] = (readl(ioaddr + MALR) & 0xFF);
367
	}
368 369 370 371 372 373 374 375 376 377 378 379 380 381
}

struct bb_info {
	struct mdiobb_ctrl ctrl;
	u32 addr;
	u32 mmd_msk;/* MMD */
	u32 mdo_msk;
	u32 mdi_msk;
	u32 mdc_msk;
};

/* PHY bit set */
static void bb_set(u32 addr, u32 msk)
{
382
	writel(readl(addr) | msk, addr);
383 384 385 386 387
}

/* PHY bit clear */
static void bb_clr(u32 addr, u32 msk)
{
388
	writel((readl(addr) & ~msk), addr);
389 390 391 392 393
}

/* PHY bit read */
static int bb_read(u32 addr, u32 msk)
{
394
	return (readl(addr) & msk) != 0;
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
}

/* Data I/O pin control */
static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
{
	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
	if (bit)
		bb_set(bitbang->addr, bitbang->mmd_msk);
	else
		bb_clr(bitbang->addr, bitbang->mmd_msk);
}

/* Set bit data*/
static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
{
	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);

	if (bit)
		bb_set(bitbang->addr, bitbang->mdo_msk);
	else
		bb_clr(bitbang->addr, bitbang->mdo_msk);
}

/* Get bit data*/
static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
{
	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
	return bb_read(bitbang->addr, bitbang->mdi_msk);
}

/* MDC pin control */
static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
{
	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);

	if (bit)
		bb_set(bitbang->addr, bitbang->mdc_msk);
	else
		bb_clr(bitbang->addr, bitbang->mdc_msk);
}

/* mdio bus control struct */
static struct mdiobb_ops bb_ops = {
	.owner = THIS_MODULE,
	.set_mdc = sh_mdc_ctrl,
	.set_mdio_dir = sh_mmd_ctrl,
	.set_mdio_data = sh_set_mdio,
	.get_mdio_data = sh_get_mdio,
};

/* free skb and descriptor buffer */
static void sh_eth_ring_free(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	int i;

	/* Free Rx skb ringbuffer */
	if (mdp->rx_skbuff) {
		for (i = 0; i < RX_RING_SIZE; i++) {
			if (mdp->rx_skbuff[i])
				dev_kfree_skb(mdp->rx_skbuff[i]);
		}
	}
	kfree(mdp->rx_skbuff);

	/* Free Tx skb ringbuffer */
	if (mdp->tx_skbuff) {
		for (i = 0; i < TX_RING_SIZE; i++) {
			if (mdp->tx_skbuff[i])
				dev_kfree_skb(mdp->tx_skbuff[i]);
		}
	}
	kfree(mdp->tx_skbuff);
}

/* format skb and descriptor buffer */
static void sh_eth_ring_format(struct net_device *ndev)
{
473
	u32 ioaddr = ndev->base_addr;
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
	struct sh_eth_private *mdp = netdev_priv(ndev);
	int i;
	struct sk_buff *skb;
	struct sh_eth_rxdesc *rxdesc = NULL;
	struct sh_eth_txdesc *txdesc = NULL;
	int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
	int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;

	mdp->cur_rx = mdp->cur_tx = 0;
	mdp->dirty_rx = mdp->dirty_tx = 0;

	memset(mdp->rx_ring, 0, rx_ringsize);

	/* build Rx ring buffer */
	for (i = 0; i < RX_RING_SIZE; i++) {
		/* skb */
		mdp->rx_skbuff[i] = NULL;
		skb = dev_alloc_skb(mdp->rx_buf_sz);
		mdp->rx_skbuff[i] = skb;
		if (skb == NULL)
			break;
495 496
		dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
				DMA_FROM_DEVICE);
497
		skb->dev = ndev; /* Mark as being used by this device. */
498 499
		sh_eth_set_receive_align(skb);

500 501
		/* RX descriptor */
		rxdesc = &mdp->rx_ring[i];
502
		rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
503
		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
504 505

		/* The size of the buffer is 16 byte boundary. */
506
		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
507 508
		/* Rx descriptor address set */
		if (i == 0) {
509
			writel(mdp->rx_desc_dma, ioaddr + RDLAR);
510
#if defined(CONFIG_CPU_SUBTYPE_SH7763)
511
			writel(mdp->rx_desc_dma, ioaddr + RDFAR);
512 513
#endif
		}
514 515 516 517 518
	}

	mdp->dirty_rx = (u32) (i - RX_RING_SIZE);

	/* Mark the last entry as wrapping the ring. */
519
	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
520 521 522 523 524 525 526

	memset(mdp->tx_ring, 0, tx_ringsize);

	/* build Tx ring buffer */
	for (i = 0; i < TX_RING_SIZE; i++) {
		mdp->tx_skbuff[i] = NULL;
		txdesc = &mdp->tx_ring[i];
527
		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
528
		txdesc->buffer_length = 0;
529
		if (i == 0) {
530
			/* Tx descriptor address set */
531
			writel(mdp->tx_desc_dma, ioaddr + TDLAR);
532
#if defined(CONFIG_CPU_SUBTYPE_SH7763)
533
			writel(mdp->tx_desc_dma, ioaddr + TDFAR);
534 535
#endif
		}
536 537
	}

