kprobes.c 24.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 *  Kernel Probes (KProbes)
 *  arch/ia64/kernel/kprobes.c
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) IBM Corporation, 2002, 2004
 * Copyright (C) Intel Corporation, 2005
 *
 * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
 *              <anil.s.keshavamurthy@intel.com> adapted from i386
 */

#include <linux/kprobes.h>
#include <linux/ptrace.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/moduleloader.h>

#include <asm/pgtable.h>
#include <asm/kdebug.h>
35
#include <asm/sections.h>
36
#include <asm/uaccess.h>
37

38 39
extern void jprobe_inst_return(void);

40 41
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

enum instruction_type {A, I, M, F, B, L, X, u};
static enum instruction_type bundle_encoding[32][3] = {
  { M, I, I },				/* 00 */
  { M, I, I },				/* 01 */
  { M, I, I },				/* 02 */
  { M, I, I },				/* 03 */
  { M, L, X },				/* 04 */
  { M, L, X },				/* 05 */
  { u, u, u },  			/* 06 */
  { u, u, u },  			/* 07 */
  { M, M, I },				/* 08 */
  { M, M, I },				/* 09 */
  { M, M, I },				/* 0A */
  { M, M, I },				/* 0B */
  { M, F, I },				/* 0C */
  { M, F, I },				/* 0D */
  { M, M, F },				/* 0E */
  { M, M, F },				/* 0F */
  { M, I, B },				/* 10 */
  { M, I, B },				/* 11 */
  { M, B, B },				/* 12 */
  { M, B, B },				/* 13 */
  { u, u, u },  			/* 14 */
  { u, u, u },  			/* 15 */
  { B, B, B },				/* 16 */
  { B, B, B },				/* 17 */
  { M, M, B },				/* 18 */
  { M, M, B },				/* 19 */
  { u, u, u },  			/* 1A */
  { u, u, u },  			/* 1B */
  { M, F, B },				/* 1C */
  { M, F, B },				/* 1D */
  { u, u, u },  			/* 1E */
  { u, u, u },  			/* 1F */
};

79 80 81 82 83
/*
 * In this function we check to see if the instruction
 * is IP relative instruction and update the kprobe
 * inst flag accordingly
 */
84 85 86 87
static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
					      uint major_opcode,
					      unsigned long kprobe_inst,
					      struct kprobe *p)
88
{
R
Rusty Lynch 已提交
89 90
	p->ainsn.inst_flag = 0;
	p->ainsn.target_br_reg = 0;
91

92 93 94 95 96 97 98 99 100 101 102
	/* Check for Break instruction
 	 * Bits 37:40 Major opcode to be zero
	 * Bits 27:32 X6 to be zero
	 * Bits 32:35 X3 to be zero
	 */
	if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
		/* is a break instruction */
	 	p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
		return;
	}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
	if (bundle_encoding[template][slot] == B) {
		switch (major_opcode) {
		  case INDIRECT_CALL_OPCODE:
	 		p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
 			break;
		  case IP_RELATIVE_PREDICT_OPCODE:
		  case IP_RELATIVE_BRANCH_OPCODE:
			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
 			break;
		  case IP_RELATIVE_CALL_OPCODE:
 			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
 			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
 			break;
		}
 	} else if (bundle_encoding[template][slot] == X) {
		switch (major_opcode) {
		  case LONG_CALL_OPCODE:
			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
		  break;
		}
	}
	return;
}
129

130 131 132 133 134 135
/*
 * In this function we check to see if the instruction
 * on which we are inserting kprobe is supported.
 * Returns 0 if supported
 * Returns -EINVAL if unsupported
 */
136 137 138 139
static int __kprobes unsupported_inst(uint template, uint  slot,
				      uint major_opcode,
				      unsigned long kprobe_inst,
				      struct kprobe *p)
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
{
	unsigned long addr = (unsigned long)p->addr;

	if (bundle_encoding[template][slot] == I) {
		switch (major_opcode) {
			case 0x0: //I_UNIT_MISC_OPCODE:
			/*
			 * Check for Integer speculation instruction
			 * - Bit 33-35 to be equal to 0x1
			 */
			if (((kprobe_inst >> 33) & 0x7) == 1) {
				printk(KERN_WARNING
					"Kprobes on speculation inst at <0x%lx> not supported\n",
					addr);
				return -EINVAL;
			}

