siena.c 28.3 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2006-2010 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/module.h>
15
#include <linux/slab.h>
16
#include <linux/random.h>
17 18 19 20
#include "net_driver.h"
#include "bitfield.h"
#include "efx.h"
#include "nic.h"
21
#include "farch_regs.h"
22 23 24 25 26
#include "io.h"
#include "phy.h"
#include "workarounds.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
27
#include "selftest.h"
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

/* Hardware control for SFC9000 family including SFL9021 (aka Siena). */

static void siena_init_wol(struct efx_nic *efx);


static void siena_push_irq_moderation(struct efx_channel *channel)
{
	efx_dword_t timer_cmd;

	if (channel->irq_moderation)
		EFX_POPULATE_DWORD_2(timer_cmd,
				     FRF_CZ_TC_TIMER_MODE,
				     FFE_CZ_TIMER_MODE_INT_HLDOFF,
				     FRF_CZ_TC_TIMER_VAL,
				     channel->irq_moderation - 1);
	else
		EFX_POPULATE_DWORD_2(timer_cmd,
				     FRF_CZ_TC_TIMER_MODE,
				     FFE_CZ_TIMER_MODE_DIS,
				     FRF_CZ_TC_TIMER_VAL, 0);
	efx_writed_page_locked(channel->efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
			       channel->channel);
}

53 54 55 56 57 58 59 60 61 62 63 64
void siena_prepare_flush(struct efx_nic *efx)
{
	if (efx->fc_disable++ == 0)
		efx_mcdi_set_mac(efx);
}

void siena_finish_flush(struct efx_nic *efx)
{
	if (--efx->fc_disable == 0)
		efx_mcdi_set_mac(efx);
}

65
static const struct efx_farch_register_test siena_register_tests[] = {
66
	{ FR_AZ_ADR_REGION,
67
	  EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
	{ FR_CZ_USR_EV_CFG,
	  EFX_OWORD32(0x000103FF, 0x00000000, 0x00000000, 0x00000000) },
	{ FR_AZ_RX_CFG,
	  EFX_OWORD32(0xFFFFFFFE, 0xFFFFFFFF, 0x0003FFFF, 0x00000000) },
	{ FR_AZ_TX_CFG,
	  EFX_OWORD32(0x7FFF0037, 0xFFFF8000, 0xFFFFFFFF, 0x03FFFFFF) },
	{ FR_AZ_TX_RESERVED,
	  EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
	{ FR_AZ_SRM_TX_DC_CFG,
	  EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
	{ FR_AZ_RX_DC_CFG,
	  EFX_OWORD32(0x00000003, 0x00000000, 0x00000000, 0x00000000) },
	{ FR_AZ_RX_DC_PF_WM,
	  EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
	{ FR_BZ_DP_CTRL,
	  EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
	{ FR_BZ_RX_RSS_TKEY,
	  EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
	{ FR_CZ_RX_RSS_IPV6_REG1,
	  EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
	{ FR_CZ_RX_RSS_IPV6_REG2,
	  EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
	{ FR_CZ_RX_RSS_IPV6_REG3,
	  EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000) },
};

94
static int siena_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
95
{
96
	enum reset_type reset_method = RESET_TYPE_ALL;
97 98 99 100 101 102 103
	int rc, rc2;

	efx_reset_down(efx, reset_method);

	/* Reset the chip immediately so that it is completely
	 * quiescent regardless of what any VF driver does.
	 */
104
	rc = efx_mcdi_reset(efx, reset_method);
105 106 107 108
	if (rc)
		goto out;

	tests->registers =
109 110
		efx_farch_test_registers(efx, siena_register_tests,
					 ARRAY_SIZE(siena_register_tests))
111 112
		? -1 : 1;

113
	rc = efx_mcdi_reset(efx, reset_method);
114 115 116
out:
	rc2 = efx_reset_up(efx, reset_method, rc == 0);
	return rc ? rc : rc2;
117 118 119 120 121 122 123 124 125
}

