sh_eth.c 47.5 KB
Newer Older
1 2 3
/*
 *  SuperH Ethernet device driver
 *
4
 *  Copyright (C) 2006-2008 Nobuhiro Iwamatsu
5
 *  Copyright (C) 2008-2009 Renesas Solutions Corp.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *
 *  This program is free software; you can redistribute it and/or modify it
 *  under the terms and conditions of the GNU General Public License,
 *  version 2, as published by the Free Software Foundation.
 *
 *  This program is distributed in the hope it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 *  more details.
 *  You should have received a copy of the GNU General Public License along with
 *  this program; if not, write to the Free Software Foundation, Inc.,
 *  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 *  The full GNU General Public License is included in this distribution in
 *  the file called "COPYING".
 */

#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/mdio-bitbang.h>
#include <linux/netdevice.h>
#include <linux/phy.h>
#include <linux/cache.h>
#include <linux/io.h>
33
#include <linux/pm_runtime.h>
34
#include <linux/slab.h>
35
#include <linux/ethtool.h>
N
Nobuhiro Iwamatsu 已提交
36
#include <asm/cacheflush.h>
37 38 39

#include "sh_eth.h"

40 41 42 43 44 45
#define SH_ETH_DEF_MSG_ENABLE \
		(NETIF_MSG_LINK	| \
		NETIF_MSG_TIMER	| \
		NETIF_MSG_RX_ERR| \
		NETIF_MSG_TX_ERR)

46
/* There is CPU dependent code */
47 48 49 50 51 52 53
#if defined(CONFIG_CPU_SUBTYPE_SH7724)
#define SH_ETH_RESET_DEFAULT	1
static void sh_eth_set_duplex(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);

	if (mdp->duplex) /* Full */
54
		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
55
	else		/* Half */
56
		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
57 58 59 60 61 62 63 64
}

static void sh_eth_set_rate(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);

	switch (mdp->speed) {
	case 10: /* 10BASE */
65
		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
66 67
		break;
	case 100:/* 100BASE */
68
		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
		break;
	default:
		break;
	}
}

/* SH7724 */
static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
	.set_duplex	= sh_eth_set_duplex,
	.set_rate	= sh_eth_set_rate,

	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,

	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
			  EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,

	.apr		= 1,
	.mpr		= 1,
	.tpauser	= 1,
	.hw_swap	= 1,
93 94
	.rpadir		= 1,
	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
95
};
96
#elif defined(CONFIG_CPU_SUBTYPE_SH7757)
97 98
#define SH_ETH_HAS_BOTH_MODULES	1
#define SH_ETH_HAS_TSU	1
99 100 101 102 103
static void sh_eth_set_duplex(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);

	if (mdp->duplex) /* Full */
104
		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
105
	else		/* Half */
106
		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
107 108 109 110 111 112 113 114
}

static void sh_eth_set_rate(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);

	switch (mdp->speed) {
	case 10: /* 10BASE */
115
		sh_eth_write(ndev, 0, RTRATE);
116 117
		break;
	case 100:/* 100BASE */
118
		sh_eth_write(ndev, 1, RTRATE);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
		break;
	default:
		break;
	}
}

/* SH7757 */
static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
	.set_duplex		= sh_eth_set_duplex,
	.set_rate		= sh_eth_set_rate,

	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
	.rmcr_value	= 0x00000001,

	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
			  EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,

	.apr		= 1,
	.mpr		= 1,
	.tpauser	= 1,
	.hw_swap	= 1,
	.no_ade		= 1,
};
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
#define SH_GIGA_ETH_BASE	0xfee00000
#define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
#define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
static void sh_eth_chip_reset_giga(struct net_device *ndev)
{
	int i;
	unsigned long mahr[2], malr[2];

	/* save MAHR and MALR */
	for (i = 0; i < 2; i++) {
		malr[i] = readl(GIGA_MALR(i));
		mahr[i] = readl(GIGA_MAHR(i));
	}

	/* reset device */
	writel(ARSTR_ARSTR, SH_GIGA_ETH_BASE + 0x1800);
	mdelay(1);

	/* restore MAHR and MALR */
	for (i = 0; i < 2; i++) {
		writel(malr[i], GIGA_MALR(i));
		writel(mahr[i], GIGA_MAHR(i));
	}
}

static int sh_eth_is_gether(struct sh_eth_private *mdp);
static void sh_eth_reset(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	int cnt = 100;

	if (sh_eth_is_gether(mdp)) {
		sh_eth_write(ndev, 0x03, EDSR);
		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
				EDMR);
		while (cnt > 0) {
			if (!(sh_eth_read(ndev, EDMR) & 0x3))
				break;
			mdelay(1);
			cnt--;
		}
		if (cnt < 0)
			printk(KERN_ERR "Device reset fail\n");

		/* Table Init */
		sh_eth_write(ndev, 0x0, TDLAR);
		sh_eth_write(ndev, 0x0, TDFAR);
		sh_eth_write(ndev, 0x0, TDFXR);
		sh_eth_write(ndev, 0x0, TDFFR);
		sh_eth_write(ndev, 0x0, RDLAR);
		sh_eth_write(ndev, 0x0, RDFAR);
		sh_eth_write(ndev, 0x0, RDFXR);
		sh_eth_write(ndev, 0x0, RDFFR);
	} else {
		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
				EDMR);
		mdelay(3);
		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
				EDMR);
	}
}

static void sh_eth_set_duplex_giga(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);

	if (mdp->duplex) /* Full */
		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
	else		/* Half */
		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
}

static void sh_eth_set_rate_giga(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);

	switch (mdp->speed) {
	case 10: /* 10BASE */
		sh_eth_write(ndev, 0x00000000, GECMR);
		break;
	case 100:/* 100BASE */
		sh_eth_write(ndev, 0x00000010, GECMR);
		break;
	case 1000: /* 1000BASE */
		sh_eth_write(ndev, 0x00000020, GECMR);
		break;
	default:
		break;
	}
}

/* SH7757(GETHERC) */
static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
	.chip_reset	= sh_eth_chip_reset_giga,
	.set_duplex	= sh_eth_set_duplex_giga,
	.set_rate	= sh_eth_set_rate_giga,

	.ecsr_value	= ECSR_ICD | ECSR_MPD,
	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,

	.tx_check	= EESR_TC1 | EESR_FTC,
	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
			  EESR_ECI,
	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
			  EESR_TFE,
	.fdr_value	= 0x0000072f,
	.rmcr_value	= 0x00000001,

	.apr		= 1,
	.mpr		= 1,
	.tpauser	= 1,
	.bculr		= 1,
	.hw_swap	= 1,
	.rpadir		= 1,
	.rpadir_value   = 2 << 16,
	.no_trimd	= 1,
	.no_ade		= 1,
};

static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
{
	if (sh_eth_is_gether(mdp))
		return &sh_eth_my_cpu_data_giga;
	else
		return &sh_eth_my_cpu_data;
}