			/*
			 * IP relative mov instruction
			 *  - Bit 27-35 to be equal to 0x30
			 */
			if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
				printk(KERN_WARNING
					"Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
					addr);
				return -EINVAL;

			}
		}
	}
	return 0;
}


174 175 176 177 178 179
/*
 * In this function we check to see if the instruction
 * (qp) cmpx.crel.ctype p1,p2=r2,r3
 * on which we are inserting kprobe is cmp instruction
 * with ctype as unc.
 */
180 181 182
static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
					    uint major_opcode,
					    unsigned long kprobe_inst)
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
{
	cmp_inst_t cmp_inst;
	uint ctype_unc = 0;

	if (!((bundle_encoding[template][slot] == I) ||
		(bundle_encoding[template][slot] == M)))
		goto out;

	if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
		(major_opcode == 0xE)))
		goto out;

	cmp_inst.l = kprobe_inst;
	if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
		/* Integere compare - Register Register (A6 type)*/
		if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
				&&(cmp_inst.f.c == 1))
			ctype_unc = 1;
	} else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
		/* Integere compare - Immediate Register (A8 type)*/
		if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
			ctype_unc = 1;
	}
out:
	return ctype_unc;
}

210 211 212 213
/*
 * In this function we override the bundle with
 * the break instruction at the given slot.
 */
214 215 216 217
static void __kprobes prepare_break_inst(uint template, uint  slot,
					 uint major_opcode,
					 unsigned long kprobe_inst,
					 struct kprobe *p)
218 219 220 221 222 223
{
	unsigned long break_inst = BREAK_INST;
	bundle_t *bundle = &p->ainsn.insn.bundle;

	/*
	 * Copy the original kprobe_inst qualifying predicate(qp)
224 225 226 227
	 * to the break instruction iff !is_cmp_ctype_unc_inst
	 * because for cmp instruction with ctype equal to unc,
	 * which is a special instruction always needs to be
	 * executed regradless of qp
228
	 */
229 230
	if (!is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst))
		break_inst |= (0x3f & kprobe_inst);
231 232 233 234 235 236 237 238 239 240 241 242

	switch (slot) {
	  case 0:
		bundle->quad0.slot0 = break_inst;
		break;
	  case 1:
		bundle->quad0.slot1_p0 = break_inst;
		bundle->quad1.slot1_p1 = break_inst >> (64-46);
		break;
	  case 2:
		bundle->quad1.slot2 = break_inst;
		break;
R
Rusty Lynch 已提交
243
	}
244

245 246 247 248 249 250 251 252
	/*
	 * Update the instruction flag, so that we can
	 * emulate the instruction properly after we
	 * single step on original instruction
	 */
	update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
}

253
static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
254 255 256 257 258 259
	       	unsigned long *kprobe_inst, uint *major_opcode)
{
	unsigned long kprobe_inst_p0, kprobe_inst_p1;
	unsigned int template;

	template = bundle->quad0.template;
260 261

	switch (slot) {
262 263 264
	  case 0:
 		*major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
 		*kprobe_inst = bundle->quad0.slot0;
265
		break;
266 267 268 269 270
	  case 1:
 		*major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
  		kprobe_inst_p0 = bundle->quad0.slot1_p0;
  		kprobe_inst_p1 = bundle->quad1.slot1_p1;
  		*kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
271
		break;
272 273 274
	  case 2:
 		*major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
 		*kprobe_inst = bundle->quad1.slot2;
275 276
		break;
	}
277
}
278

