kprobes.c 26.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 *  Kernel Probes (KProbes)
 *  arch/ia64/kernel/kprobes.c
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) IBM Corporation, 2002, 2004
 * Copyright (C) Intel Corporation, 2005
 *
 * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
 *              <anil.s.keshavamurthy@intel.com> adapted from i386
 */

#include <linux/kprobes.h>
#include <linux/ptrace.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/moduleloader.h>
32
#include <linux/kdebug.h>
33 34

#include <asm/pgtable.h>
35
#include <asm/sections.h>
36
#include <asm/uaccess.h>
37

38 39
extern void jprobe_inst_return(void);

40 41
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

enum instruction_type {A, I, M, F, B, L, X, u};
static enum instruction_type bundle_encoding[32][3] = {
  { M, I, I },				/* 00 */
  { M, I, I },				/* 01 */
  { M, I, I },				/* 02 */
  { M, I, I },				/* 03 */
  { M, L, X },				/* 04 */
  { M, L, X },				/* 05 */
  { u, u, u },  			/* 06 */
  { u, u, u },  			/* 07 */
  { M, M, I },				/* 08 */
  { M, M, I },				/* 09 */
  { M, M, I },				/* 0A */
  { M, M, I },				/* 0B */
  { M, F, I },				/* 0C */
  { M, F, I },				/* 0D */
  { M, M, F },				/* 0E */
  { M, M, F },				/* 0F */
  { M, I, B },				/* 10 */
  { M, I, B },				/* 11 */
  { M, B, B },				/* 12 */
  { M, B, B },				/* 13 */
  { u, u, u },  			/* 14 */
  { u, u, u },  			/* 15 */
  { B, B, B },				/* 16 */
  { B, B, B },				/* 17 */
  { M, M, B },				/* 18 */
  { M, M, B },				/* 19 */
  { u, u, u },  			/* 1A */
  { u, u, u },  			/* 1B */
  { M, F, B },				/* 1C */
  { M, F, B },				/* 1D */
  { u, u, u },  			/* 1E */
  { u, u, u },  			/* 1F */
};

79 80 81 82 83
/*
 * In this function we check to see if the instruction
 * is IP relative instruction and update the kprobe
 * inst flag accordingly
 */
84 85 86 87
static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
					      uint major_opcode,
					      unsigned long kprobe_inst,
					      struct kprobe *p)
88
{
R
Rusty Lynch 已提交
89 90
	p->ainsn.inst_flag = 0;
	p->ainsn.target_br_reg = 0;
T
Tony Luck 已提交
91
	p->ainsn.slot = slot;
92

93
	/* Check for Break instruction
B
bibo,mao 已提交
94
	 * Bits 37:40 Major opcode to be zero
95 96 97 98 99 100 101 102 103
	 * Bits 27:32 X6 to be zero
	 * Bits 32:35 X3 to be zero
	 */
	if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
		/* is a break instruction */
	 	p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
		return;
	}

104 105 106 107
	if (bundle_encoding[template][slot] == B) {
		switch (major_opcode) {
		  case INDIRECT_CALL_OPCODE:
	 		p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
B
bibo,mao 已提交
108 109
			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
			break;
110 111 112
		  case IP_RELATIVE_PREDICT_OPCODE:
		  case IP_RELATIVE_BRANCH_OPCODE:
			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
B
bibo,mao 已提交
113
			break;
114
		  case IP_RELATIVE_CALL_OPCODE:
B
bibo,mao 已提交
115 116 117 118
			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
			break;
119
		}
B
bibo,mao 已提交
120
	} else if (bundle_encoding[template][slot] == X) {
121 122 123 124 125 126 127 128 129
		switch (major_opcode) {
		  case LONG_CALL_OPCODE:
			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
		  break;
		}
	}
	return;
}
130