274
#elif defined(CONFIG_CPU_SUBTYPE_SH7763)
275 276 277
#define SH_ETH_HAS_TSU	1
static void sh_eth_chip_reset(struct net_device *ndev)
{
278 279
	struct sh_eth_private *mdp = netdev_priv(ndev);

280
	/* reset device */
281
	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
282 283 284 285 286 287 288
	mdelay(1);
}

static void sh_eth_reset(struct net_device *ndev)
{
	int cnt = 100;

289
	sh_eth_write(ndev, EDSR_ENALL, EDSR);
290
	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
291
	while (cnt > 0) {
292
		if (!(sh_eth_read(ndev, EDMR) & 0x3))
293 294 295 296
			break;
		mdelay(1);
		cnt--;
	}
297
	if (cnt == 0)
298 299 300
		printk(KERN_ERR "Device reset fail\n");

	/* Table Init */
301 302 303 304 305 306 307 308
	sh_eth_write(ndev, 0x0, TDLAR);
	sh_eth_write(ndev, 0x0, TDFAR);
	sh_eth_write(ndev, 0x0, TDFXR);
	sh_eth_write(ndev, 0x0, TDFFR);
	sh_eth_write(ndev, 0x0, RDLAR);
	sh_eth_write(ndev, 0x0, RDFAR);
	sh_eth_write(ndev, 0x0, RDFXR);
	sh_eth_write(ndev, 0x0, RDFFR);
309 310 311 312 313 314 315
}

static void sh_eth_set_duplex(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);

	if (mdp->duplex) /* Full */
316
		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
317
	else		/* Half */
318
		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
319 320 321 322 323 324 325 326
}

static void sh_eth_set_rate(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);

	switch (mdp->speed) {
	case 10: /* 10BASE */
327
		sh_eth_write(ndev, GECMR_10, GECMR);
328 329
		break;
	case 100:/* 100BASE */
330
		sh_eth_write(ndev, GECMR_100, GECMR);
331 332
		break;
	case 1000: /* 1000BASE */
333
		sh_eth_write(ndev, GECMR_1000, GECMR);
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
		break;
	default:
		break;
	}
}

/* sh7763 */
static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
	.chip_reset	= sh_eth_chip_reset,
	.set_duplex	= sh_eth_set_duplex,
	.set_rate	= sh_eth_set_rate,

	.ecsr_value	= ECSR_ICD | ECSR_MPD,
	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,

	.tx_check	= EESR_TC1 | EESR_FTC,
	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
			  EESR_ECI,
	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
			  EESR_TFE,

	.apr		= 1,
	.mpr		= 1,
	.tpauser	= 1,
	.bculr		= 1,
	.hw_swap	= 1,
	.no_trimd	= 1,
	.no_ade		= 1,
364
	.tsu		= 1,
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
};

#elif defined(CONFIG_CPU_SUBTYPE_SH7619)
#define SH_ETH_RESET_DEFAULT	1
static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,

	.apr		= 1,
	.mpr		= 1,
	.tpauser	= 1,
	.hw_swap	= 1,
};
#elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
#define SH_ETH_RESET_DEFAULT	1
#define SH_ETH_HAS_TSU	1
static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
382
	.tsu		= 1,
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
};
#endif

static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
{
	if (!cd->ecsr_value)
		cd->ecsr_value = DEFAULT_ECSR_INIT;

	if (!cd->ecsipr_value)
		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;

	if (!cd->fcftr_value)
		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
				  DEFAULT_FIFO_F_D_RFD;

	if (!cd->fdr_value)
		cd->fdr_value = DEFAULT_FDR_INIT;

	if (!cd->rmcr_value)
		cd->rmcr_value = DEFAULT_RMCR_VALUE;

	if (!cd->tx_check)
		cd->tx_check = DEFAULT_TX_CHECK;

	if (!cd->eesr_err_check)
		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;

	if (!cd->tx_error_check)
		cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
}

#if defined(SH_ETH_RESET_DEFAULT)
/* Chip Reset */
static void sh_eth_reset(struct net_device *ndev)
{
418
	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
419
	mdelay(3);
420
	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
}
#endif

#if defined(CONFIG_CPU_SH4)
static void sh_eth_set_receive_align(struct sk_buff *skb)
{
	int reserve;

	reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
	if (reserve)
		skb_reserve(skb, reserve);
}
#else
static void sh_eth_set_receive_align(struct sk_buff *skb)
{
	skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
}
#endif


441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
/* CPU <-> EDMAC endian convert */
static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
{
	switch (mdp->edmac_endian) {
	case EDMAC_LITTLE_ENDIAN:
		return cpu_to_le32(x);
	case EDMAC_BIG_ENDIAN:
		return cpu_to_be32(x);
	}
	return x;
}

static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
{
	switch (mdp->edmac_endian) {
	case EDMAC_LITTLE_ENDIAN:
		return le32_to_cpu(x);
	case EDMAC_BIG_ENDIAN:
		return be32_to_cpu(x);
	}
	return x;
}

464 465 466 467 468
/*
 * Program the hardware MAC address from dev->dev_addr.
 */
static void update_mac_address(struct net_device *ndev)
{
469 470 471 472 473
	sh_eth_write(ndev,
		(ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
		(ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
	sh_eth_write(ndev,
		(ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
474 475 476 477 478 479 480 481 482 483
}

/*
 * Get MAC address from SuperH MAC address register
 *
 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
 * When you want use this device, you must set MAC address in bootloader.
 *
 */
484
static void read_mac_address(struct net_device *ndev, unsigned char *mac)
485
{
486 487 488
	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
		memcpy(ndev->dev_addr, mac, 6);
	} else {
489 490 491 492 493 494
		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
495
	}
496 497
}

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
static int sh_eth_is_gether(struct sh_eth_private *mdp)
{
	if (mdp->reg_offset == sh_eth_offset_gigabit)
		return 1;
	else
		return 0;
}

static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
{
	if (sh_eth_is_gether(mdp))
		return EDTRR_TRNS_GETHER;
	else
		return EDTRR_TRNS_ETHER;
}

514 515 516 517 518 519 520 521 522 523 524 525
struct bb_info {
	struct mdiobb_ctrl ctrl;
	u32 addr;
	u32 mmd_msk;/* MMD */
	u32 mdo_msk;
	u32 mdi_msk;
	u32 mdc_msk;
};

/* PHY bit set */
static void bb_set(u32 addr, u32 msk)
{
526
	writel(readl(addr) | msk, addr);
527 528 529 530 531
}

/* PHY bit clear */
static void bb_clr(u32 addr, u32 msk)
{
532
	writel((readl(addr) & ~msk), addr);
533 534 535 536 537
}

/* PHY bit read */
static int bb_read(u32 addr, u32 msk)
{
538
	return (readl(addr) & msk) != 0;
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
}