279
/* Returns non-zero if the addr is in the Interrupt Vector Table */
280
static int __kprobes in_ivt_functions(unsigned long addr)
281 282 283 284 285
{
	return (addr >= (unsigned long)__start_ivt_text
		&& addr < (unsigned long)__end_ivt_text);
}

286 287
static int __kprobes valid_kprobe_addr(int template, int slot,
				       unsigned long addr)
288 289
{
	if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
290 291
		printk(KERN_WARNING "Attempting to insert unaligned kprobe "
				"at 0x%lx\n", addr);
292
		return -EINVAL;
R
Rusty Lynch 已提交
293
	}
294

295 296 297 298 299 300
 	if (in_ivt_functions(addr)) {
 		printk(KERN_WARNING "Kprobes can't be inserted inside "
				"IVT functions at 0x%lx\n", addr);
 		return -EINVAL;
 	}

301 302 303 304 305 306
	if (slot == 1 && bundle_encoding[template][1] != L) {
		printk(KERN_WARNING "Inserting kprobes on slot #1 "
		       "is not supported\n");
		return -EINVAL;
	}

307 308 309
	return 0;
}

310
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
311
{
312 313
	kcb->prev_kprobe.kp = kprobe_running();
	kcb->prev_kprobe.status = kcb->kprobe_status;
314 315
}

316
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
317
{
318 319
	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
	kcb->kprobe_status = kcb->prev_kprobe.status;
320 321
}

322
static void __kprobes set_current_kprobe(struct kprobe *p,
323
			struct kprobe_ctlblk *kcb)
324
{
325
	__get_cpu_var(current_kprobe) = p;
326 327
}

328 329 330 331 332 333 334 335 336 337 338 339
static void kretprobe_trampoline(void)
{
}

/*
 * At this point the target function has been tricked into
 * returning into our trampoline.  Lookup the associated instance
 * and then:
 *    - call the handler function
 *    - cleanup by marking the instance as unused
 *    - long jump back to the original return address
 */
340
int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
341 342 343 344
{
	struct kretprobe_instance *ri = NULL;
	struct hlist_head *head;
	struct hlist_node *node, *tmp;
345
	unsigned long flags, orig_ret_address = 0;
346 347 348
	unsigned long trampoline_address =
		((struct fnptr *)kretprobe_trampoline)->ip;

349
	spin_lock_irqsave(&kretprobe_lock, flags);
350
	head = kretprobe_inst_table_head(current);
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

	/*
	 * It is possible to have multiple instances associated with a given
	 * task either because an multiple functions in the call path
	 * have a return probe installed on them, and/or more then one return
	 * return probe was registered for a target function.
	 *
	 * We can handle this because:
	 *     - instances are always inserted at the head of the list
	 *     - when multiple return probes are registered for the same
	 *       function, the first instance's ret_addr will point to the
	 *       real return address, and all the rest will point to
	 *       kretprobe_trampoline
	 */
	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
366
		if (ri->task != current)
367
			/* another task is sharing our hash bucket */
368
			continue;
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387

		if (ri->rp && ri->rp->handler)
			ri->rp->handler(ri, regs);

		orig_ret_address = (unsigned long)ri->ret_addr;
		recycle_rp_inst(ri);

		if (orig_ret_address != trampoline_address)
			/*
			 * This is the real return address. Any other
			 * instances associated with this task are for
			 * other calls deeper on the call stack
			 */
			break;
	}

	BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
	regs->cr_iip = orig_ret_address;

388
	reset_current_kprobe();
389
	spin_unlock_irqrestore(&kretprobe_lock, flags);
390 391
	preempt_enable_no_resched();

392 393 394 395 396
	/*
	 * By returning a non-zero value, we are telling
	 * kprobe_handler() that we don't want the post_handler
	 * to run (and have re-enabled preemption)
	 */
397
	return 1;
398 399
}