131 132 133 134 135 136
/*
 * In this function we check to see if the instruction
 * (qp) cmpx.crel.ctype p1,p2=r2,r3
 * on which we are inserting kprobe is cmp instruction
 * with ctype as unc.
 */
137 138 139
static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
					    uint major_opcode,
					    unsigned long kprobe_inst)
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
{
	cmp_inst_t cmp_inst;
	uint ctype_unc = 0;

	if (!((bundle_encoding[template][slot] == I) ||
		(bundle_encoding[template][slot] == M)))
		goto out;

	if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
		(major_opcode == 0xE)))
		goto out;

	cmp_inst.l = kprobe_inst;
	if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
		/* Integere compare - Register Register (A6 type)*/
		if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
				&&(cmp_inst.f.c == 1))
			ctype_unc = 1;
	} else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
		/* Integere compare - Immediate Register (A8 type)*/
		if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
			ctype_unc = 1;
	}
out:
	return ctype_unc;
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
/*
 * In this function we check to see if the instruction
 * on which we are inserting kprobe is supported.
 * Returns qp value if supported
 * Returns -EINVAL if unsupported
 */
static int __kprobes unsupported_inst(uint template, uint  slot,
				      uint major_opcode,
				      unsigned long kprobe_inst,
				      unsigned long addr)
{
	int qp;

	qp = kprobe_inst & 0x3f;
	if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) {
		if (slot == 1 && qp)  {
			printk(KERN_WARNING "Kprobes on cmp unc"
					"instruction on slot 1 at <0x%lx>"
					"is not supported\n", addr);
			return -EINVAL;

		}
		qp = 0;
	}
	else if (bundle_encoding[template][slot] == I) {
		if (major_opcode == 0) {
			/*
			 * Check for Integer speculation instruction
			 * - Bit 33-35 to be equal to 0x1
			 */
			if (((kprobe_inst >> 33) & 0x7) == 1) {
				printk(KERN_WARNING
					"Kprobes on speculation inst at <0x%lx> not supported\n",
						addr);
				return -EINVAL;
			}
			/*
			 * IP relative mov instruction
			 *  - Bit 27-35 to be equal to 0x30
			 */
			if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
				printk(KERN_WARNING
					"Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
						addr);
				return -EINVAL;

			}
		}
		else if ((major_opcode == 5) &&	!(kprobe_inst & (0xFUl << 33)) &&
				(kprobe_inst & (0x1UL << 12))) {
			/* test bit instructions, tbit,tnat,tf
			 * bit 33-36 to be equal to 0
			 * bit 12 to be equal to 1
			 */
			if (slot == 1 && qp) {
				printk(KERN_WARNING "Kprobes on test bit"
						"instruction on slot at <0x%lx>"
						"is not supported\n", addr);
				return -EINVAL;
			}
			qp = 0;
		}
	}
	else if (bundle_encoding[template][slot] == B) {
		if (major_opcode == 7) {
			/* IP-Relative Predict major code is 7 */
			printk(KERN_WARNING "Kprobes on IP-Relative"
					"Predict is not supported\n");
			return -EINVAL;
		}
		else if (major_opcode == 2) {
			/* Indirect Predict, major code is 2
			 * bit 27-32 to be equal to 10 or 11
			 */
			int x6=(kprobe_inst >> 27) & 0x3F;
			if ((x6 == 0x10) || (x6 == 0x11)) {
				printk(KERN_WARNING "Kprobes on"
					"Indirect Predict is not supported\n");
				return -EINVAL;
			}
		}
	}
	/* kernel does not use float instruction, here for safety kprobe
	 * will judge whether it is fcmp/flass/float approximation instruction
	 */
	else if (unlikely(bundle_encoding[template][slot] == F)) {
		if ((major_opcode == 4 || major_opcode == 5) &&
				(kprobe_inst  & (0x1 << 12))) {
			/* fcmp/fclass unc instruction */
			if (slot == 1 && qp) {
				printk(KERN_WARNING "Kprobes on fcmp/fclass "
					"instruction on slot at <0x%lx> "
					"is not supported\n", addr);
				return -EINVAL;