538
	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
}

/* Get skb and descriptor buffer */
static int sh_eth_ring_init(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	int rx_ringsize, tx_ringsize, ret = 0;

	/*
	 * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
	 * card needs room to do 8 byte alignment, +2 so we can reserve
	 * the first 2 bytes, and +16 gets room for the status word from the
	 * card.
	 */
	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
555 556
	if (mdp->cd->rpadir)
		mdp->rx_buf_sz += NET_IP_ALIGN;
557 558 559 560 561

	/* Allocate RX and TX skb rings */
	mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
				GFP_KERNEL);
	if (!mdp->rx_skbuff) {
562
		dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
563 564 565 566 567 568 569
		ret = -ENOMEM;
		return ret;
	}

	mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
				GFP_KERNEL);
	if (!mdp->tx_skbuff) {
570
		dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
571 572 573 574 575 576 577 578 579 580
		ret = -ENOMEM;
		goto skb_ring_free;
	}

	/* Allocate all Rx descriptors. */
	rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
			GFP_KERNEL);

	if (!mdp->rx_ring) {
581 582
		dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
			rx_ringsize);
583 584 585 586 587 588 589 590 591 592 593
		ret = -ENOMEM;
		goto desc_ring_free;
	}

	mdp->dirty_rx = 0;

	/* Allocate all Tx descriptors. */
	tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
			GFP_KERNEL);
	if (!mdp->tx_ring) {
594 595
		dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
			tx_ringsize);
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
		ret = -ENOMEM;
		goto desc_ring_free;
	}
	return ret;

desc_ring_free:
	/* free DMA buffer */
	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);

skb_ring_free:
	/* Free Rx and Tx skb ring buffer */
	sh_eth_ring_free(ndev);

	return ret;
}

static int sh_eth_dev_init(struct net_device *ndev)
{
	int ret = 0;
	struct sh_eth_private *mdp = netdev_priv(ndev);
	u32 ioaddr = ndev->base_addr;
	u_int32_t rx_int_var, tx_int_var;
	u32 val;

	/* Soft Reset */
	sh_eth_reset(ndev);

623 624
	/* Descriptor format */
	sh_eth_ring_format(ndev);
625
	if (mdp->cd->rpadir)
626
		writel(mdp->cd->rpadir_value, ioaddr + RPADIR);
627 628

	/* all sh_eth int mask */
629
	writel(0, ioaddr + EESIPR);
630

631 632
#if defined(__LITTLE_ENDIAN__)
	if (mdp->cd->hw_swap)
633
		writel(EDMR_EL, ioaddr + EDMR);
634
	else
635
#endif
636
		writel(0, ioaddr + EDMR);
637

638
	/* FIFO size set */
639 640
	writel(mdp->cd->fdr_value, ioaddr + FDR);
	writel(0, ioaddr + TFTR);
641

642
	/* Frame recv control */
643
	writel(mdp->cd->rmcr_value, ioaddr + RMCR);
644 645 646

	rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
	tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
647
	writel(rx_int_var | tx_int_var, ioaddr + TRSCER);
648

649
	if (mdp->cd->bculr)
650
		writel(0x800, ioaddr + BCULR);	/* Burst sycle set */
651

652
	writel(mdp->cd->fcftr_value, ioaddr + FCFTR);
653

654
	if (!mdp->cd->no_trimd)
655
		writel(0, ioaddr + TRIMD);
656

657
	/* Recv frame limit set register */
658
	writel(RFLR_VALUE, ioaddr + RFLR);
659

660 661
	writel(readl(ioaddr + EESR), ioaddr + EESR);
	writel(mdp->cd->eesipr_value, ioaddr + EESIPR);
662 663

	/* PAUSE Prohibition */
664
	val = (readl(ioaddr + ECMR) & ECMR_DM) |
665 666
		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;

667
	writel(val, ioaddr + ECMR);
668

669 670 671
	if (mdp->cd->set_rate)
		mdp->cd->set_rate(ndev);

672
	/* E-MAC Status Register clear */
673
	writel(mdp->cd->ecsr_value, ioaddr + ECSR);
674 675

	/* E-MAC Interrupt Enable register */
676
	writel(mdp->cd->ecsipr_value, ioaddr + ECSIPR);
677 678 679 680 681

	/* Set MAC address */
	update_mac_address(ndev);

	/* mask reset */
682
	if (mdp->cd->apr)
683
		writel(APR_AP, ioaddr + APR);
684
	if (mdp->cd->mpr)
685
		writel(MPR_MP, ioaddr + MPR);
686
	if (mdp->cd->tpauser)
687
		writel(TPAUSER_UNLIMITED, ioaddr + TPAUSER);
688

689
	/* Setting the Rx mode will start the Rx process. */
690
	writel(EDRRR_R, ioaddr + EDRRR);
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707

	netif_start_queue(ndev);

	return ret;
}

/* free Tx skb function */
static int sh_eth_txfree(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	struct sh_eth_txdesc *txdesc;
	int freeNum = 0;
	int entry = 0;