400
/* Called with kretprobe_lock held */
401 402
void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
				      struct pt_regs *regs)
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
{
	struct kretprobe_instance *ri;

	if ((ri = get_free_rp_inst(rp)) != NULL) {
		ri->rp = rp;
		ri->task = current;
		ri->ret_addr = (kprobe_opcode_t *)regs->b0;

		/* Replace the return addr with trampoline addr */
		regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;

		add_rp_inst(ri);
	} else {
		rp->nmissed++;
	}
}

420
int __kprobes arch_prepare_kprobe(struct kprobe *p)
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
{
	unsigned long addr = (unsigned long) p->addr;
	unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
	unsigned long kprobe_inst=0;
	unsigned int slot = addr & 0xf, template, major_opcode = 0;
	bundle_t *bundle = &p->ainsn.insn.bundle;

	memcpy(&p->opcode.bundle, kprobe_addr, sizeof(bundle_t));
	memcpy(&p->ainsn.insn.bundle, kprobe_addr, sizeof(bundle_t));

 	template = bundle->quad0.template;

	if(valid_kprobe_addr(template, slot, addr))
		return -EINVAL;

	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
 	if (slot == 1 && bundle_encoding[template][1] == L)
  		slot++;

	/* Get kprobe_inst and major_opcode from the bundle */
	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);

443 444 445
	if (unsupported_inst(template, slot, major_opcode, kprobe_inst, p))
			return -EINVAL;

446
	prepare_break_inst(template, slot, major_opcode, kprobe_inst, p);
R
Rusty Lynch 已提交
447 448 449 450

	return 0;
}

451 452 453 454 455 456 457 458
void __kprobes flush_insn_slot(struct kprobe *p)
{
	unsigned long arm_addr;

	arm_addr = ((unsigned long)&p->opcode.bundle) & ~0xFULL;
	flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
}

459
void __kprobes arch_arm_kprobe(struct kprobe *p)
R
Rusty Lynch 已提交
460 461 462 463
{
	unsigned long addr = (unsigned long)p->addr;
	unsigned long arm_addr = addr & ~0xFULL;

464
	flush_insn_slot(p);
R
Rusty Lynch 已提交
465
	memcpy((char *)arm_addr, &p->ainsn.insn.bundle, sizeof(bundle_t));
466 467 468
	flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
}

469
void __kprobes arch_disarm_kprobe(struct kprobe *p)
470 471 472 473 474 475 476 477 478 479 480 481 482
{
	unsigned long addr = (unsigned long)p->addr;
	unsigned long arm_addr = addr & ~0xFULL;

	/* p->opcode contains the original unaltered bundle */
	memcpy((char *) arm_addr, (char *) &p->opcode.bundle, sizeof(bundle_t));
	flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
}

/*
 * We are resuming execution after a single step fault, so the pt_regs
 * structure reflects the register state after we executed the instruction
 * located in the kprobe (p->ainsn.insn.bundle).  We still need to adjust
483 484 485
 * the ip to point back to the original stack address. To set the IP address
 * to original stack address, handle the case where we need to fixup the
 * relative IP address and/or fixup branch register.
486
 */
487
static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
488
{
R
Rusty Lynch 已提交
489
  	unsigned long bundle_addr = ((unsigned long) (&p->opcode.bundle)) & ~0xFULL;
490 491 492
  	unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
 	unsigned long template;
 	int slot = ((unsigned long)p->addr & 0xf);
493