			}
			qp = 0;
		}
		if ((major_opcode == 0 || major_opcode == 1) &&
			(kprobe_inst & (0x1UL << 33))) {
			/* float Approximation instruction */
			if (slot == 1 && qp) {
				printk(KERN_WARNING "Kprobes on float Approx "
					"instr at <0x%lx> is not supported\n",
						addr);
				return -EINVAL;
			}
			qp = 0;
		}
	}
	return qp;
}

280 281 282 283
/*
 * In this function we override the bundle with
 * the break instruction at the given slot.
 */
284 285 286
static void __kprobes prepare_break_inst(uint template, uint  slot,
					 uint major_opcode,
					 unsigned long kprobe_inst,
287 288
					 struct kprobe *p,
					 int qp)
289 290
{
	unsigned long break_inst = BREAK_INST;
291
	bundle_t *bundle = &p->opcode.bundle;
292 293 294

	/*
	 * Copy the original kprobe_inst qualifying predicate(qp)
295
	 * to the break instruction
296
	 */
297
	break_inst |= qp;
298 299 300 301 302 303 304 305 306 307 308 309

	switch (slot) {
	  case 0:
		bundle->quad0.slot0 = break_inst;
		break;
	  case 1:
		bundle->quad0.slot1_p0 = break_inst;
		bundle->quad1.slot1_p1 = break_inst >> (64-46);
		break;
	  case 2:
		bundle->quad1.slot2 = break_inst;
		break;
R
Rusty Lynch 已提交
310
	}
311

312 313 314 315 316 317 318 319
	/*
	 * Update the instruction flag, so that we can
	 * emulate the instruction properly after we
	 * single step on original instruction
	 */
	update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
}

320
static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
321 322 323 324 325 326
	       	unsigned long *kprobe_inst, uint *major_opcode)
{
	unsigned long kprobe_inst_p0, kprobe_inst_p1;
	unsigned int template;

	template = bundle->quad0.template;
327 328

	switch (slot) {
329
	  case 0:
B
bibo,mao 已提交
330 331 332
		*major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
		*kprobe_inst = bundle->quad0.slot0;
		  break;
333
	  case 1:
B
bibo,mao 已提交
334 335 336 337
		*major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
		kprobe_inst_p0 = bundle->quad0.slot1_p0;
		kprobe_inst_p1 = bundle->quad1.slot1_p1;
		*kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
338
		break;
339
	  case 2:
B
bibo,mao 已提交
340 341
		*major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
		*kprobe_inst = bundle->quad1.slot2;
342 343
		break;
	}
344
}
345

346
/* Returns non-zero if the addr is in the Interrupt Vector Table */
347
static int __kprobes in_ivt_functions(unsigned long addr)
348 349 350 351 352
{
	return (addr >= (unsigned long)__start_ivt_text
		&& addr < (unsigned long)__end_ivt_text);
}

353 354
static int __kprobes valid_kprobe_addr(int template, int slot,
				       unsigned long addr)
355 356
{
	if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
357 358
		printk(KERN_WARNING "Attempting to insert unaligned kprobe "
				"at 0x%lx\n", addr);
359
		return -EINVAL;
R
Rusty Lynch 已提交
360
	}
361

B
bibo,mao 已提交
362 363
	if (in_ivt_functions(addr)) {
		printk(KERN_WARNING "Kprobes can't be inserted inside "
364
				"IVT functions at 0x%lx\n", addr);
B
bibo,mao 已提交
365 366
		return -EINVAL;
	}
367

368 369 370
	return 0;
}

371
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
372
{
373 374
	kcb->prev_kprobe.kp = kprobe_running();
	kcb->prev_kprobe.status = kcb->kprobe_status;
375 376
}

377
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
378
{
379 380
	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
	kcb->kprobe_status = kcb->prev_kprobe.status;
381 382
}