/* Data I/O pin control */
static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
{
	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
	if (bit)
		bb_set(bitbang->addr, bitbang->mmd_msk);
	else
		bb_clr(bitbang->addr, bitbang->mmd_msk);
}

/* Set bit data*/
static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
{
	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);

	if (bit)
		bb_set(bitbang->addr, bitbang->mdo_msk);
	else
		bb_clr(bitbang->addr, bitbang->mdo_msk);
}

/* Get bit data*/
static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
{
	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
	return bb_read(bitbang->addr, bitbang->mdi_msk);
}

/* MDC pin control */
static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
{
	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);

	if (bit)
		bb_set(bitbang->addr, bitbang->mdc_msk);
	else
		bb_clr(bitbang->addr, bitbang->mdc_msk);
}

/* mdio bus control struct */
static struct mdiobb_ops bb_ops = {
	.owner = THIS_MODULE,
	.set_mdc = sh_mdc_ctrl,
	.set_mdio_dir = sh_mmd_ctrl,
	.set_mdio_data = sh_set_mdio,
	.get_mdio_data = sh_get_mdio,
};

/* free skb and descriptor buffer */
static void sh_eth_ring_free(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	int i;

	/* Free Rx skb ringbuffer */
	if (mdp->rx_skbuff) {
		for (i = 0; i < RX_RING_SIZE; i++) {
			if (mdp->rx_skbuff[i])
				dev_kfree_skb(mdp->rx_skbuff[i]);
		}
	}
	kfree(mdp->rx_skbuff);

	/* Free Tx skb ringbuffer */
	if (mdp->tx_skbuff) {
		for (i = 0; i < TX_RING_SIZE; i++) {
			if (mdp->tx_skbuff[i])
				dev_kfree_skb(mdp->tx_skbuff[i]);
		}
	}
	kfree(mdp->tx_skbuff);
}

/* format skb and descriptor buffer */
static void sh_eth_ring_format(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	int i;
	struct sk_buff *skb;
	struct sh_eth_rxdesc *rxdesc = NULL;
	struct sh_eth_txdesc *txdesc = NULL;
	int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
	int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;

	mdp->cur_rx = mdp->cur_tx = 0;
	mdp->dirty_rx = mdp->dirty_tx = 0;

	memset(mdp->rx_ring, 0, rx_ringsize);

	/* build Rx ring buffer */
	for (i = 0; i < RX_RING_SIZE; i++) {
		/* skb */
		mdp->rx_skbuff[i] = NULL;
		skb = dev_alloc_skb(mdp->rx_buf_sz);
		mdp->rx_skbuff[i] = skb;
		if (skb == NULL)
			break;
638 639
		dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
				DMA_FROM_DEVICE);
640
		skb->dev = ndev; /* Mark as being used by this device. */
641 642
		sh_eth_set_receive_align(skb);

643 644
		/* RX descriptor */
		rxdesc = &mdp->rx_ring[i];
645
		rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
646
		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
647 648

		/* The size of the buffer is 16 byte boundary. */
649
		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
650 651
		/* Rx descriptor address set */
		if (i == 0) {
652
			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
653 654
			if (sh_eth_is_gether(mdp))
				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
655
		}
656 657 658 659 660
	}

	mdp->dirty_rx = (u32) (i - RX_RING_SIZE);

	/* Mark the last entry as wrapping the ring. */
661
	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
662 663 664 665 666 667 668

	memset(mdp->tx_ring, 0, tx_ringsize);

	/* build Tx ring buffer */
	for (i = 0; i < TX_RING_SIZE; i++) {
		mdp->tx_skbuff[i] = NULL;
		txdesc = &mdp->tx_ring[i];
669
		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
670
		txdesc->buffer_length = 0;
671
		if (i == 0) {
672
			/* Tx descriptor address set */
673
			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
674 675
			if (sh_eth_is_gether(mdp))
				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
676
		}
677 678
	}

679
	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
}

/* Get skb and descriptor buffer */
static int sh_eth_ring_init(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	int rx_ringsize, tx_ringsize, ret = 0;

	/*
	 * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
	 * card needs room to do 8 byte alignment, +2 so we can reserve
	 * the first 2 bytes, and +16 gets room for the status word from the
	 * card.
	 */
	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
696 697
	if (mdp->cd->rpadir)
		mdp->rx_buf_sz += NET_IP_ALIGN;
698 699 700 701 702

	/* Allocate RX and TX skb rings */
	mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
				GFP_KERNEL);
	if (!mdp->rx_skbuff) {
703
		dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
704 705 706 707 708 709 710
		ret = -ENOMEM;
		return ret;
	}

	mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
				GFP_KERNEL);
	if (!mdp->tx_skbuff) {
711
		dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
712 713 714 715 716 717 718 719 720 721
		ret = -ENOMEM;
		goto skb_ring_free;
	}

	/* Allocate all Rx descriptors. */
	rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
			GFP_KERNEL);

	if (!mdp->rx_ring) {
722 723
		dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
			rx_ringsize);
724 725 726 727 728 729 730 731 732 733 734
		ret = -ENOMEM;
		goto desc_ring_free;
	}

	mdp->dirty_rx = 0;

	/* Allocate all Tx descriptors. */
	tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
			GFP_KERNEL);
	if (!mdp->tx_ring) {
735 736
		dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
			tx_ringsize);
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
		ret = -ENOMEM;
		goto desc_ring_free;
	}
	return ret;

desc_ring_free:
	/* free DMA buffer */
	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);

skb_ring_free:
	/* Free Rx and Tx skb ring buffer */
	sh_eth_ring_free(ndev);

	return ret;
}

static int sh_eth_dev_init(struct net_device *ndev)
{
	int ret = 0;
	struct sh_eth_private *mdp = netdev_priv(ndev);
	u_int32_t rx_int_var, tx_int_var;
	u32 val;

	/* Soft Reset */
	sh_eth_reset(ndev);

763 764
	/* Descriptor format */
	sh_eth_ring_format(ndev);
765
	if (mdp->cd->rpadir)
766
		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
767 768

	/* all sh_eth int mask */
769
	sh_eth_write(ndev, 0, EESIPR);
770

771 772
#if defined(__LITTLE_ENDIAN__)
	if (mdp->cd->hw_swap)
773
		sh_eth_write(ndev, EDMR_EL, EDMR);
774
	else
775
#endif
776
		sh_eth_write(ndev, 0, EDMR);
777

778
	/* FIFO size set */
779 780
	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
	sh_eth_write(ndev, 0, TFTR);
781

782
	/* Frame recv control */
783
	sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
784 785 786

	rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
	tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
787
	sh_eth_write(ndev, rx_int_var | tx_int_var, TRSCER);
788

789
	if (mdp->cd->bculr)
790
		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
791