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
	template = p->opcode.bundle.quad0.template;

 	if (slot == 1 && bundle_encoding[template][1] == L)
 		slot = 2;

	if (p->ainsn.inst_flag) {

		if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
			/* Fix relative IP address */
 			regs->cr_iip = (regs->cr_iip - bundle_addr) + resume_addr;
		}

		if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
		/*
		 * Fix target branch register, software convention is
		 * to use either b0 or b6 or b7, so just checking
		 * only those registers
		 */
			switch (p->ainsn.target_br_reg) {
			case 0:
				if ((regs->b0 == bundle_addr) ||
					(regs->b0 == bundle_addr + 0x10)) {
					regs->b0 = (regs->b0 - bundle_addr) +
						resume_addr;
				}
				break;
			case 6:
				if ((regs->b6 == bundle_addr) ||
					(regs->b6 == bundle_addr + 0x10)) {
					regs->b6 = (regs->b6 - bundle_addr) +
						resume_addr;
				}
				break;
			case 7:
				if ((regs->b7 == bundle_addr) ||
					(regs->b7 == bundle_addr + 0x10)) {
					regs->b7 = (regs->b7 - bundle_addr) +
						resume_addr;
				}
				break;
			} /* end switch */
		}
		goto turn_ss_off;
	}
538

539 540 541 542 543 544 545 546
	if (slot == 2) {
 		if (regs->cr_iip == bundle_addr + 0x10) {
 			regs->cr_iip = resume_addr + 0x10;
 		}
 	} else {
 		if (regs->cr_iip == bundle_addr) {
 			regs->cr_iip = resume_addr;
 		}
547
	}
548

549 550 551
turn_ss_off:
  	/* Turn off Single Step bit */
  	ia64_psr(regs)->ss = 0;
552 553
}

554
static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
555
{
R
Rusty Lynch 已提交
556
	unsigned long bundle_addr = (unsigned long) &p->opcode.bundle;
557 558
	unsigned long slot = (unsigned long)p->addr & 0xf;

559 560 561 562 563
	/* single step inline if break instruction */
	if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
		regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
	else
		regs->cr_iip = bundle_addr & ~0xFULL;
564 565 566 567 568 569 570 571 572 573

	if (slot > 2)
		slot = 0;

	ia64_psr(regs)->ri = slot;

	/* turn on single stepping */
	ia64_psr(regs)->ss = 1;
}

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
{
	unsigned int slot = ia64_psr(regs)->ri;
	unsigned int template, major_opcode;
	unsigned long kprobe_inst;
	unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
	bundle_t bundle;

	memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
	template = bundle.quad0.template;

	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
	if (slot == 1 && bundle_encoding[template][1] == L)
  		slot++;

	/* Get Kprobe probe instruction at given slot*/
	get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode);

	/* For break instruction,
	 * Bits 37:40 Major opcode to be zero
	 * Bits 27:32 X6 to be zero
	 * Bits 32:35 X3 to be zero
	 */
	if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) {
		/* Not a break instruction */
		return 0;
	}

	/* Is a break instruction */
	return 1;
}

606
static int __kprobes pre_kprobes_handler(struct die_args *args)
607 608 609
{
	struct kprobe *p;
	int ret = 0;
610
	struct pt_regs *regs = args->regs;
611
	kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
612 613 614 615 616 617 618 619
	struct kprobe_ctlblk *kcb;

	/*
	 * We don't want to be preempted for the entire
	 * duration of kprobe processing
	 */
	preempt_disable();
	kcb = get_kprobe_ctlblk();
620 621 622 623 624

	/* Handle recursion cases */
	if (kprobe_running()) {
		p = get_kprobe(addr);
		if (p) {
625
			if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
626 627
	 		     (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
  				ia64_psr(regs)->ss = 0;
628 629
				goto no_kprobe;
			}
630 631 632 633 634 635
			/* We have reentered the pre_kprobe_handler(), since
			 * another probe was hit while within the handler.
			 * We here save the original kprobes variables and
			 * just single step on the instruction of the new probe
			 * without calling any user handlers.
			 */
636 637
			save_previous_kprobe(kcb);
			set_current_kprobe(p, kcb);
638
			kprobes_inc_nmissed_count(p);
639
			prepare_ss(p, regs);
640
			kcb->kprobe_status = KPROBE_REENTER;
641
			return 1;
642
		} else if (args->err == __IA64_BREAK_JPROBE) {
643 644 645
			/*
			 * jprobe instrumented function just completed
			 */
646
			p = __get_cpu_var(current_kprobe);
647 648 649
			if (p->break_handler && p->break_handler(p, regs)) {
				goto ss_probe;
			}
650 651 652 653 654 655 656
		} else if (!is_ia64_break_inst(regs)) {
			/* The breakpoint instruction was removed by
			 * another cpu right after we hit, no further
			 * handling of this interrupt is appropriate
			 */
			ret = 1;
			goto no_kprobe;
657 658 659
		} else {
			/* Not our break */
			goto no_kprobe;
660 661 662 663 664
		}
	}