	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
		entry = mdp->dirty_tx % TX_RING_SIZE;
		txdesc = &mdp->tx_ring[entry];
708
		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
709 710 711 712 713 714 715
			break;
		/* Free the original skb. */
		if (mdp->tx_skbuff[entry]) {
			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
			mdp->tx_skbuff[entry] = NULL;
			freeNum++;
		}
716
		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
717
		if (entry >= TX_RING_SIZE - 1)
718
			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735

		mdp->stats.tx_packets++;
		mdp->stats.tx_bytes += txdesc->buffer_length;
	}
	return freeNum;
}

/* Packet receive function */
static int sh_eth_rx(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	struct sh_eth_rxdesc *rxdesc;

	int entry = mdp->cur_rx % RX_RING_SIZE;
	int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
	struct sk_buff *skb;
	u16 pkt_len = 0;
736
	u32 desc_status;
737 738

	rxdesc = &mdp->rx_ring[entry];
739 740
	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
		desc_status = edmac_to_cpu(mdp, rxdesc->status);
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
		pkt_len = rxdesc->frame_length;

		if (--boguscnt < 0)
			break;

		if (!(desc_status & RDFEND))
			mdp->stats.rx_length_errors++;

		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
			mdp->stats.rx_errors++;
			if (desc_status & RD_RFS1)
				mdp->stats.rx_crc_errors++;
			if (desc_status & RD_RFS2)
				mdp->stats.rx_frame_errors++;
			if (desc_status & RD_RFS3)
				mdp->stats.rx_length_errors++;
			if (desc_status & RD_RFS4)
				mdp->stats.rx_length_errors++;
			if (desc_status & RD_RFS6)
				mdp->stats.rx_missed_errors++;
			if (desc_status & RD_RFS10)
				mdp->stats.rx_over_errors++;
		} else {
765 766 767 768
			if (!mdp->cd->hw_swap)
				sh_eth_soft_swap(
					phys_to_virt(ALIGN(rxdesc->addr, 4)),
					pkt_len + 2);
769 770
			skb = mdp->rx_skbuff[entry];
			mdp->rx_skbuff[entry] = NULL;
771 772
			if (mdp->cd->rpadir)
				skb_reserve(skb, NET_IP_ALIGN);
773 774 775 776 777 778
			skb_put(skb, pkt_len);
			skb->protocol = eth_type_trans(skb, ndev);
			netif_rx(skb);
			mdp->stats.rx_packets++;
			mdp->stats.rx_bytes += pkt_len;
		}
779
		rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
780
		entry = (++mdp->cur_rx) % RX_RING_SIZE;
781
		rxdesc = &mdp->rx_ring[entry];
782 783 784 785 786 787
	}

	/* Refill the Rx ring buffers. */
	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
		entry = mdp->dirty_rx % RX_RING_SIZE;
		rxdesc = &mdp->rx_ring[entry];
788
		/* The size of the buffer is 16 byte boundary. */
789
		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
790

791 792 793 794 795
		if (mdp->rx_skbuff[entry] == NULL) {
			skb = dev_alloc_skb(mdp->rx_buf_sz);
			mdp->rx_skbuff[entry] = skb;
			if (skb == NULL)
				break;	/* Better luck next round. */
796 797
			dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
					DMA_FROM_DEVICE);
798
			skb->dev = ndev;
799 800
			sh_eth_set_receive_align(skb);

801
			skb_checksum_none_assert(skb);
802
			rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
803 804 805
		}
		if (entry >= RX_RING_SIZE - 1)
			rxdesc->status |=
806
				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
807 808
		else
			rxdesc->status |=
809
				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
810 811 812 813
	}

	/* Restart Rx engine if stopped. */
	/* If we don't need to check status, don't. -KDU */
814 815
	if (!(readl(ndev->base_addr + EDRRR) & EDRRR_R))
		writel(EDRRR_R, ndev->base_addr + EDRRR);
816 817 818 819 820 821 822 823 824 825

	return 0;
}

/* error control function */
static void sh_eth_error(struct net_device *ndev, int intr_status)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	u32 ioaddr = ndev->base_addr;
	u32 felic_stat;
826 827
	u32 link_stat;
	u32 mask;
828 829

	if (intr_status & EESR_ECI) {
830 831
		felic_stat = readl(ioaddr + ECSR);
		writel(felic_stat, ioaddr + ECSR);	/* clear int */
832 833 834 835
		if (felic_stat & ECSR_ICD)
			mdp->stats.tx_carrier_errors++;
		if (felic_stat & ECSR_LCHNG) {
			/* Link Changed */
836
			if (mdp->cd->no_psr || mdp->no_ether_link) {
837 838 839 840 841
				if (mdp->link == PHY_DOWN)
					link_stat = 0;
				else
					link_stat = PHY_ST_LINK;
			} else {
842
				link_stat = (readl(ioaddr + PSR));
843 844
				if (mdp->ether_link_active_low)
					link_stat = ~link_stat;
845
			}
846 847
			if (!(link_stat & PHY_ST_LINK)) {
				/* Link Down : disable tx and rx */
848
				writel(readl(ioaddr + ECMR) &
849 850 851
					  ~(ECMR_RE | ECMR_TE), ioaddr + ECMR);
			} else {
				/* Link Up */
852
				writel(readl(ioaddr + EESIPR) &
853 854
					  ~DMAC_M_ECI, ioaddr + EESIPR);
				/*clear int */
855
				writel(readl(ioaddr + ECSR),
856
					  ioaddr + ECSR);
857
				writel(readl(ioaddr + EESIPR) |
858 859
					  DMAC_M_ECI, ioaddr + EESIPR);
				/* enable tx and rx */
860
				writel(readl(ioaddr + ECMR) |
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
					  (ECMR_RE | ECMR_TE), ioaddr + ECMR);
			}
		}
	}