792
	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
793

794
	if (!mdp->cd->no_trimd)
795
		sh_eth_write(ndev, 0, TRIMD);
796

797
	/* Recv frame limit set register */
798
	sh_eth_write(ndev, RFLR_VALUE, RFLR);
799

800 801
	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
802 803

	/* PAUSE Prohibition */
804
	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
805 806
		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;

807
	sh_eth_write(ndev, val, ECMR);
808

809 810 811
	if (mdp->cd->set_rate)
		mdp->cd->set_rate(ndev);

812
	/* E-MAC Status Register clear */
813
	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
814 815

	/* E-MAC Interrupt Enable register */
816
	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
817 818 819 820 821

	/* Set MAC address */
	update_mac_address(ndev);

	/* mask reset */
822
	if (mdp->cd->apr)
823
		sh_eth_write(ndev, APR_AP, APR);
824
	if (mdp->cd->mpr)
825
		sh_eth_write(ndev, MPR_MP, MPR);
826
	if (mdp->cd->tpauser)
827
		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
828

829
	/* Setting the Rx mode will start the Rx process. */
830
	sh_eth_write(ndev, EDRRR_R, EDRRR);
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847

	netif_start_queue(ndev);

	return ret;
}

/* free Tx skb function */
static int sh_eth_txfree(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	struct sh_eth_txdesc *txdesc;
	int freeNum = 0;
	int entry = 0;

	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
		entry = mdp->dirty_tx % TX_RING_SIZE;
		txdesc = &mdp->tx_ring[entry];
848
		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
849 850 851 852 853 854 855
			break;
		/* Free the original skb. */
		if (mdp->tx_skbuff[entry]) {
			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
			mdp->tx_skbuff[entry] = NULL;
			freeNum++;
		}
856
		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
857
		if (entry >= TX_RING_SIZE - 1)
858
			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875

		mdp->stats.tx_packets++;
		mdp->stats.tx_bytes += txdesc->buffer_length;
	}
	return freeNum;
}

/* Packet receive function */
static int sh_eth_rx(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	struct sh_eth_rxdesc *rxdesc;

	int entry = mdp->cur_rx % RX_RING_SIZE;
	int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
	struct sk_buff *skb;
	u16 pkt_len = 0;
876
	u32 desc_status;
877 878

	rxdesc = &mdp->rx_ring[entry];
879 880
	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
		desc_status = edmac_to_cpu(mdp, rxdesc->status);
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
		pkt_len = rxdesc->frame_length;

		if (--boguscnt < 0)
			break;

		if (!(desc_status & RDFEND))
			mdp->stats.rx_length_errors++;

		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
			mdp->stats.rx_errors++;
			if (desc_status & RD_RFS1)
				mdp->stats.rx_crc_errors++;
			if (desc_status & RD_RFS2)
				mdp->stats.rx_frame_errors++;
			if (desc_status & RD_RFS3)
				mdp->stats.rx_length_errors++;
			if (desc_status & RD_RFS4)
				mdp->stats.rx_length_errors++;
			if (desc_status & RD_RFS6)
				mdp->stats.rx_missed_errors++;
			if (desc_status & RD_RFS10)
				mdp->stats.rx_over_errors++;
		} else {
905 906 907 908
			if (!mdp->cd->hw_swap)
				sh_eth_soft_swap(
					phys_to_virt(ALIGN(rxdesc->addr, 4)),
					pkt_len + 2);
909 910
			skb = mdp->rx_skbuff[entry];
			mdp->rx_skbuff[entry] = NULL;
911 912
			if (mdp->cd->rpadir)
				skb_reserve(skb, NET_IP_ALIGN);
913 914 915 916 917 918
			skb_put(skb, pkt_len);
			skb->protocol = eth_type_trans(skb, ndev);
			netif_rx(skb);
			mdp->stats.rx_packets++;
			mdp->stats.rx_bytes += pkt_len;
		}
919
		rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
920
		entry = (++mdp->cur_rx) % RX_RING_SIZE;
921
		rxdesc = &mdp->rx_ring[entry];
922 923 924 925 926 927
	}

	/* Refill the Rx ring buffers. */
	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
		entry = mdp->dirty_rx % RX_RING_SIZE;
		rxdesc = &mdp->rx_ring[entry];
928
		/* The size of the buffer is 16 byte boundary. */
929
		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
930

931 932 933 934 935
		if (mdp->rx_skbuff[entry] == NULL) {
			skb = dev_alloc_skb(mdp->rx_buf_sz);
			mdp->rx_skbuff[entry] = skb;
			if (skb == NULL)
				break;	/* Better luck next round. */
936 937
			dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
					DMA_FROM_DEVICE);
938
			skb->dev = ndev;
939 940
			sh_eth_set_receive_align(skb);

941
			skb_checksum_none_assert(skb);
942
			rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
943 944 945
		}
		if (entry >= RX_RING_SIZE - 1)
			rxdesc->status |=
946
				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
947 948
		else
			rxdesc->status |=
949
				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
950 951 952 953
	}

	/* Restart Rx engine if stopped. */
	/* If we don't need to check status, don't. -KDU */
954 955
	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R))
		sh_eth_write(ndev, EDRRR_R, EDRRR);
956 957 958 959

	return 0;
}

960
static void sh_eth_rcv_snd_disable(struct net_device *ndev)
961 962
{
	/* disable tx and rx */
963 964
	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
		~(ECMR_RE | ECMR_TE), ECMR);
965 966
}

967
static void sh_eth_rcv_snd_enable(struct net_device *ndev)
968 969
{
	/* enable tx and rx */
970 971
	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
		(ECMR_RE | ECMR_TE), ECMR);
972 973
}

974 975 976 977 978
/* error control function */
static void sh_eth_error(struct net_device *ndev, int intr_status)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	u32 felic_stat;
979 980
	u32 link_stat;
	u32 mask;
981 982

	if (intr_status & EESR_ECI) {
983 984
		felic_stat = sh_eth_read(ndev, ECSR);
		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
985 986 987 988
		if (felic_stat & ECSR_ICD)
			mdp->stats.tx_carrier_errors++;
		if (felic_stat & ECSR_LCHNG) {
			/* Link Changed */
989
			if (mdp->cd->no_psr || mdp->no_ether_link) {
990 991 992 993 994
				if (mdp->link == PHY_DOWN)
					link_stat = 0;
				else
					link_stat = PHY_ST_LINK;
			} else {
995
				link_stat = (sh_eth_read(ndev, PSR));
996 997
				if (mdp->ether_link_active_low)
					link_stat = ~link_stat;
998
			}
999
			if (!(link_stat & PHY_ST_LINK))
1000
				sh_eth_rcv_snd_disable(ndev);
1001
			else {
1002
				/* Link Up */
1003 1004
				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
					  ~DMAC_M_ECI, EESIPR);
1005
				/*clear int */
1006 1007 1008 1009
				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
					  ECSR);
				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
					  DMAC_M_ECI, EESIPR);
1010
				/* enable tx and rx */
1011
				sh_eth_rcv_snd_enable(ndev);
1012 1013 1014 1015 1016 1017 1018 1019
			}
		}
	}

	if (intr_status & EESR_TWB) {
		/* Write buck end. unused write back interrupt */
		if (intr_status & EESR_TABT)	/* Transmit Abort int */
			mdp->stats.tx_aborted_errors++;
1020 1021
			if (netif_msg_tx_err(mdp))
				dev_err(&ndev->dev, "Transmit Abort\n");
1022 1023 1024 1025 1026 1027 1028
	}

	if (intr_status & EESR_RABT) {
		/* Receive Abort int */
		if (intr_status & EESR_RFRMER) {
			/* Receive Frame Overflow int */
			mdp->stats.rx_frame_errors++;
1029 1030
			if (netif_msg_rx_err(mdp))
				dev_err(&ndev->dev, "Receive Abort\n");
1031 1032
		}
	}
1033