	p = get_kprobe(addr);
	if (!p) {
665 666 667 668 669 670 671 672 673 674 675 676 677
		if (!is_ia64_break_inst(regs)) {
			/*
			 * The breakpoint instruction was removed right
			 * after we hit it.  Another cpu has removed
			 * either a probepoint or a debugger breakpoint
			 * at this address.  In either case, no further
			 * handling of this interrupt is appropriate.
			 */
			ret = 1;

		}

		/* Not one of our break, let kernel handle it */
678 679 680
		goto no_kprobe;
	}

681 682
	set_current_kprobe(p, kcb);
	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
683 684 685 686

	if (p->pre_handler && p->pre_handler(p, regs))
		/*
		 * Our pre-handler is specifically requesting that we just
687 688
		 * do a return.  This is used for both the jprobe pre-handler
		 * and the kretprobe trampoline
689 690 691 692 693
		 */
		return 1;

ss_probe:
	prepare_ss(p, regs);
694
	kcb->kprobe_status = KPROBE_HIT_SS;
695 696 697
	return 1;

no_kprobe:
698
	preempt_enable_no_resched();
699 700 701
	return ret;
}

702
static int __kprobes post_kprobes_handler(struct pt_regs *regs)
703
{
704 705 706 707
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	if (!cur)
708 709
		return 0;

710 711 712
	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
		kcb->kprobe_status = KPROBE_HIT_SSDONE;
		cur->post_handler(cur, regs, 0);
713
	}
714

715
	resume_execution(cur, regs);
716

717
	/*Restore back the original saved kprobes variables and continue. */
718 719
	if (kcb->kprobe_status == KPROBE_REENTER) {
		restore_previous_kprobe(kcb);
720 721
		goto out;
	}
722
	reset_current_kprobe();
723 724

out:
725 726 727 728
	preempt_enable_no_resched();
	return 1;
}

729
static int __kprobes kprobes_fault_handler(struct pt_regs *regs, int trapnr)
730
{
731 732 733
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

734

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
	switch(kcb->kprobe_status) {
	case KPROBE_HIT_SS:
	case KPROBE_REENTER:
		/*
		 * We are here because the instruction being single
		 * stepped caused a page fault. We reset the current
		 * kprobe and the instruction pointer points back to
		 * the probe address and allow the page fault handler
		 * to continue as a normal page fault.
		 */
		regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
		ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
		if (kcb->kprobe_status == KPROBE_REENTER)
			restore_previous_kprobe(kcb);
		else
			reset_current_kprobe();
751
		preempt_enable_no_resched();
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
		break;
	case KPROBE_HIT_ACTIVE:
	case KPROBE_HIT_SSDONE:
		/*
		 * We increment the nmissed count for accounting,
		 * we can also use npre/npostfault count for accouting
		 * these specific fault cases.
		 */
		kprobes_inc_nmissed_count(cur);

		/*
		 * We come here because instructions in the pre/post
		 * handler caused the page_fault, this could happen
		 * if handler tries to access user space by
		 * copy_from_user(), get_user() etc. Let the
		 * user-specified handler try to fix it first.
		 */
		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
			return 1;

		/*
		 * Let ia64_do_page_fault() fix it.
		 */
		break;
	default:
		break;
778 779 780 781 782
	}

	return 0;
}

783 784
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
				       unsigned long val, void *data)
785 786
{
	struct die_args *args = (struct die_args *)data;
787 788
	int ret = NOTIFY_DONE;