	if (intr_status & EESR_TWB) {
		/* Write buck end. unused write back interrupt */
		if (intr_status & EESR_TABT)	/* Transmit Abort int */
			mdp->stats.tx_aborted_errors++;
	}

	if (intr_status & EESR_RABT) {
		/* Receive Abort int */
		if (intr_status & EESR_RFRMER) {
			/* Receive Frame Overflow int */
			mdp->stats.rx_frame_errors++;
877
			dev_err(&ndev->dev, "Receive Frame Overflow\n");
878 879
		}
	}
880 881 882 883 884

	if (!mdp->cd->no_ade) {
		if (intr_status & EESR_ADE && intr_status & EESR_TDE &&
		    intr_status & EESR_TFE)
			mdp->stats.tx_fifo_errors++;
885 886 887 888 889 890
	}

	if (intr_status & EESR_RDE) {
		/* Receive Descriptor Empty int */
		mdp->stats.rx_over_errors++;

891 892
		if (readl(ioaddr + EDRRR) ^ EDRRR_R)
			writel(EDRRR_R, ioaddr + EDRRR);
893
		dev_err(&ndev->dev, "Receive Descriptor Empty\n");
894 895 896 897
	}
	if (intr_status & EESR_RFE) {
		/* Receive FIFO Overflow int */
		mdp->stats.rx_fifo_errors++;
898
		dev_err(&ndev->dev, "Receive FIFO Overflow\n");
899
	}
900 901 902 903 904

	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
	if (mdp->cd->no_ade)
		mask &= ~EESR_ADE;
	if (intr_status & mask) {
905
		/* Tx error */
906
		u32 edtrr = readl(ndev->base_addr + EDTRR);
907
		/* dmesg */
908 909 910
		dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
				intr_status, mdp->cur_tx);
		dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
911 912 913 914 915 916 917
				mdp->dirty_tx, (u32) ndev->state, edtrr);
		/* dirty buffer free */
		sh_eth_txfree(ndev);

		/* SH7712 BUG */
		if (edtrr ^ EDTRR_TRNS) {
			/* tx dma start */
918
			writel(EDTRR_TRNS, ndev->base_addr + EDTRR);
919 920 921 922 923 924 925 926 927 928
		}
		/* wakeup */
		netif_wake_queue(ndev);
	}
}

static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
{
	struct net_device *ndev = netdev;
	struct sh_eth_private *mdp = netdev_priv(ndev);
929
	struct sh_eth_cpu_data *cd = mdp->cd;
930
	irqreturn_t ret = IRQ_NONE;
931
	u32 ioaddr, intr_status = 0;
932 933 934 935

	ioaddr = ndev->base_addr;
	spin_lock(&mdp->lock);

936
	/* Get interrpt stat */
937
	intr_status = readl(ioaddr + EESR);
938
	/* Clear interrupt */
939 940
	if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
			EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
941
			cd->tx_check | cd->eesr_err_check)) {
942
		writel(intr_status, ioaddr + EESR);
943 944 945
		ret = IRQ_HANDLED;
	} else
		goto other_irq;
946

947 948 949 950 951 952 953
	if (intr_status & (EESR_FRC | /* Frame recv*/
			EESR_RMAF | /* Multi cast address recv*/
			EESR_RRF  | /* Bit frame recv */
			EESR_RTLF | /* Long frame recv*/
			EESR_RTSF | /* short frame recv */
			EESR_PRE  | /* PHY-LSI recv error */
			EESR_CERF)){ /* recv frame CRC error */
954
		sh_eth_rx(ndev);
955
	}
956

957
	/* Tx Check */
958
	if (intr_status & cd->tx_check) {
959 960 961 962
		sh_eth_txfree(ndev);
		netif_wake_queue(ndev);
	}

963
	if (intr_status & cd->eesr_err_check)
964 965
		sh_eth_error(ndev, intr_status);

966
other_irq:
967 968
	spin_unlock(&mdp->lock);