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	if (intr_status & EESR_TDE) {
		/* Transmit Descriptor Empty int */
		mdp->stats.tx_fifo_errors++;
		if (netif_msg_tx_err(mdp))
			dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
	}

	if (intr_status & EESR_TFE) {
		/* FIFO under flow */
		mdp->stats.tx_fifo_errors++;
		if (netif_msg_tx_err(mdp))
			dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1046 1047 1048 1049 1050 1051
	}

	if (intr_status & EESR_RDE) {
		/* Receive Descriptor Empty int */
		mdp->stats.rx_over_errors++;

1052 1053
		if (sh_eth_read(ndev, EDRRR) ^ EDRRR_R)
			sh_eth_write(ndev, EDRRR_R, EDRRR);
1054 1055
		if (netif_msg_rx_err(mdp))
			dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1056
	}
1057

1058 1059 1060
	if (intr_status & EESR_RFE) {
		/* Receive FIFO Overflow int */
		mdp->stats.rx_fifo_errors++;
1061 1062 1063 1064 1065 1066 1067 1068 1069
		if (netif_msg_rx_err(mdp))
			dev_err(&ndev->dev, "Receive FIFO Overflow\n");
	}

	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
		/* Address Error */
		mdp->stats.tx_fifo_errors++;
		if (netif_msg_tx_err(mdp))
			dev_err(&ndev->dev, "Address Error\n");
1070
	}
1071 1072 1073 1074 1075

	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
	if (mdp->cd->no_ade)
		mask &= ~EESR_ADE;
	if (intr_status & mask) {
1076
		/* Tx error */
1077
		u32 edtrr = sh_eth_read(ndev, EDTRR);
1078
		/* dmesg */
1079 1080 1081
		dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
				intr_status, mdp->cur_tx);
		dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1082 1083 1084 1085 1086
				mdp->dirty_tx, (u32) ndev->state, edtrr);
		/* dirty buffer free */
		sh_eth_txfree(ndev);

		/* SH7712 BUG */
1087
		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1088
			/* tx dma start */
1089
			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
		}
		/* wakeup */
		netif_wake_queue(ndev);
	}
}

static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
{
	struct net_device *ndev = netdev;
	struct sh_eth_private *mdp = netdev_priv(ndev);
1100
	struct sh_eth_cpu_data *cd = mdp->cd;
1101
	irqreturn_t ret = IRQ_NONE;
1102
	u32 intr_status = 0;
1103 1104 1105

	spin_lock(&mdp->lock);

1106
	/* Get interrpt stat */
1107
	intr_status = sh_eth_read(ndev, EESR);
1108
	/* Clear interrupt */
1109 1110
	if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
			EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
1111
			cd->tx_check | cd->eesr_err_check)) {
1112
		sh_eth_write(ndev, intr_status, EESR);
1113 1114 1115
		ret = IRQ_HANDLED;
	} else
		goto other_irq;
1116

1117 1118 1119 1120 1121 1122 1123
	if (intr_status & (EESR_FRC | /* Frame recv*/
			EESR_RMAF | /* Multi cast address recv*/
			EESR_RRF  | /* Bit frame recv */
			EESR_RTLF | /* Long frame recv*/
			EESR_RTSF | /* short frame recv */
			EESR_PRE  | /* PHY-LSI recv error */
			EESR_CERF)){ /* recv frame CRC error */
1124
		sh_eth_rx(ndev);
1125
	}
1126

1127
	/* Tx Check */
1128
	if (intr_status & cd->tx_check) {
1129 1130 1131 1132
		sh_eth_txfree(ndev);
		netif_wake_queue(ndev);
	}

1133
	if (intr_status & cd->eesr_err_check)
1134 1135
		sh_eth_error(ndev, intr_status);

1136
other_irq:
1137 1138
	spin_unlock(&mdp->lock);

1139
	return ret;
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
}

static void sh_eth_timer(unsigned long data)
{
	struct net_device *ndev = (struct net_device *)data;
	struct sh_eth_private *mdp = netdev_priv(ndev);

	mod_timer(&mdp->timer, jiffies + (10 * HZ));
}

/* PHY state control function */
static void sh_eth_adjust_link(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	struct phy_device *phydev = mdp->phydev;
	int new_state = 0;

	if (phydev->link != PHY_DOWN) {
		if (phydev->duplex != mdp->duplex) {
			new_state = 1;
			mdp->duplex = phydev->duplex;
1161 1162
			if (mdp->cd->set_duplex)
				mdp->cd->set_duplex(ndev);
1163 1164 1165 1166 1167
		}

		if (phydev->speed != mdp->speed) {
			new_state = 1;
			mdp->speed = phydev->speed;
1168 1169
			if (mdp->cd->set_rate)
				mdp->cd->set_rate(ndev);
1170 1171
		}
		if (mdp->link == PHY_DOWN) {
1172 1173
			sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_TXF)
					| ECMR_DM, ECMR);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
			new_state = 1;
			mdp->link = phydev->link;
		}
	} else if (mdp->link) {
		new_state = 1;
		mdp->link = PHY_DOWN;
		mdp->speed = 0;
		mdp->duplex = -1;
	}

1184
	if (new_state && netif_msg_link(mdp))
1185 1186 1187 1188 1189 1190 1191
		phy_print_status(phydev);
}

/* PHY init function */
static int sh_eth_phy_init(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
1192
	char phy_id[MII_BUS_ID_SIZE + 3];
1193 1194
	struct phy_device *phydev = NULL;

1195
	snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1196 1197 1198 1199 1200 1201 1202
		mdp->mii_bus->id , mdp->phy_id);

	mdp->link = PHY_DOWN;
	mdp->speed = 0;
	mdp->duplex = -1;

	/* Try connect to PHY */
1203
	phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1204
				0, mdp->phy_interface);
1205 1206 1207 1208
	if (IS_ERR(phydev)) {
		dev_err(&ndev->dev, "phy_connect failed\n");
		return PTR_ERR(phydev);
	}
1209