383
static void __kprobes set_current_kprobe(struct kprobe *p,
384
			struct kprobe_ctlblk *kcb)
385
{
386
	__get_cpu_var(current_kprobe) = p;
387 388
}

389 390 391 392 393 394 395 396 397 398 399 400
static void kretprobe_trampoline(void)
{
}

/*
 * At this point the target function has been tricked into
 * returning into our trampoline.  Lookup the associated instance
 * and then:
 *    - call the handler function
 *    - cleanup by marking the instance as unused
 *    - long jump back to the original return address
 */
401
int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
402 403
{
	struct kretprobe_instance *ri = NULL;
404
	struct hlist_head *head, empty_rp;
405
	struct hlist_node *node, *tmp;
406
	unsigned long flags, orig_ret_address = 0;
407 408 409
	unsigned long trampoline_address =
		((struct fnptr *)kretprobe_trampoline)->ip;

410
	INIT_HLIST_HEAD(&empty_rp);
411
	spin_lock_irqsave(&kretprobe_lock, flags);
412
	head = kretprobe_inst_table_head(current);
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427

	/*
	 * It is possible to have multiple instances associated with a given
	 * task either because an multiple functions in the call path
	 * have a return probe installed on them, and/or more then one return
	 * return probe was registered for a target function.
	 *
	 * We can handle this because:
	 *     - instances are always inserted at the head of the list
	 *     - when multiple return probes are registered for the same
	 *       function, the first instance's ret_addr will point to the
	 *       real return address, and all the rest will point to
	 *       kretprobe_trampoline
	 */
	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
428
		if (ri->task != current)
429
			/* another task is sharing our hash bucket */
430
			continue;
431 432 433 434 435

		if (ri->rp && ri->rp->handler)
			ri->rp->handler(ri, regs);

		orig_ret_address = (unsigned long)ri->ret_addr;
436
		recycle_rp_inst(ri, &empty_rp);
437 438 439 440 441 442 443 444 445 446 447 448 449

		if (orig_ret_address != trampoline_address)
			/*
			 * This is the real return address. Any other
			 * instances associated with this task are for
			 * other calls deeper on the call stack
			 */
			break;
	}

	BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
	regs->cr_iip = orig_ret_address;

450
	reset_current_kprobe();
451
	spin_unlock_irqrestore(&kretprobe_lock, flags);
452 453
	preempt_enable_no_resched();

454 455 456 457
	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
		hlist_del(&ri->hlist);
		kfree(ri);
	}
458 459 460 461 462
	/*
	 * By returning a non-zero value, we are telling
	 * kprobe_handler() that we don't want the post_handler
	 * to run (and have re-enabled preemption)
	 */
463
	return 1;
464 465
}

466
/* Called with kretprobe_lock held */
467 468
void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
				      struct pt_regs *regs)
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
{
	struct kretprobe_instance *ri;

	if ((ri = get_free_rp_inst(rp)) != NULL) {
		ri->rp = rp;
		ri->task = current;
		ri->ret_addr = (kprobe_opcode_t *)regs->b0;

		/* Replace the return addr with trampoline addr */
		regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;

		add_rp_inst(ri);
	} else {
		rp->nmissed++;
	}
}

486
int __kprobes arch_prepare_kprobe(struct kprobe *p)
487 488 489 490 491
{
	unsigned long addr = (unsigned long) p->addr;
	unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
	unsigned long kprobe_inst=0;
	unsigned int slot = addr & 0xf, template, major_opcode = 0;
492
	bundle_t *bundle;
493
	int qp;
494

495
	bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
B
bibo,mao 已提交
496
	template = bundle->quad0.template;
497 498 499 500 501

	if(valid_kprobe_addr(template, slot, addr))
		return -EINVAL;

	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
B
bibo,mao 已提交
502 503
	if (slot == 1 && bundle_encoding[template][1] == L)
		slot++;
504 505 506 507

	/* Get kprobe_inst and major_opcode from the bundle */
	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);