/**************************************************************************
 *
 * Device reset
 *
 **************************************************************************
 */

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
static int siena_map_reset_flags(u32 *flags)
{
	enum {
		SIENA_RESET_PORT = (ETH_RESET_DMA | ETH_RESET_FILTER |
				    ETH_RESET_OFFLOAD | ETH_RESET_MAC |
				    ETH_RESET_PHY),
		SIENA_RESET_MC = (SIENA_RESET_PORT |
				  ETH_RESET_MGMT << ETH_RESET_SHARED_SHIFT),
	};

	if ((*flags & SIENA_RESET_MC) == SIENA_RESET_MC) {
		*flags &= ~SIENA_RESET_MC;
		return RESET_TYPE_WORLD;
	}

	if ((*flags & SIENA_RESET_PORT) == SIENA_RESET_PORT) {
		*flags &= ~SIENA_RESET_PORT;
		return RESET_TYPE_ALL;
	}

	/* no invisible reset implemented */

	return -EINVAL;
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
#ifdef CONFIG_EEH
/* When a PCI device is isolated from the bus, a subsequent MMIO read is
 * required for the kernel EEH mechanisms to notice. As the Solarflare driver
 * was written to minimise MMIO read (for latency) then a periodic call to check
 * the EEH status of the device is required so that device recovery can happen
 * in a timely fashion.
 */
static void siena_monitor(struct efx_nic *efx)
{
	struct eeh_dev *eehdev =
		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));

	eeh_dev_check_failure(eehdev);
}
#endif

167 168
static int siena_probe_nvconfig(struct efx_nic *efx)
{
169 170 171 172 173 174 175 176 177
	u32 caps = 0;
	int rc;

	rc = efx_mcdi_get_board_cfg(efx, efx->net_dev->perm_addr, NULL, &caps);

	efx->timer_quantum_ns =
		(caps & (1 << MC_CMD_CAPABILITIES_TURBO_ACTIVE_LBN)) ?
		3072 : 6144; /* 768 cycles */
	return rc;
178 179
}

180
static int siena_dimension_resources(struct efx_nic *efx)
181 182 183 184 185
{
	/* Each port has a small block of internal SRAM dedicated to
	 * the buffer table and descriptor caches.  In theory we can
	 * map both blocks to one port, but we don't.
	 */
186
	efx_farch_dimension_resources(efx, FR_CZ_BUF_FULL_TBL_ROWS / 2);
187
	return 0;
188 189
}

190 191 192 193 194 195
static unsigned int siena_mem_map_size(struct efx_nic *efx)
{
	return FR_CZ_MC_TREG_SMEM +
		FR_CZ_MC_TREG_SMEM_STEP * FR_CZ_MC_TREG_SMEM_ROWS;
}

196 197 198
static int siena_probe_nic(struct efx_nic *efx)
{
	struct siena_nic_data *nic_data;
199
	efx_oword_t reg;
200 201 202 203 204 205 206 207
	int rc;

	/* Allocate storage for hardware specific data */
	nic_data = kzalloc(sizeof(struct siena_nic_data), GFP_KERNEL);
	if (!nic_data)
		return -ENOMEM;
	efx->nic_data = nic_data;

208
	if (efx_farch_fpga_ver(efx) != 0) {
209 210
		netif_err(efx, probe, efx->net_dev,
			  "Siena FPGA not supported\n");
211 212 213 214
		rc = -ENODEV;
		goto fail1;
	}

215 216
	efx->max_channels = EFX_MAX_CHANNELS;

217
	efx_reado(efx, &reg, FR_AZ_CS_DEBUG);
218
	efx->port_num = EFX_OWORD_FIELD(reg, FRF_CZ_CS_PORT_NUM) - 1;
219

220
	rc = efx_mcdi_init(efx);
221
	if (rc)
222
		goto fail1;
223 224

	/* Now we can reset the NIC */
225
	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
226
	if (rc) {
227
		netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
228 229 230 231 232 233
		goto fail3;
	}

	siena_init_wol(efx);