1210
	dev_info(&ndev->dev, "attached phy %i to driver %s\n",
1211
		phydev->addr, phydev->drv->name);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

	mdp->phydev = phydev;

	return 0;
}

/* PHY control start function */
static int sh_eth_phy_start(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	int ret;

	ret = sh_eth_phy_init(ndev);
	if (ret)
		return ret;

	/* reset phy - this also wakes it from PDOWN */
	phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
	phy_start(mdp->phydev);

	return 0;
}

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
static int sh_eth_get_settings(struct net_device *ndev,
			struct ethtool_cmd *ecmd)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&mdp->lock, flags);
	ret = phy_ethtool_gset(mdp->phydev, ecmd);
	spin_unlock_irqrestore(&mdp->lock, flags);

	return ret;
}

static int sh_eth_set_settings(struct net_device *ndev,
		struct ethtool_cmd *ecmd)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&mdp->lock, flags);

	/* disable tx and rx */
1259
	sh_eth_rcv_snd_disable(ndev);
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276

	ret = phy_ethtool_sset(mdp->phydev, ecmd);
	if (ret)
		goto error_exit;

	if (ecmd->duplex == DUPLEX_FULL)
		mdp->duplex = 1;
	else
		mdp->duplex = 0;

	if (mdp->cd->set_duplex)
		mdp->cd->set_duplex(ndev);

error_exit:
	mdelay(1);

	/* enable tx and rx */
1277
	sh_eth_rcv_snd_enable(ndev);
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359

	spin_unlock_irqrestore(&mdp->lock, flags);

	return ret;
}

static int sh_eth_nway_reset(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&mdp->lock, flags);
	ret = phy_start_aneg(mdp->phydev);
	spin_unlock_irqrestore(&mdp->lock, flags);

	return ret;
}

static u32 sh_eth_get_msglevel(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	return mdp->msg_enable;
}

static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	mdp->msg_enable = value;
}

static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
	"rx_current", "tx_current",
	"rx_dirty", "tx_dirty",
};
#define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)

static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
{
	switch (sset) {
	case ETH_SS_STATS:
		return SH_ETH_STATS_LEN;
	default:
		return -EOPNOTSUPP;
	}
}

static void sh_eth_get_ethtool_stats(struct net_device *ndev,
			struct ethtool_stats *stats, u64 *data)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	int i = 0;

	/* device-specific stats */
	data[i++] = mdp->cur_rx;
	data[i++] = mdp->cur_tx;
	data[i++] = mdp->dirty_rx;
	data[i++] = mdp->dirty_tx;
}

static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
{
	switch (stringset) {
	case ETH_SS_STATS:
		memcpy(data, *sh_eth_gstrings_stats,
					sizeof(sh_eth_gstrings_stats));
		break;
	}
}

static struct ethtool_ops sh_eth_ethtool_ops = {
	.get_settings	= sh_eth_get_settings,
	.set_settings	= sh_eth_set_settings,
	.nway_reset		= sh_eth_nway_reset,
	.get_msglevel	= sh_eth_get_msglevel,
	.set_msglevel	= sh_eth_set_msglevel,
	.get_link		= ethtool_op_get_link,
	.get_strings	= sh_eth_get_strings,
	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
	.get_sset_count     = sh_eth_get_sset_count,
};

1360 1361 1362 1363 1364 1365
/* network device open function */
static int sh_eth_open(struct net_device *ndev)
{
	int ret = 0;
	struct sh_eth_private *mdp = netdev_priv(ndev);

1366 1367
	pm_runtime_get_sync(&mdp->pdev->dev);

1368
	ret = request_irq(ndev->irq, sh_eth_interrupt,
1369
#if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
1370 1371
	defined(CONFIG_CPU_SUBTYPE_SH7764) || \
	defined(CONFIG_CPU_SUBTYPE_SH7757)
1372 1373 1374 1375 1376
				IRQF_SHARED,
#else
				0,
#endif
				ndev->name, ndev);
1377
	if (ret) {
1378
		dev_err(&ndev->dev, "Can not assign IRQ number\n");
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
		return ret;
	}

	/* Descriptor set */
	ret = sh_eth_ring_init(ndev);
	if (ret)
		goto out_free_irq;

	/* device init */
	ret = sh_eth_dev_init(ndev);
	if (ret)
		goto out_free_irq;

	/* PHY control start*/
	ret = sh_eth_phy_start(ndev);
	if (ret)
		goto out_free_irq;

	/* Set the timer to check for link beat. */
	init_timer(&mdp->timer);
	mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
1400
	setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
1401 1402 1403 1404 1405

	return ret;

out_free_irq:
	free_irq(ndev->irq, ndev);
1406
	pm_runtime_put_sync(&mdp->pdev->dev);
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	return ret;
}

/* Timeout function */
static void sh_eth_tx_timeout(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	struct sh_eth_rxdesc *rxdesc;
	int i;

	netif_stop_queue(ndev);

1419 1420
	if (netif_msg_timer(mdp))
		dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
1421
	       " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

	/* tx_errors count up */
	mdp->stats.tx_errors++;

	/* timer off */
	del_timer_sync(&mdp->timer);

	/* Free all the skbuffs in the Rx queue. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		rxdesc = &mdp->rx_ring[i];
		rxdesc->status = 0;
		rxdesc->addr = 0xBADF00D0;
		if (mdp->rx_skbuff[i])
			dev_kfree_skb(mdp->rx_skbuff[i]);
		mdp->rx_skbuff[i] = NULL;
	}
	for (i = 0; i < TX_RING_SIZE; i++) {
		if (mdp->tx_skbuff[i])
			dev_kfree_skb(mdp->tx_skbuff[i]);
		mdp->tx_skbuff[i] = NULL;
	}

	/* device init */
	sh_eth_dev_init(ndev);

	/* timer on */
	mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
	add_timer(&mdp->timer);
}

/* Packet transmit function */
static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	struct sh_eth_txdesc *txdesc;
	u32 entry;
1458
	unsigned long flags;
1459 1460 1461 1462

	spin_lock_irqsave(&mdp->lock, flags);
	if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
		if (!sh_eth_txfree(ndev)) {
1463 1464
			if (netif_msg_tx_queued(mdp))
				dev_warn(&ndev->dev, "TxFD exhausted.\n");
1465 1466
			netif_stop_queue(ndev);
			spin_unlock_irqrestore(&mdp->lock, flags);
1467
			return NETDEV_TX_BUSY;
1468 1469 1470 1471 1472 1473 1474
		}
	}
	spin_unlock_irqrestore(&mdp->lock, flags);

	entry = mdp->cur_tx % TX_RING_SIZE;
	mdp->tx_skbuff[entry] = skb;
	txdesc = &mdp->tx_ring[entry];
1475
	txdesc->addr = virt_to_phys(skb->data);
1476
	/* soft swap. */
1477 1478 1479
	if (!mdp->cd->hw_swap)
		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
				 skb->len + 2);
1480 1481 1482 1483 1484 1485 1486 1487
	/* write back */
	__flush_purge_region(skb->data, skb->len);
	if (skb->len < ETHERSMALL)
		txdesc->buffer_length = ETHERSMALL;
	else
		txdesc->buffer_length = skb->len;

	if (entry >= TX_RING_SIZE - 1)
1488
		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
1489
	else
1490
		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
1491 1492 1493

	mdp->cur_tx++;