508 509 510
	qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr);
	if (qp < 0)
		return -EINVAL;
R
Rusty Lynch 已提交
511

512 513 514 515 516
	p->ainsn.insn = get_insn_slot();
	if (!p->ainsn.insn)
		return -ENOMEM;
	memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
	memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
R
Rusty Lynch 已提交
517

518
	prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp);
519

520
	return 0;
521 522
}

523
void __kprobes arch_arm_kprobe(struct kprobe *p)
R
Rusty Lynch 已提交
524
{
T
Tony Luck 已提交
525 526 527 528 529 530
	unsigned long arm_addr;
	bundle_t *src, *dest;

	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
	src = &p->opcode.bundle;
R
Rusty Lynch 已提交
531

532 533
	flush_icache_range((unsigned long)p->ainsn.insn,
			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
T
Tony Luck 已提交
534 535 536 537 538 539 540 541 542 543 544
	switch (p->ainsn.slot) {
		case 0:
			dest->quad0.slot0 = src->quad0.slot0;
			break;
		case 1:
			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
			break;
		case 2:
			dest->quad1.slot2 = src->quad1.slot2;
			break;
	}
545
	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
546 547
}

548
void __kprobes arch_disarm_kprobe(struct kprobe *p)
549
{
T
Tony Luck 已提交
550 551
	unsigned long arm_addr;
	bundle_t *src, *dest;
552

T
Tony Luck 已提交
553 554
	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
555
	/* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
T
Tony Luck 已提交
556 557 558 559 560 561 562 563 564 565 566 567
	src = &p->ainsn.insn->bundle;
	switch (p->ainsn.slot) {
		case 0:
			dest->quad0.slot0 = src->quad0.slot0;
			break;
		case 1:
			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
			break;
		case 2:
			dest->quad1.slot2 = src->quad1.slot2;
			break;
	}
568
	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
569 570
}

571 572 573
void __kprobes arch_remove_kprobe(struct kprobe *p)
{
	mutex_lock(&kprobe_mutex);
574
	free_insn_slot(p->ainsn.insn, 0);
575 576
	mutex_unlock(&kprobe_mutex);
}
577 578 579 580
/*
 * We are resuming execution after a single step fault, so the pt_regs
 * structure reflects the register state after we executed the instruction
 * located in the kprobe (p->ainsn.insn.bundle).  We still need to adjust
581 582 583
 * the ip to point back to the original stack address. To set the IP address
 * to original stack address, handle the case where we need to fixup the
 * relative IP address and/or fixup branch register.
584
 */
585
static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
586
{
B
bibo,mao 已提交
587 588 589 590
	unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
	unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
	unsigned long template;
	int slot = ((unsigned long)p->addr & 0xf);
591

592
	template = p->ainsn.insn->bundle.quad0.template;
593

B
bibo,mao 已提交
594 595
	if (slot == 1 && bundle_encoding[template][1] == L)
		slot = 2;
596 597 598 599 600

	if (p->ainsn.inst_flag) {

		if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
			/* Fix relative IP address */
B
bibo,mao 已提交
601 602
			regs->cr_iip = (regs->cr_iip - bundle_addr) +
					resume_addr;
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
		}

		if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
		/*
		 * Fix target branch register, software convention is
		 * to use either b0 or b6 or b7, so just checking
		 * only those registers
		 */
			switch (p->ainsn.target_br_reg) {
			case 0:
				if ((regs->b0 == bundle_addr) ||
					(regs->b0 == bundle_addr + 0x10)) {
					regs->b0 = (regs->b0 - bundle_addr) +
						resume_addr;
				}
				break;
			case 6:
				if ((regs->b6 == bundle_addr) ||
					(regs->b6 == bundle_addr + 0x10)) {
					regs->b6 = (regs->b6 - bundle_addr) +
						resume_addr;
				}
				break;
			case 7:
				if ((regs->b7 == bundle_addr) ||
					(regs->b7 == bundle_addr + 0x10)) {
					regs->b7 = (regs->b7 - bundle_addr) +
						resume_addr;
				}
				break;
			} /* end switch */
		}
		goto turn_ss_off;
	}
637