969
	return ret;
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
}

static void sh_eth_timer(unsigned long data)
{
	struct net_device *ndev = (struct net_device *)data;
	struct sh_eth_private *mdp = netdev_priv(ndev);

	mod_timer(&mdp->timer, jiffies + (10 * HZ));
}

/* PHY state control function */
static void sh_eth_adjust_link(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	struct phy_device *phydev = mdp->phydev;
	u32 ioaddr = ndev->base_addr;
	int new_state = 0;

	if (phydev->link != PHY_DOWN) {
		if (phydev->duplex != mdp->duplex) {
			new_state = 1;
			mdp->duplex = phydev->duplex;
992 993
			if (mdp->cd->set_duplex)
				mdp->cd->set_duplex(ndev);
994 995 996 997 998
		}

		if (phydev->speed != mdp->speed) {
			new_state = 1;
			mdp->speed = phydev->speed;
999 1000
			if (mdp->cd->set_rate)
				mdp->cd->set_rate(ndev);
1001 1002
		}
		if (mdp->link == PHY_DOWN) {
1003
			writel((readl(ioaddr + ECMR) & ~ECMR_TXF)
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
					| ECMR_DM, ioaddr + ECMR);
			new_state = 1;
			mdp->link = phydev->link;
		}
	} else if (mdp->link) {
		new_state = 1;
		mdp->link = PHY_DOWN;
		mdp->speed = 0;
		mdp->duplex = -1;
	}

	if (new_state)
		phy_print_status(phydev);
}

/* PHY init function */
static int sh_eth_phy_init(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
1023
	char phy_id[MII_BUS_ID_SIZE + 3];
1024 1025
	struct phy_device *phydev = NULL;

1026
	snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1027 1028 1029 1030 1031 1032 1033
		mdp->mii_bus->id , mdp->phy_id);

	mdp->link = PHY_DOWN;
	mdp->speed = 0;
	mdp->duplex = -1;

	/* Try connect to PHY */
1034
	phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1035 1036 1037 1038 1039
				0, PHY_INTERFACE_MODE_MII);
	if (IS_ERR(phydev)) {
		dev_err(&ndev->dev, "phy_connect failed\n");
		return PTR_ERR(phydev);
	}
1040

1041
	dev_info(&ndev->dev, "attached phy %i to driver %s\n",
1042
		phydev->addr, phydev->drv->name);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

	mdp->phydev = phydev;

	return 0;
}

/* PHY control start function */
static int sh_eth_phy_start(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	int ret;

	ret = sh_eth_phy_init(ndev);
	if (ret)
		return ret;

	/* reset phy - this also wakes it from PDOWN */
	phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
	phy_start(mdp->phydev);

	return 0;
}

/* network device open function */
static int sh_eth_open(struct net_device *ndev)
{
	int ret = 0;
	struct sh_eth_private *mdp = netdev_priv(ndev);

1072 1073
	pm_runtime_get_sync(&mdp->pdev->dev);

1074
	ret = request_irq(ndev->irq, sh_eth_interrupt,
1075 1076 1077
#if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
    defined(CONFIG_CPU_SUBTYPE_SH7764) || \
    defined(CONFIG_CPU_SUBTYPE_SH7757)
1078 1079 1080 1081 1082
				IRQF_SHARED,
#else
				0,
#endif
				ndev->name, ndev);
1083
	if (ret) {
1084
		dev_err(&ndev->dev, "Can not assign IRQ number\n");
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
		return ret;
	}

	/* Descriptor set */
	ret = sh_eth_ring_init(ndev);
	if (ret)
		goto out_free_irq;

	/* device init */
	ret = sh_eth_dev_init(ndev);
	if (ret)
		goto out_free_irq;

	/* PHY control start*/
	ret = sh_eth_phy_start(ndev);
	if (ret)
		goto out_free_irq;

	/* Set the timer to check for link beat. */
	init_timer(&mdp->timer);
	mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
1106
	setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
1107 1108 1109 1110 1111

	return ret;

out_free_irq:
	free_irq(ndev->irq, ndev);
1112
	pm_runtime_put_sync(&mdp->pdev->dev);
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	return ret;
}

/* Timeout function */
static void sh_eth_tx_timeout(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	u32 ioaddr = ndev->base_addr;
	struct sh_eth_rxdesc *rxdesc;
	int i;

	netif_stop_queue(ndev);

	/* worning message out. */
	printk(KERN_WARNING "%s: transmit timed out, status %8.8x,"
1128
	       " resetting...\n", ndev->name, (int)readl(ioaddr + EESR));
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

	/* tx_errors count up */
	mdp->stats.tx_errors++;

	/* timer off */
	del_timer_sync(&mdp->timer);

	/* Free all the skbuffs in the Rx queue. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		rxdesc = &mdp->rx_ring[i];
		rxdesc->status = 0;
		rxdesc->addr = 0xBADF00D0;
		if (mdp->rx_skbuff[i])
			dev_kfree_skb(mdp->rx_skbuff[i]);
		mdp->rx_skbuff[i] = NULL;
	}
	for (i = 0; i < TX_RING_SIZE; i++) {
		if (mdp->tx_skbuff[i])
			dev_kfree_skb(mdp->tx_skbuff[i]);
		mdp->tx_skbuff[i] = NULL;
	}

	/* device init */
	sh_eth_dev_init(ndev);

	/* timer on */
	mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
	add_timer(&mdp->timer);
}