1494 1495
	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1496

1497
	return NETDEV_TX_OK;
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
}

/* device close function */
static int sh_eth_close(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	int ringsize;

	netif_stop_queue(ndev);

	/* Disable interrupts by clearing the interrupt mask. */
1509
	sh_eth_write(ndev, 0x0000, EESIPR);
1510 1511

	/* Stop the chip's Tx and Rx processes. */
1512 1513
	sh_eth_write(ndev, 0, EDTRR);
	sh_eth_write(ndev, 0, EDRRR);
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

	/* PHY Disconnect */
	if (mdp->phydev) {
		phy_stop(mdp->phydev);
		phy_disconnect(mdp->phydev);
	}

	free_irq(ndev->irq, ndev);

	del_timer_sync(&mdp->timer);

	/* Free all the skbuffs in the Rx queue. */
	sh_eth_ring_free(ndev);

	/* free DMA buffer */
	ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
	dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);

	/* free DMA buffer */
	ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
	dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);

1536 1537
	pm_runtime_put_sync(&mdp->pdev->dev);

1538 1539 1540 1541 1542 1543 1544
	return 0;
}

static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);

1545 1546
	pm_runtime_get_sync(&mdp->pdev->dev);

1547 1548 1549 1550 1551 1552
	mdp->stats.tx_dropped += sh_eth_read(ndev, TROCR);
	sh_eth_write(ndev, 0, TROCR);	/* (write clear) */
	mdp->stats.collisions += sh_eth_read(ndev, CDCR);
	sh_eth_write(ndev, 0, CDCR);	/* (write clear) */
	mdp->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
	sh_eth_write(ndev, 0, LCCR);	/* (write clear) */
1553 1554 1555 1556 1557 1558 1559 1560 1561
	if (sh_eth_is_gether(mdp)) {
		mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
		sh_eth_write(ndev, 0, CERCR);	/* (write clear) */
		mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
		sh_eth_write(ndev, 0, CEECR);	/* (write clear) */
	} else {
		mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
		sh_eth_write(ndev, 0, CNDCR);	/* (write clear) */
	}
1562 1563
	pm_runtime_put_sync(&mdp->pdev->dev);

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	return &mdp->stats;
}

/* ioctl to device funciotn*/
static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
				int cmd)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	struct phy_device *phydev = mdp->phydev;

	if (!netif_running(ndev))
		return -EINVAL;

	if (!phydev)
		return -ENODEV;

1580
	return phy_mii_ioctl(phydev, rq, cmd);
1581 1582
}

1583
#if defined(SH_ETH_HAS_TSU)
1584 1585 1586 1587 1588
/* Multicast reception directions set */
static void sh_eth_set_multicast_list(struct net_device *ndev)
{
	if (ndev->flags & IFF_PROMISC) {
		/* Set promiscuous. */
1589 1590
		sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_MCT) |
				ECMR_PRM, ECMR);
1591 1592
	} else {
		/* Normal, unicast/broadcast-only mode. */
1593 1594
		sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) |
				ECMR_MCT, ECMR);
1595 1596
	}
}
1597
#endif /* SH_ETH_HAS_TSU */
1598 1599

/* SuperH's TSU register init function */
1600
static void sh_eth_tsu_init(struct sh_eth_private *mdp)
1601
{
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
1612 1613 1614 1615 1616 1617 1618
	if (sh_eth_is_gether(mdp)) {
		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
	} else {
		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
	}
1619 1620 1621 1622 1623 1624 1625
	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
}

/* MDIO bus release function */
static int sh_mdio_release(struct net_device *ndev)
{
	struct mii_bus *bus = dev_get_drvdata(&ndev->dev);

	/* unregister mdio bus */
	mdiobus_unregister(bus);

	/* remove mdio bus info from net_device */
	dev_set_drvdata(&ndev->dev, NULL);

1639 1640 1641
	/* free interrupts memory */
	kfree(bus->irq);

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	/* free bitbang info */
	free_mdio_bitbang(bus);

	return 0;
}

/* MDIO bus init function */
static int sh_mdio_init(struct net_device *ndev, int id)
{
	int ret, i;
	struct bb_info *bitbang;
	struct sh_eth_private *mdp = netdev_priv(ndev);

	/* create bit control struct for PHY */
	bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
	if (!bitbang) {
		ret = -ENOMEM;
		goto out;
	}

	/* bitbang init */
1663
	bitbang->addr = ndev->base_addr + mdp->reg_offset[PIR];
1664 1665 1666 1667 1668 1669
	bitbang->mdi_msk = 0x08;
	bitbang->mdo_msk = 0x04;
	bitbang->mmd_msk = 0x02;/* MMD */
	bitbang->mdc_msk = 0x01;
	bitbang->ctrl.ops = &bb_ops;

1670
	/* MII controller setting */
1671 1672 1673 1674 1675 1676 1677 1678
	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
	if (!mdp->mii_bus) {
		ret = -ENOMEM;
		goto out_free_bitbang;
	}

	/* Hook up MII support for ethtool */
	mdp->mii_bus->name = "sh_mii";
1679
	mdp->mii_bus->parent = &ndev->dev;
1680
	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%x", id);
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

	/* PHY IRQ */
	mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
	if (!mdp->mii_bus->irq) {
		ret = -ENOMEM;
		goto out_free_bus;
	}

	for (i = 0; i < PHY_MAX_ADDR; i++)
		mdp->mii_bus->irq[i] = PHY_POLL;