638
	if (slot == 2) {
B
bibo,mao 已提交
639 640 641 642 643 644 645
		if (regs->cr_iip == bundle_addr + 0x10) {
			regs->cr_iip = resume_addr + 0x10;
		}
	} else {
		if (regs->cr_iip == bundle_addr) {
			regs->cr_iip = resume_addr;
		}
646
	}
647

648
turn_ss_off:
B
bibo,mao 已提交
649 650
	/* Turn off Single Step bit */
	ia64_psr(regs)->ss = 0;
651 652
}

653
static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
654
{
655
	unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
656 657
	unsigned long slot = (unsigned long)p->addr & 0xf;

658 659 660 661 662
	/* single step inline if break instruction */
	if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
		regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
	else
		regs->cr_iip = bundle_addr & ~0xFULL;
663 664 665 666 667 668 669 670 671 672

	if (slot > 2)
		slot = 0;

	ia64_psr(regs)->ri = slot;

	/* turn on single stepping */
	ia64_psr(regs)->ss = 1;
}

673 674 675 676 677 678 679 680 681 682 683 684 685
static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
{
	unsigned int slot = ia64_psr(regs)->ri;
	unsigned int template, major_opcode;
	unsigned long kprobe_inst;
	unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
	bundle_t bundle;

	memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
	template = bundle.quad0.template;

	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
	if (slot == 1 && bundle_encoding[template][1] == L)
B
bibo,mao 已提交
686
		slot++;
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704

	/* Get Kprobe probe instruction at given slot*/
	get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode);

	/* For break instruction,
	 * Bits 37:40 Major opcode to be zero
	 * Bits 27:32 X6 to be zero
	 * Bits 32:35 X3 to be zero
	 */
	if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) {
		/* Not a break instruction */
		return 0;
	}

	/* Is a break instruction */
	return 1;
}

705
static int __kprobes pre_kprobes_handler(struct die_args *args)
706 707 708
{
	struct kprobe *p;
	int ret = 0;
709
	struct pt_regs *regs = args->regs;
710
	kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
711 712 713 714 715 716 717 718
	struct kprobe_ctlblk *kcb;

	/*
	 * We don't want to be preempted for the entire
	 * duration of kprobe processing
	 */
	preempt_disable();
	kcb = get_kprobe_ctlblk();
719 720 721 722 723

	/* Handle recursion cases */
	if (kprobe_running()) {
		p = get_kprobe(addr);
		if (p) {
724
			if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
725
	 		     (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
B
bibo,mao 已提交
726
				ia64_psr(regs)->ss = 0;
727 728
				goto no_kprobe;
			}
729 730 731 732 733 734
			/* We have reentered the pre_kprobe_handler(), since
			 * another probe was hit while within the handler.
			 * We here save the original kprobes variables and
			 * just single step on the instruction of the new probe
			 * without calling any user handlers.
			 */
735 736
			save_previous_kprobe(kcb);
			set_current_kprobe(p, kcb);
737
			kprobes_inc_nmissed_count(p);
738
			prepare_ss(p, regs);
739
			kcb->kprobe_status = KPROBE_REENTER;
740
			return 1;
741
		} else if (args->err == __IA64_BREAK_JPROBE) {
742 743 744
			/*
			 * jprobe instrumented function just completed
			 */
745
			p = __get_cpu_var(current_kprobe);
746 747 748
			if (p->break_handler && p->break_handler(p, regs)) {
				goto ss_probe;
			}
749 750 751 752 753 754 755
		} else if (!is_ia64_break_inst(regs)) {
			/* The breakpoint instruction was removed by
			 * another cpu right after we hit, no further
			 * handling of this interrupt is appropriate
			 */
			ret = 1;
			goto no_kprobe;
756 757 758
		} else {
			/* Not our break */
			goto no_kprobe;
759 760 761 762 763
		}
	}