/* Packet transmit function */
static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	struct sh_eth_txdesc *txdesc;
	u32 entry;
1165
	unsigned long flags;
1166 1167 1168 1169 1170 1171

	spin_lock_irqsave(&mdp->lock, flags);
	if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
		if (!sh_eth_txfree(ndev)) {
			netif_stop_queue(ndev);
			spin_unlock_irqrestore(&mdp->lock, flags);
1172
			return NETDEV_TX_BUSY;
1173 1174 1175 1176 1177 1178 1179
		}
	}
	spin_unlock_irqrestore(&mdp->lock, flags);

	entry = mdp->cur_tx % TX_RING_SIZE;
	mdp->tx_skbuff[entry] = skb;
	txdesc = &mdp->tx_ring[entry];
1180
	txdesc->addr = virt_to_phys(skb->data);
1181
	/* soft swap. */
1182 1183 1184
	if (!mdp->cd->hw_swap)
		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
				 skb->len + 2);
1185 1186 1187 1188 1189 1190 1191 1192
	/* write back */
	__flush_purge_region(skb->data, skb->len);
	if (skb->len < ETHERSMALL)
		txdesc->buffer_length = ETHERSMALL;
	else
		txdesc->buffer_length = skb->len;

	if (entry >= TX_RING_SIZE - 1)
1193
		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
1194
	else
1195
		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
1196 1197 1198

	mdp->cur_tx++;

1199 1200
	if (!(readl(ndev->base_addr + EDTRR) & EDTRR_TRNS))
		writel(EDTRR_TRNS, ndev->base_addr + EDTRR);
1201

1202
	return NETDEV_TX_OK;
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
}

/* device close function */
static int sh_eth_close(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	u32 ioaddr = ndev->base_addr;
	int ringsize;

	netif_stop_queue(ndev);

	/* Disable interrupts by clearing the interrupt mask. */
1215
	writel(0x0000, ioaddr + EESIPR);
1216 1217

	/* Stop the chip's Tx and Rx processes. */
1218 1219
	writel(0, ioaddr + EDTRR);
	writel(0, ioaddr + EDRRR);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

	/* PHY Disconnect */
	if (mdp->phydev) {
		phy_stop(mdp->phydev);
		phy_disconnect(mdp->phydev);
	}

	free_irq(ndev->irq, ndev);

	del_timer_sync(&mdp->timer);

	/* Free all the skbuffs in the Rx queue. */
	sh_eth_ring_free(ndev);

	/* free DMA buffer */
	ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
	dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);

	/* free DMA buffer */
	ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
	dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);

1242 1243
	pm_runtime_put_sync(&mdp->pdev->dev);

1244 1245 1246 1247 1248 1249 1250 1251
	return 0;
}

static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	u32 ioaddr = ndev->base_addr;

1252 1253
	pm_runtime_get_sync(&mdp->pdev->dev);

1254 1255 1256 1257 1258 1259
	mdp->stats.tx_dropped += readl(ioaddr + TROCR);
	writel(0, ioaddr + TROCR);	/* (write clear) */
	mdp->stats.collisions += readl(ioaddr + CDCR);
	writel(0, ioaddr + CDCR);	/* (write clear) */
	mdp->stats.tx_carrier_errors += readl(ioaddr + LCCR);
	writel(0, ioaddr + LCCR);	/* (write clear) */
1260
#if defined(CONFIG_CPU_SUBTYPE_SH7763)
1261 1262 1263 1264
	mdp->stats.tx_carrier_errors += readl(ioaddr + CERCR);/* CERCR */
	writel(0, ioaddr + CERCR);	/* (write clear) */
	mdp->stats.tx_carrier_errors += readl(ioaddr + CEECR);/* CEECR */
	writel(0, ioaddr + CEECR);	/* (write clear) */
1265
#else
1266 1267
	mdp->stats.tx_carrier_errors += readl(ioaddr + CNDCR);
	writel(0, ioaddr + CNDCR);	/* (write clear) */
1268
#endif
1269 1270
	pm_runtime_put_sync(&mdp->pdev->dev);

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	return &mdp->stats;
}

/* ioctl to device funciotn*/
static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
				int cmd)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	struct phy_device *phydev = mdp->phydev;

	if (!netif_running(ndev))
		return -EINVAL;

	if (!phydev)
		return -ENODEV;

1287
	return phy_mii_ioctl(phydev, rq, cmd);
1288 1289
}

1290
#if defined(SH_ETH_HAS_TSU)
1291 1292 1293 1294 1295 1296 1297
/* Multicast reception directions set */
static void sh_eth_set_multicast_list(struct net_device *ndev)
{
	u32 ioaddr = ndev->base_addr;

	if (ndev->flags & IFF_PROMISC) {
		/* Set promiscuous. */
1298
		writel((readl(ioaddr + ECMR) & ~ECMR_MCT) | ECMR_PRM,
1299 1300 1301
			  ioaddr + ECMR);
	} else {
		/* Normal, unicast/broadcast-only mode. */
1302
		writel((readl(ioaddr + ECMR) & ~ECMR_PRM) | ECMR_MCT,
1303 1304 1305 1306 1307 1308 1309
			  ioaddr + ECMR);
	}
}