	/* Allocate memory for INT_KER */
234 235
	rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t),
				  GFP_KERNEL);
236 237 238 239
	if (rc)
		goto fail4;
	BUG_ON(efx->irq_status.dma_addr & 0x0f);

240 241 242 243 244
	netif_dbg(efx, probe, efx->net_dev,
		  "INT_KER at %llx (virt %p phys %llx)\n",
		  (unsigned long long)efx->irq_status.dma_addr,
		  efx->irq_status.addr,
		  (unsigned long long)virt_to_phys(efx->irq_status.addr));
245 246 247 248

	/* Read in the non-volatile configuration */
	rc = siena_probe_nvconfig(efx);
	if (rc == -EINVAL) {
249 250
		netif_err(efx, probe, efx->net_dev,
			  "NVRAM is invalid therefore using defaults\n");
251 252 253 254 255 256
		efx->phy_type = PHY_TYPE_NONE;
		efx->mdio.prtad = MDIO_PRTAD_NONE;
	} else if (rc) {
		goto fail5;
	}

257 258 259 260
	rc = efx_mcdi_mon_probe(efx);
	if (rc)
		goto fail5;

261
	efx_sriov_probe(efx);
262
	efx_ptp_probe(efx);
263

264 265 266 267 268 269
	return 0;

fail5:
	efx_nic_free_buffer(efx, &efx->irq_status);
fail4:
fail3:
270
	efx_mcdi_fini(efx);
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
fail1:
	kfree(efx->nic_data);
	return rc;
}

/* This call performs hardware-specific global initialisation, such as
 * defining the descriptor cache sizes and number of RSS channels.
 * It does not set up any buffers, descriptor rings or event queues.
 */
static int siena_init_nic(struct efx_nic *efx)
{
	efx_oword_t temp;
	int rc;

	/* Recover from a failed assertion post-reset */
	rc = efx_mcdi_handle_assertion(efx);
	if (rc)
		return rc;

	/* Squash TX of packets of 16 bytes or less */
	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
	EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);

	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
	 * descriptors (which is bad).
	 */
	efx_reado(efx, &temp, FR_AZ_TX_CFG);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
	EFX_SET_OWORD_FIELD(temp, FRF_CZ_TX_FILTER_EN_BIT, 1);
	efx_writeo(efx, &temp, FR_AZ_TX_CFG);

	efx_reado(efx, &temp, FR_AZ_RX_CFG);
	EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_DESC_PUSH_EN, 0);
	EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_INGR_EN, 1);
306 307 308 309 310 311
	/* Enable hash insertion. This is broken for the 'Falcon' hash
	 * if IPv6 hashing is also enabled, so also select Toeplitz
	 * TCP/IPv4 and IPv4 hashes. */
	EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_INSRT_HDR, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_ALG, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_IP_HASH, 1);
312 313
	EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_USR_BUF_SIZE,
			    EFX_RX_USR_BUF_SIZE >> 5);
314 315
	efx_writeo(efx, &temp, FR_AZ_RX_CFG);

316 317 318 319
	/* Set hash key for IPv4 */
	memcpy(&temp, efx->rx_hash_key, sizeof(temp));
	efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);

320
	/* Enable IPv6 RSS */
321
	BUILD_BUG_ON(sizeof(efx->rx_hash_key) <
322 323
		     2 * sizeof(temp) + FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8 ||
		     FRF_CZ_RX_RSS_IPV6_TKEY_HI_LBN != 0);
324
	memcpy(&temp, efx->rx_hash_key, sizeof(temp));
325
	efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG1);
326
	memcpy(&temp, efx->rx_hash_key + sizeof(temp), sizeof(temp));
327 328 329
	efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG2);
	EFX_POPULATE_OWORD_2(temp, FRF_CZ_RX_RSS_IPV6_THASH_ENABLE, 1,
			     FRF_CZ_RX_RSS_IPV6_IP_THASH_ENABLE, 1);
330
	memcpy(&temp, efx->rx_hash_key + 2 * sizeof(temp),
331 332 333
	       FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8);
	efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG3);