	/* regist mdio bus */
	ret = mdiobus_register(mdp->mii_bus);
	if (ret)
		goto out_free_irq;

	dev_set_drvdata(&ndev->dev, mdp->mii_bus);

	return 0;

out_free_irq:
	kfree(mdp->mii_bus->irq);

out_free_bus:
1705
	free_mdio_bitbang(mdp->mii_bus);
1706 1707 1708 1709 1710 1711 1712 1713

out_free_bitbang:
	kfree(bitbang);

out:
	return ret;
}

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
static const u16 *sh_eth_get_register_offset(int register_type)
{
	const u16 *reg_offset = NULL;

	switch (register_type) {
	case SH_ETH_REG_GIGABIT:
		reg_offset = sh_eth_offset_gigabit;
		break;
	case SH_ETH_REG_FAST_SH4:
		reg_offset = sh_eth_offset_fast_sh4;
		break;
	case SH_ETH_REG_FAST_SH3_SH2:
		reg_offset = sh_eth_offset_fast_sh3_sh2;
		break;
	default:
		printk(KERN_ERR "Unknown register type (%d)\n", register_type);
		break;
	}

	return reg_offset;
}

1736 1737 1738 1739 1740
static const struct net_device_ops sh_eth_netdev_ops = {
	.ndo_open		= sh_eth_open,
	.ndo_stop		= sh_eth_close,
	.ndo_start_xmit		= sh_eth_start_xmit,
	.ndo_get_stats		= sh_eth_get_stats,
1741
#if defined(SH_ETH_HAS_TSU)
1742
	.ndo_set_multicast_list	= sh_eth_set_multicast_list,
1743
#endif
1744 1745 1746 1747 1748 1749 1750
	.ndo_tx_timeout		= sh_eth_tx_timeout,
	.ndo_do_ioctl		= sh_eth_do_ioctl,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_set_mac_address	= eth_mac_addr,
	.ndo_change_mtu		= eth_change_mtu,
};

1751 1752
static int sh_eth_drv_probe(struct platform_device *pdev)
{
1753
	int ret, devno = 0;
1754 1755 1756
	struct resource *res;
	struct net_device *ndev = NULL;
	struct sh_eth_private *mdp;
1757
	struct sh_eth_plat_data *pd;
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768

	/* get base addr */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (unlikely(res == NULL)) {
		dev_err(&pdev->dev, "invalid resource\n");
		ret = -EINVAL;
		goto out;
	}

	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
	if (!ndev) {
1769
		dev_err(&pdev->dev, "Could not allocate device.\n");
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
		ret = -ENOMEM;
		goto out;
	}

	/* The sh Ether-specific entries in the device structure. */
	ndev->base_addr = res->start;
	devno = pdev->id;
	if (devno < 0)
		devno = 0;

	ndev->dma = -1;
1781 1782
	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
1783 1784 1785
		ret = -ENODEV;
		goto out_release;
	}
1786
	ndev->irq = ret;
1787 1788 1789 1790 1791 1792 1793 1794

	SET_NETDEV_DEV(ndev, &pdev->dev);

	/* Fill in the fields of the device structure with ethernet values. */
	ether_setup(ndev);

	mdp = netdev_priv(ndev);
	spin_lock_init(&mdp->lock);
1795 1796 1797
	mdp->pdev = pdev;
	pm_runtime_enable(&pdev->dev);
	pm_runtime_resume(&pdev->dev);
1798

1799
	pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
1800
	/* get PHY ID */
1801
	mdp->phy_id = pd->phy;
1802
	mdp->phy_interface = pd->phy_interface;
1803 1804
	/* EDMAC endian */
	mdp->edmac_endian = pd->edmac_endian;
1805 1806
	mdp->no_ether_link = pd->no_ether_link;
	mdp->ether_link_active_low = pd->ether_link_active_low;
1807
	mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
1808

1809
	/* set cpu data */
1810 1811 1812
#if defined(SH_ETH_HAS_BOTH_MODULES)
	mdp->cd = sh_eth_get_cpu_data(mdp);
#else
1813
	mdp->cd = &sh_eth_my_cpu_data;
1814
#endif
1815 1816
	sh_eth_set_default_cpu_data(mdp->cd);

1817
	/* set function */
1818
	ndev->netdev_ops = &sh_eth_netdev_ops;
1819
	SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
1820 1821
	ndev->watchdog_timeo = TX_TIMEOUT;

1822 1823
	/* debug message level */
	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
1824 1825 1826 1827
	mdp->post_rx = POST_RX >> (devno << 1);
	mdp->post_fw = POST_FW >> (devno << 1);

	/* read and set MAC address */
1828
	read_mac_address(ndev, pd->mac_addr);
1829 1830 1831

	/* First device only init */
	if (!devno) {
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
		if (mdp->cd->tsu) {
			struct resource *rtsu;
			rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
			if (!rtsu) {
				dev_err(&pdev->dev, "Not found TSU resource\n");
				goto out_release;
			}
			mdp->tsu_addr = ioremap(rtsu->start,
						resource_size(rtsu));
		}
1842 1843
		if (mdp->cd->chip_reset)
			mdp->cd->chip_reset(ndev);
1844

1845 1846 1847 1848
		if (mdp->cd->tsu) {
			/* TSU init (Init only)*/
			sh_eth_tsu_init(mdp);
		}
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	}

	/* network device register */
	ret = register_netdev(ndev);
	if (ret)
		goto out_release;

	/* mdio bus init */
	ret = sh_mdio_init(ndev, pdev->id);
	if (ret)
		goto out_unregister;

1861 1862 1863
	/* print device infomation */
	pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
	       (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873

	platform_set_drvdata(pdev, ndev);

	return ret;

out_unregister:
	unregister_netdev(ndev);

out_release:
	/* net_dev free */
1874 1875
	if (mdp->tsu_addr)
		iounmap(mdp->tsu_addr);
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	if (ndev)
		free_netdev(ndev);

out:
	return ret;
}

static int sh_eth_drv_remove(struct platform_device *pdev)
{
	struct net_device *ndev = platform_get_drvdata(pdev);
1886
	struct sh_eth_private *mdp = netdev_priv(ndev);
1887

1888
	iounmap(mdp->tsu_addr);
1889 1890
	sh_mdio_release(ndev);
	unregister_netdev(ndev);
1891
	pm_runtime_disable(&pdev->dev);
1892 1893 1894 1895 1896 1897
	free_netdev(ndev);
	platform_set_drvdata(pdev, NULL);

	return 0;
}

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
static int sh_eth_runtime_nop(struct device *dev)
{
	/*
	 * Runtime PM callback shared between ->runtime_suspend()
	 * and ->runtime_resume(). Simply returns success.
	 *
	 * This driver re-initializes all registers after
	 * pm_runtime_get_sync() anyway so there is no need
	 * to save and restore registers here.
	 */
	return 0;
}

static struct dev_pm_ops sh_eth_dev_pm_ops = {
	.runtime_suspend = sh_eth_runtime_nop,
	.runtime_resume = sh_eth_runtime_nop,
};

1916 1917 1918 1919 1920
static struct platform_driver sh_eth_driver = {
	.probe = sh_eth_drv_probe,
	.remove = sh_eth_drv_remove,
	.driver = {
		   .name = CARDNAME,
1921
		   .pm = &sh_eth_dev_pm_ops,
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	},
};

static int __init sh_eth_init(void)
{
	return platform_driver_register(&sh_eth_driver);
}

static void __exit sh_eth_cleanup(void)
{
	platform_driver_unregister(&sh_eth_driver);
}

module_init(sh_eth_init);
module_exit(sh_eth_cleanup);

MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
MODULE_LICENSE("GPL v2");