789 790 791
	if (args->regs && user_mode(args->regs))
		return ret;

792 793
	switch(val) {
	case DIE_BREAK:
794
		/* err is break number from ia64_bad_break() */
795
		if (args->err == 0x80200 || args->err == 0x80300 || args->err == 0)
796 797
			if (pre_kprobes_handler(args))
				ret = NOTIFY_STOP;
798
		break;
799 800 801 802 803
	case DIE_FAULT:
		/* err is vector number from ia64_fault() */
		if (args->err == 36)
			if (post_kprobes_handler(args->regs))
				ret = NOTIFY_STOP;
804 805
		break;
	case DIE_PAGE_FAULT:
806 807 808 809
		/* kprobe_running() needs smp_processor_id() */
		preempt_disable();
		if (kprobe_running() &&
			kprobes_fault_handler(args->regs, args->trapnr))
810
			ret = NOTIFY_STOP;
811
		preempt_enable();
812 813 814
	default:
		break;
	}
815
	return ret;
816 817
}

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
struct param_bsp_cfm {
	unsigned long ip;
	unsigned long *bsp;
	unsigned long cfm;
};

static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
{
	unsigned long ip;
	struct param_bsp_cfm *lp = arg;

	do {
		unw_get_ip(info, &ip);
		if (ip == 0)
			break;
		if (ip == lp->ip) {
			unw_get_bsp(info, (unsigned long*)&lp->bsp);
			unw_get_cfm(info, (unsigned long*)&lp->cfm);
			return;
		}
	} while (unw_unwind(info) >= 0);
	lp->bsp = 0;
	lp->cfm = 0;
	return;
}

844
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
845
{
846 847
	struct jprobe *jp = container_of(p, struct jprobe, kp);
	unsigned long addr = ((struct fnptr *)(jp->entry))->ip;
848
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
	struct param_bsp_cfm pa;
	int bytes;

	/*
	 * Callee owns the argument space and could overwrite it, eg
	 * tail call optimization. So to be absolutely safe
	 * we save the argument space before transfering the control
	 * to instrumented jprobe function which runs in
	 * the process context
	 */
	pa.ip = regs->cr_iip;
	unw_init_running(ia64_get_bsp_cfm, &pa);
	bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f)
				- (char *)pa.bsp;
	memcpy( kcb->jprobes_saved_stacked_regs,
		pa.bsp,
		bytes );
	kcb->bsp = pa.bsp;
	kcb->cfm = pa.cfm;
868

869
	/* save architectural state */
870
	kcb->jprobe_saved_regs = *regs;
871 872 873 874 875 876 877 878 879 880 881 882 883

	/* after rfi, execute the jprobe instrumented function */
	regs->cr_iip = addr & ~0xFULL;
	ia64_psr(regs)->ri = addr & 0xf;
	regs->r1 = ((struct fnptr *)(jp->entry))->gp;

	/*
	 * fix the return address to our jprobe_inst_return() function
	 * in the jprobes.S file
	 */
 	regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;

	return 1;
884 885
}

886
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
887
{
888
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
889
	int bytes;
890

891
	/* restoring architectural state */
892
	*regs = kcb->jprobe_saved_regs;
893 894 895 896 897 898 899 900 901 902

	/* restoring the original argument space */
	flush_register_stack();
	bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f)
				- (char *)kcb->bsp;
	memcpy( kcb->bsp,
		kcb->jprobes_saved_stacked_regs,
		bytes );
	invalidate_stacked_regs();

903
	preempt_enable_no_resched();
904
	return 1;
905
}
906 907 908 909 910

static struct kprobe trampoline_p = {
	.pre_handler = trampoline_probe_handler
};

911
int __init arch_init_kprobes(void)
912 913 914 915 916
{
	trampoline_p.addr =
		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
	return register_kprobe(&trampoline_p);
}