334 335 336 337 338 339 340 341 342 343 344 345
	/* Enable event logging */
	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
	if (rc)
		return rc;

	/* Set destination of both TX and RX Flush events */
	EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
	efx_writeo(efx, &temp, FR_BZ_DP_CTRL);

	EFX_POPULATE_OWORD_1(temp, FRF_CZ_USREV_DIS, 1);
	efx_writeo(efx, &temp, FR_CZ_USR_EV_CFG);

346
	efx_farch_init_common(efx);
347 348 349 350 351
	return 0;
}

static void siena_remove_nic(struct efx_nic *efx)
{
352 353
	efx_mcdi_mon_remove(efx);

354 355
	efx_nic_free_buffer(efx, &efx->irq_status);

356
	efx_mcdi_reset(efx, RESET_TYPE_ALL);
357

358
	efx_mcdi_fini(efx);
359 360

	/* Tear down the private nic state */
361
	kfree(efx->nic_data);
362 363 364
	efx->nic_data = NULL;
}

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
#define SIENA_DMA_STAT(ext_name, mcdi_name)			\
	[SIENA_STAT_ ## ext_name] =				\
	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
#define SIENA_OTHER_STAT(ext_name)				\
	[SIENA_STAT_ ## ext_name] = { #ext_name, 0, 0 }