/* SuperH's TSU register init function */
static void sh_eth_tsu_init(u32 ioaddr)
{
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
	writel(0, ioaddr + TSU_FWEN0);	/* Disable forward(0->1) */
	writel(0, ioaddr + TSU_FWEN1);	/* Disable forward(1->0) */
	writel(0, ioaddr + TSU_FCM);	/* forward fifo 3k-3k */
	writel(0xc, ioaddr + TSU_BSYSL0);
	writel(0xc, ioaddr + TSU_BSYSL1);
	writel(0, ioaddr + TSU_PRISL0);
	writel(0, ioaddr + TSU_PRISL1);
	writel(0, ioaddr + TSU_FWSL0);
	writel(0, ioaddr + TSU_FWSL1);
	writel(TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, ioaddr + TSU_FWSLC);
1320
#if defined(CONFIG_CPU_SUBTYPE_SH7763)
1321 1322
	writel(0, ioaddr + TSU_QTAG0);	/* Disable QTAG(0->1) */
	writel(0, ioaddr + TSU_QTAG1);	/* Disable QTAG(1->0) */
1323
#else
1324 1325
	writel(0, ioaddr + TSU_QTAGM0);	/* Disable QTAG(0->1) */
	writel(0, ioaddr + TSU_QTAGM1);	/* Disable QTAG(1->0) */
1326
#endif
1327 1328 1329 1330 1331 1332 1333
	writel(0, ioaddr + TSU_FWSR);	/* all interrupt status clear */
	writel(0, ioaddr + TSU_FWINMK);	/* Disable all interrupt */
	writel(0, ioaddr + TSU_TEN);	/* Disable all CAM entry */
	writel(0, ioaddr + TSU_POST1);	/* Disable CAM entry [ 0- 7] */
	writel(0, ioaddr + TSU_POST2);	/* Disable CAM entry [ 8-15] */
	writel(0, ioaddr + TSU_POST3);	/* Disable CAM entry [16-23] */
	writel(0, ioaddr + TSU_POST4);	/* Disable CAM entry [24-31] */
1334
}
1335
#endif /* SH_ETH_HAS_TSU */
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347

/* MDIO bus release function */
static int sh_mdio_release(struct net_device *ndev)
{
	struct mii_bus *bus = dev_get_drvdata(&ndev->dev);

	/* unregister mdio bus */
	mdiobus_unregister(bus);

	/* remove mdio bus info from net_device */
	dev_set_drvdata(&ndev->dev, NULL);

1348 1349 1350
	/* free interrupts memory */
	kfree(bus->irq);

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	/* free bitbang info */
	free_mdio_bitbang(bus);

	return 0;
}

/* MDIO bus init function */
static int sh_mdio_init(struct net_device *ndev, int id)
{
	int ret, i;
	struct bb_info *bitbang;
	struct sh_eth_private *mdp = netdev_priv(ndev);

	/* create bit control struct for PHY */
	bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
	if (!bitbang) {
		ret = -ENOMEM;
		goto out;
	}

	/* bitbang init */
	bitbang->addr = ndev->base_addr + PIR;
	bitbang->mdi_msk = 0x08;
	bitbang->mdo_msk = 0x04;
	bitbang->mmd_msk = 0x02;/* MMD */
	bitbang->mdc_msk = 0x01;
	bitbang->ctrl.ops = &bb_ops;

1379
	/* MII controller setting */
1380 1381 1382 1383 1384 1385 1386 1387
	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
	if (!mdp->mii_bus) {
		ret = -ENOMEM;
		goto out_free_bitbang;
	}

	/* Hook up MII support for ethtool */
	mdp->mii_bus->name = "sh_mii";
1388
	mdp->mii_bus->parent = &ndev->dev;
1389
	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%x", id);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

	/* PHY IRQ */
	mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
	if (!mdp->mii_bus->irq) {
		ret = -ENOMEM;
		goto out_free_bus;
	}

	for (i = 0; i < PHY_MAX_ADDR; i++)
		mdp->mii_bus->irq[i] = PHY_POLL;

	/* regist mdio bus */
	ret = mdiobus_register(mdp->mii_bus);
	if (ret)
		goto out_free_irq;

	dev_set_drvdata(&ndev->dev, mdp->mii_bus);

	return 0;

out_free_irq:
	kfree(mdp->mii_bus->irq);

out_free_bus:
1414
	free_mdio_bitbang(mdp->mii_bus);
1415 1416 1417 1418 1419 1420 1421 1422

out_free_bitbang:
	kfree(bitbang);

out:
	return ret;
}

1423 1424 1425 1426 1427
static const struct net_device_ops sh_eth_netdev_ops = {
	.ndo_open		= sh_eth_open,
	.ndo_stop		= sh_eth_close,
	.ndo_start_xmit		= sh_eth_start_xmit,
	.ndo_get_stats		= sh_eth_get_stats,
1428
#if defined(SH_ETH_HAS_TSU)
1429
	.ndo_set_multicast_list	= sh_eth_set_multicast_list,
1430
#endif
1431 1432 1433 1434 1435 1436 1437
	.ndo_tx_timeout		= sh_eth_tx_timeout,
	.ndo_do_ioctl		= sh_eth_do_ioctl,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_set_mac_address	= eth_mac_addr,
	.ndo_change_mtu		= eth_change_mtu,
};