	p = get_kprobe(addr);
	if (!p) {
764 765 766 767 768 769 770 771 772 773 774 775 776
		if (!is_ia64_break_inst(regs)) {
			/*
			 * The breakpoint instruction was removed right
			 * after we hit it.  Another cpu has removed
			 * either a probepoint or a debugger breakpoint
			 * at this address.  In either case, no further
			 * handling of this interrupt is appropriate.
			 */
			ret = 1;

		}

		/* Not one of our break, let kernel handle it */
777 778 779
		goto no_kprobe;
	}

780 781
	set_current_kprobe(p, kcb);
	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
782 783 784 785

	if (p->pre_handler && p->pre_handler(p, regs))
		/*
		 * Our pre-handler is specifically requesting that we just
786 787
		 * do a return.  This is used for both the jprobe pre-handler
		 * and the kretprobe trampoline
788 789 790 791 792
		 */
		return 1;

ss_probe:
	prepare_ss(p, regs);
793
	kcb->kprobe_status = KPROBE_HIT_SS;
794 795 796
	return 1;

no_kprobe:
797
	preempt_enable_no_resched();
798 799 800
	return ret;
}

801
static int __kprobes post_kprobes_handler(struct pt_regs *regs)
802
{
803 804 805 806
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	if (!cur)
807 808
		return 0;

809 810 811
	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
		kcb->kprobe_status = KPROBE_HIT_SSDONE;
		cur->post_handler(cur, regs, 0);
812
	}
813

814
	resume_execution(cur, regs);
815

816
	/*Restore back the original saved kprobes variables and continue. */
817 818
	if (kcb->kprobe_status == KPROBE_REENTER) {
		restore_previous_kprobe(kcb);
819 820
		goto out;
	}
821
	reset_current_kprobe();
822 823

out:
824 825 826 827
	preempt_enable_no_resched();
	return 1;
}

828
static int __kprobes kprobes_fault_handler(struct pt_regs *regs, int trapnr)
829
{
830 831 832
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

833

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
	switch(kcb->kprobe_status) {
	case KPROBE_HIT_SS:
	case KPROBE_REENTER:
		/*
		 * We are here because the instruction being single
		 * stepped caused a page fault. We reset the current
		 * kprobe and the instruction pointer points back to
		 * the probe address and allow the page fault handler
		 * to continue as a normal page fault.
		 */
		regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
		ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
		if (kcb->kprobe_status == KPROBE_REENTER)
			restore_previous_kprobe(kcb);
		else
			reset_current_kprobe();
850
		preempt_enable_no_resched();
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
		break;
	case KPROBE_HIT_ACTIVE:
	case KPROBE_HIT_SSDONE:
		/*
		 * We increment the nmissed count for accounting,
		 * we can also use npre/npostfault count for accouting
		 * these specific fault cases.
		 */
		kprobes_inc_nmissed_count(cur);

		/*
		 * We come here because instructions in the pre/post
		 * handler caused the page_fault, this could happen
		 * if handler tries to access user space by
		 * copy_from_user(), get_user() etc. Let the
		 * user-specified handler try to fix it first.
		 */
		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
			return 1;
870 871 872 873 874 875
		/*
		 * In case the user-specified fault handler returned
		 * zero, try to fix up.
		 */
		if (ia64_done_with_exception(regs))
			return 1;
876 877 878 879 880 881 882

		/*
		 * Let ia64_do_page_fault() fix it.
		 */
		break;
	default:
		break;
883 884 885 886 887
	}

	return 0;
}

888 889
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
				       unsigned long val, void *data)
890 891
{
	struct die_args *args = (struct die_args *)data;
892 893
	int ret = NOTIFY_DONE;

894 895 896
	if (args->regs && user_mode(args->regs))
		return ret;