static const struct efx_hw_stat_desc siena_stat_desc[SIENA_STAT_COUNT] = {
	SIENA_DMA_STAT(tx_bytes, TX_BYTES),
	SIENA_OTHER_STAT(tx_good_bytes),
	SIENA_DMA_STAT(tx_bad_bytes, TX_BAD_BYTES),
	SIENA_DMA_STAT(tx_packets, TX_PKTS),
	SIENA_DMA_STAT(tx_bad, TX_BAD_FCS_PKTS),
	SIENA_DMA_STAT(tx_pause, TX_PAUSE_PKTS),
	SIENA_DMA_STAT(tx_control, TX_CONTROL_PKTS),
	SIENA_DMA_STAT(tx_unicast, TX_UNICAST_PKTS),
	SIENA_DMA_STAT(tx_multicast, TX_MULTICAST_PKTS),
	SIENA_DMA_STAT(tx_broadcast, TX_BROADCAST_PKTS),
	SIENA_DMA_STAT(tx_lt64, TX_LT64_PKTS),
	SIENA_DMA_STAT(tx_64, TX_64_PKTS),
	SIENA_DMA_STAT(tx_65_to_127, TX_65_TO_127_PKTS),
	SIENA_DMA_STAT(tx_128_to_255, TX_128_TO_255_PKTS),
	SIENA_DMA_STAT(tx_256_to_511, TX_256_TO_511_PKTS),
	SIENA_DMA_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS),
	SIENA_DMA_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
	SIENA_DMA_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
	SIENA_DMA_STAT(tx_gtjumbo, TX_GTJUMBO_PKTS),
	SIENA_OTHER_STAT(tx_collision),
	SIENA_DMA_STAT(tx_single_collision, TX_SINGLE_COLLISION_PKTS),
	SIENA_DMA_STAT(tx_multiple_collision, TX_MULTIPLE_COLLISION_PKTS),
	SIENA_DMA_STAT(tx_excessive_collision, TX_EXCESSIVE_COLLISION_PKTS),
	SIENA_DMA_STAT(tx_deferred, TX_DEFERRED_PKTS),
	SIENA_DMA_STAT(tx_late_collision, TX_LATE_COLLISION_PKTS),
	SIENA_DMA_STAT(tx_excessive_deferred, TX_EXCESSIVE_DEFERRED_PKTS),
	SIENA_DMA_STAT(tx_non_tcpudp, TX_NON_TCPUDP_PKTS),
	SIENA_DMA_STAT(tx_mac_src_error, TX_MAC_SRC_ERR_PKTS),
	SIENA_DMA_STAT(tx_ip_src_error, TX_IP_SRC_ERR_PKTS),
	SIENA_DMA_STAT(rx_bytes, RX_BYTES),
	SIENA_OTHER_STAT(rx_good_bytes),
	SIENA_DMA_STAT(rx_bad_bytes, RX_BAD_BYTES),
	SIENA_DMA_STAT(rx_packets, RX_PKTS),
	SIENA_DMA_STAT(rx_good, RX_GOOD_PKTS),
	SIENA_DMA_STAT(rx_bad, RX_BAD_FCS_PKTS),
	SIENA_DMA_STAT(rx_pause, RX_PAUSE_PKTS),
	SIENA_DMA_STAT(rx_control, RX_CONTROL_PKTS),
	SIENA_DMA_STAT(rx_unicast, RX_UNICAST_PKTS),
	SIENA_DMA_STAT(rx_multicast, RX_MULTICAST_PKTS),
	SIENA_DMA_STAT(rx_broadcast, RX_BROADCAST_PKTS),
	SIENA_DMA_STAT(rx_lt64, RX_UNDERSIZE_PKTS),
	SIENA_DMA_STAT(rx_64, RX_64_PKTS),
	SIENA_DMA_STAT(rx_65_to_127, RX_65_TO_127_PKTS),
	SIENA_DMA_STAT(rx_128_to_255, RX_128_TO_255_PKTS),
	SIENA_DMA_STAT(rx_256_to_511, RX_256_TO_511_PKTS),
	SIENA_DMA_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS),
	SIENA_DMA_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
	SIENA_DMA_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
	SIENA_DMA_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS),
	SIENA_DMA_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS),
	SIENA_DMA_STAT(rx_overflow, RX_OVERFLOW_PKTS),
	SIENA_DMA_STAT(rx_false_carrier, RX_FALSE_CARRIER_PKTS),
	SIENA_DMA_STAT(rx_symbol_error, RX_SYMBOL_ERROR_PKTS),
	SIENA_DMA_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS),
	SIENA_DMA_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS),
	SIENA_DMA_STAT(rx_internal_error, RX_INTERNAL_ERROR_PKTS),
	SIENA_DMA_STAT(rx_nodesc_drop_cnt, RX_NODESC_DROPS),
};
static const unsigned long siena_stat_mask[] = {
	[0 ... BITS_TO_LONGS(SIENA_STAT_COUNT) - 1] = ~0UL,
};

static size_t siena_describe_nic_stats(struct efx_nic *efx, u8 *names)
{
	return efx_nic_describe_stats(siena_stat_desc, SIENA_STAT_COUNT,
				      siena_stat_mask, names);
}

440 441
static int siena_try_update_nic_stats(struct efx_nic *efx)
{
442 443
	struct siena_nic_data *nic_data = efx->nic_data;
	u64 *stats = nic_data->stats;
444 445
	__le64 *dma_stats;
	__le64 generation_start, generation_end;
446

447
	dma_stats = efx->stats_buffer.addr;
448 449

	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
450
	if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
451 452
		return 0;
	rmb();
453 454
	efx_nic_update_stats(siena_stat_desc, SIENA_STAT_COUNT, siena_stat_mask,
			     stats, efx->stats_buffer.addr, false);
455 456 457 458 459
	rmb();
	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
	if (generation_end != generation_start)
		return -EAGAIN;

460 461 462 463 464 465 466 467 468 469 470 471
	/* Update derived statistics */
	efx_update_diff_stat(&stats[SIENA_STAT_tx_good_bytes],
			     stats[SIENA_STAT_tx_bytes] -
			     stats[SIENA_STAT_tx_bad_bytes]);
	stats[SIENA_STAT_tx_collision] =
		stats[SIENA_STAT_tx_single_collision] +
		stats[SIENA_STAT_tx_multiple_collision] +
		stats[SIENA_STAT_tx_excessive_collision] +
		stats[SIENA_STAT_tx_late_collision];
	efx_update_diff_stat(&stats[SIENA_STAT_rx_good_bytes],
			     stats[SIENA_STAT_rx_bytes] -
			     stats[SIENA_STAT_rx_bad_bytes]);
472 473 474
	return 0;
}