1438 1439
static int sh_eth_drv_probe(struct platform_device *pdev)
{
1440
	int ret, devno = 0;
1441 1442 1443
	struct resource *res;
	struct net_device *ndev = NULL;
	struct sh_eth_private *mdp;
1444
	struct sh_eth_plat_data *pd;
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

	/* get base addr */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (unlikely(res == NULL)) {
		dev_err(&pdev->dev, "invalid resource\n");
		ret = -EINVAL;
		goto out;
	}

	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
	if (!ndev) {
1456
		dev_err(&pdev->dev, "Could not allocate device.\n");
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
		ret = -ENOMEM;
		goto out;
	}

	/* The sh Ether-specific entries in the device structure. */
	ndev->base_addr = res->start;
	devno = pdev->id;
	if (devno < 0)
		devno = 0;

	ndev->dma = -1;
1468 1469
	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
1470 1471 1472
		ret = -ENODEV;
		goto out_release;
	}
1473
	ndev->irq = ret;
1474 1475 1476 1477 1478 1479 1480 1481

	SET_NETDEV_DEV(ndev, &pdev->dev);

	/* Fill in the fields of the device structure with ethernet values. */
	ether_setup(ndev);

	mdp = netdev_priv(ndev);
	spin_lock_init(&mdp->lock);
1482 1483 1484
	mdp->pdev = pdev;
	pm_runtime_enable(&pdev->dev);
	pm_runtime_resume(&pdev->dev);
1485

1486
	pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
1487
	/* get PHY ID */
1488 1489 1490
	mdp->phy_id = pd->phy;
	/* EDMAC endian */
	mdp->edmac_endian = pd->edmac_endian;
1491 1492
	mdp->no_ether_link = pd->no_ether_link;
	mdp->ether_link_active_low = pd->ether_link_active_low;
1493

1494 1495 1496 1497
	/* set cpu data */
	mdp->cd = &sh_eth_my_cpu_data;
	sh_eth_set_default_cpu_data(mdp->cd);

1498
	/* set function */
1499
	ndev->netdev_ops = &sh_eth_netdev_ops;
1500 1501 1502 1503 1504 1505
	ndev->watchdog_timeo = TX_TIMEOUT;

	mdp->post_rx = POST_RX >> (devno << 1);
	mdp->post_fw = POST_FW >> (devno << 1);

	/* read and set MAC address */
1506
	read_mac_address(ndev, pd->mac_addr);
1507 1508 1509

	/* First device only init */
	if (!devno) {
1510 1511
		if (mdp->cd->chip_reset)
			mdp->cd->chip_reset(ndev);
1512

1513
#if defined(SH_ETH_HAS_TSU)
1514 1515
		/* TSU init (Init only)*/
		sh_eth_tsu_init(SH_TSU_ADDR);
1516
#endif
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	}

	/* network device register */
	ret = register_netdev(ndev);
	if (ret)
		goto out_release;

	/* mdio bus init */
	ret = sh_mdio_init(ndev, pdev->id);
	if (ret)
		goto out_unregister;

1529 1530 1531
	/* print device infomation */
	pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
	       (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555

	platform_set_drvdata(pdev, ndev);

	return ret;

out_unregister:
	unregister_netdev(ndev);

out_release:
	/* net_dev free */
	if (ndev)
		free_netdev(ndev);

out:
	return ret;
}

static int sh_eth_drv_remove(struct platform_device *pdev)
{
	struct net_device *ndev = platform_get_drvdata(pdev);

	sh_mdio_release(ndev);
	unregister_netdev(ndev);
	flush_scheduled_work();
1556
	pm_runtime_disable(&pdev->dev);
1557 1558 1559 1560 1561 1562
	free_netdev(ndev);
	platform_set_drvdata(pdev, NULL);

	return 0;
}

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
static int sh_eth_runtime_nop(struct device *dev)
{
	/*
	 * Runtime PM callback shared between ->runtime_suspend()
	 * and ->runtime_resume(). Simply returns success.
	 *
	 * This driver re-initializes all registers after
	 * pm_runtime_get_sync() anyway so there is no need
	 * to save and restore registers here.
	 */
	return 0;
}

static struct dev_pm_ops sh_eth_dev_pm_ops = {
	.runtime_suspend = sh_eth_runtime_nop,
	.runtime_resume = sh_eth_runtime_nop,
};

1581 1582 1583 1584 1585
static struct platform_driver sh_eth_driver = {
	.probe = sh_eth_drv_probe,
	.remove = sh_eth_drv_remove,
	.driver = {
		   .name = CARDNAME,
1586
		   .pm = &sh_eth_dev_pm_ops,
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
	},
};

static int __init sh_eth_init(void)
{
	return platform_driver_register(&sh_eth_driver);
}

static void __exit sh_eth_cleanup(void)
{
	platform_driver_unregister(&sh_eth_driver);
}

module_init(sh_eth_init);
module_exit(sh_eth_cleanup);

MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
MODULE_LICENSE("GPL v2");