897 898
	switch(val) {
	case DIE_BREAK:
899
		/* err is break number from ia64_bad_break() */
T
Tony Luck 已提交
900 901 902
		if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12)
			|| args->err == __IA64_BREAK_JPROBE
			|| args->err == 0)
903 904
			if (pre_kprobes_handler(args))
				ret = NOTIFY_STOP;
905
		break;
906 907 908 909 910
	case DIE_FAULT:
		/* err is vector number from ia64_fault() */
		if (args->err == 36)
			if (post_kprobes_handler(args->regs))
				ret = NOTIFY_STOP;
911 912
		break;
	case DIE_PAGE_FAULT:
913 914 915 916
		/* kprobe_running() needs smp_processor_id() */
		preempt_disable();
		if (kprobe_running() &&
			kprobes_fault_handler(args->regs, args->trapnr))
917
			ret = NOTIFY_STOP;
918
		preempt_enable();
919 920 921
	default:
		break;
	}
922
	return ret;
923 924
}

925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
struct param_bsp_cfm {
	unsigned long ip;
	unsigned long *bsp;
	unsigned long cfm;
};

static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
{
	unsigned long ip;
	struct param_bsp_cfm *lp = arg;

	do {
		unw_get_ip(info, &ip);
		if (ip == 0)
			break;
		if (ip == lp->ip) {
			unw_get_bsp(info, (unsigned long*)&lp->bsp);
			unw_get_cfm(info, (unsigned long*)&lp->cfm);
			return;
		}
	} while (unw_unwind(info) >= 0);
M
Matthew Wilcox 已提交
946
	lp->bsp = NULL;
947 948 949 950
	lp->cfm = 0;
	return;
}

951
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
952
{
953 954
	struct jprobe *jp = container_of(p, struct jprobe, kp);
	unsigned long addr = ((struct fnptr *)(jp->entry))->ip;
955
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
	struct param_bsp_cfm pa;
	int bytes;

	/*
	 * Callee owns the argument space and could overwrite it, eg
	 * tail call optimization. So to be absolutely safe
	 * we save the argument space before transfering the control
	 * to instrumented jprobe function which runs in
	 * the process context
	 */
	pa.ip = regs->cr_iip;
	unw_init_running(ia64_get_bsp_cfm, &pa);
	bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f)
				- (char *)pa.bsp;
	memcpy( kcb->jprobes_saved_stacked_regs,
		pa.bsp,
		bytes );
	kcb->bsp = pa.bsp;
	kcb->cfm = pa.cfm;
975

976
	/* save architectural state */
977
	kcb->jprobe_saved_regs = *regs;
978 979 980 981 982 983 984 985 986 987

	/* after rfi, execute the jprobe instrumented function */
	regs->cr_iip = addr & ~0xFULL;
	ia64_psr(regs)->ri = addr & 0xf;
	regs->r1 = ((struct fnptr *)(jp->entry))->gp;

	/*
	 * fix the return address to our jprobe_inst_return() function
	 * in the jprobes.S file
	 */
B
bibo,mao 已提交
988
	regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;
989 990

	return 1;
991 992
}

993
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
994
{
995
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
996
	int bytes;
997

998
	/* restoring architectural state */
999
	*regs = kcb->jprobe_saved_regs;
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

	/* restoring the original argument space */
	flush_register_stack();
	bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f)
				- (char *)kcb->bsp;
	memcpy( kcb->bsp,
		kcb->jprobes_saved_stacked_regs,
		bytes );
	invalidate_stacked_regs();

1010
	preempt_enable_no_resched();
1011
	return 1;
1012
}
1013 1014 1015 1016 1017

static struct kprobe trampoline_p = {
	.pre_handler = trampoline_probe_handler
};

1018
int __init arch_init_kprobes(void)
1019 1020 1021 1022 1023
{
	trampoline_p.addr =
		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
	return register_kprobe(&trampoline_p);
}