475 476
static size_t siena_update_nic_stats(struct efx_nic *efx, u64 *full_stats,
				     struct rtnl_link_stats64 *core_stats)
477
{
478 479
	struct siena_nic_data *nic_data = efx->nic_data;
	u64 *stats = nic_data->stats;
480 481 482 483 484 485
	int retry;

	/* If we're unlucky enough to read statistics wduring the DMA, wait
	 * up to 10ms for it to finish (typically takes <500us) */
	for (retry = 0; retry < 100; ++retry) {
		if (siena_try_update_nic_stats(efx) == 0)
486
			break;
487 488 489
		udelay(100);
	}

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
	if (full_stats)
		memcpy(full_stats, stats, sizeof(u64) * SIENA_STAT_COUNT);

	if (core_stats) {
		core_stats->rx_packets = stats[SIENA_STAT_rx_packets];
		core_stats->tx_packets = stats[SIENA_STAT_tx_packets];
		core_stats->rx_bytes = stats[SIENA_STAT_rx_bytes];
		core_stats->tx_bytes = stats[SIENA_STAT_tx_bytes];
		core_stats->rx_dropped = stats[SIENA_STAT_rx_nodesc_drop_cnt];
		core_stats->multicast = stats[SIENA_STAT_rx_multicast];
		core_stats->collisions = stats[SIENA_STAT_tx_collision];
		core_stats->rx_length_errors =
			stats[SIENA_STAT_rx_gtjumbo] +
			stats[SIENA_STAT_rx_length_error];
		core_stats->rx_crc_errors = stats[SIENA_STAT_rx_bad];
		core_stats->rx_frame_errors = stats[SIENA_STAT_rx_align_error];
		core_stats->rx_fifo_errors = stats[SIENA_STAT_rx_overflow];
		core_stats->tx_window_errors =
			stats[SIENA_STAT_tx_late_collision];

		core_stats->rx_errors = (core_stats->rx_length_errors +
					 core_stats->rx_crc_errors +
					 core_stats->rx_frame_errors +
					 stats[SIENA_STAT_rx_symbol_error]);
		core_stats->tx_errors = (core_stats->tx_window_errors +
					 stats[SIENA_STAT_tx_bad]);
	}

	return SIENA_STAT_COUNT;
519 520
}

521 522 523 524 525 526 527 528 529
static int siena_mac_reconfigure(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_MCAST_HASH_IN_LEN);
	int rc;

	BUILD_BUG_ON(MC_CMD_SET_MCAST_HASH_IN_LEN !=
		     MC_CMD_SET_MCAST_HASH_IN_HASH0_OFST +
		     sizeof(efx->multicast_hash));

530 531
	efx_farch_filter_sync_rx_mode(efx);

532 533 534 535 536 537 538 539 540 541 542 543
	WARN_ON(!mutex_is_locked(&efx->mac_lock));

	rc = efx_mcdi_set_mac(efx);
	if (rc != 0)
		return rc;

	memcpy(MCDI_PTR(inbuf, SET_MCAST_HASH_IN_HASH0),
	       efx->multicast_hash.byte, sizeof(efx->multicast_hash));
	return efx_mcdi_rpc(efx, MC_CMD_SET_MCAST_HASH,
			    inbuf, sizeof(inbuf), NULL, 0, NULL);
}

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
/**************************************************************************
 *
 * Wake on LAN
 *
 **************************************************************************
 */

static void siena_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
{
	struct siena_nic_data *nic_data = efx->nic_data;

	wol->supported = WAKE_MAGIC;
	if (nic_data->wol_filter_id != -1)
		wol->wolopts = WAKE_MAGIC;
	else
		wol->wolopts = 0;
	memset(&wol->sopass, 0, sizeof(wol->sopass));
}


static int siena_set_wol(struct efx_nic *efx, u32 type)
{
	struct siena_nic_data *nic_data = efx->nic_data;
	int rc;

	if (type & ~WAKE_MAGIC)
		return -EINVAL;

	if (type & WAKE_MAGIC) {
		if (nic_data->wol_filter_id != -1)
			efx_mcdi_wol_filter_remove(efx,
						   nic_data->wol_filter_id);
576
		rc = efx_mcdi_wol_filter_set_magic(efx, efx->net_dev->dev_addr,
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
						   &nic_data->wol_filter_id);
		if (rc)
			goto fail;

		pci_wake_from_d3(efx->pci_dev, true);
	} else {
		rc = efx_mcdi_wol_filter_reset(efx);
		nic_data->wol_filter_id = -1;
		pci_wake_from_d3(efx->pci_dev, false);
		if (rc)
			goto fail;
	}

	return 0;
 fail:
592 593
	netif_err(efx, hw, efx->net_dev, "%s failed: type=%d rc=%d\n",
		  __func__, type, rc);
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
	return rc;
}


static void siena_init_wol(struct efx_nic *efx)
{
	struct siena_nic_data *nic_data = efx->nic_data;
	int rc;

	rc = efx_mcdi_wol_filter_get_magic(efx, &nic_data->wol_filter_id);

	if (rc != 0) {
		/* If it failed, attempt to get into a synchronised
		 * state with MC by resetting any set WoL filters */
		efx_mcdi_wol_filter_reset(efx);
		nic_data->wol_filter_id = -1;
	} else if (nic_data->wol_filter_id != -1) {
		pci_wake_from_d3(efx->pci_dev, true);
	}
}

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
/**************************************************************************
 *
 * MCDI
 *
 **************************************************************************
 */

#define MCDI_PDU(efx)							\
	(efx_port_num(efx) ? MC_SMEM_P1_PDU_OFST : MC_SMEM_P0_PDU_OFST)
#define MCDI_DOORBELL(efx)						\
	(efx_port_num(efx) ? MC_SMEM_P1_DOORBELL_OFST : MC_SMEM_P0_DOORBELL_OFST)
#define MCDI_STATUS(efx)						\
	(efx_port_num(efx) ? MC_SMEM_P1_STATUS_OFST : MC_SMEM_P0_STATUS_OFST)

static void siena_mcdi_request(struct efx_nic *efx,
			       const efx_dword_t *hdr, size_t hdr_len,
			       const efx_dword_t *sdu, size_t sdu_len)
{
	unsigned pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
	unsigned doorbell = FR_CZ_MC_TREG_SMEM + MCDI_DOORBELL(efx);
	unsigned int i;
	unsigned int inlen_dw = DIV_ROUND_UP(sdu_len, 4);

	EFX_BUG_ON_PARANOID(hdr_len != 4);

	efx_writed(efx, hdr, pdu);

	for (i = 0; i < inlen_dw; i++)
		efx_writed(efx, &sdu[i], pdu + hdr_len + 4 * i);

	/* Ensure the request is written out before the doorbell */
	wmb();

	/* ring the doorbell with a distinctive value */
	_efx_writed(efx, (__force __le32) 0x45789abc, doorbell);
}

static bool siena_mcdi_poll_response(struct efx_nic *efx)
{
	unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
	efx_dword_t hdr;

	efx_readd(efx, &hdr, pdu);

	/* All 1's indicates that shared memory is in reset (and is
	 * not a valid hdr). Wait for it to come out reset before
	 * completing the command
	 */
	return EFX_DWORD_FIELD(hdr, EFX_DWORD_0) != 0xffffffff &&
		EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
}

static void siena_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
				     size_t offset, size_t outlen)
{
	unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
	unsigned int outlen_dw = DIV_ROUND_UP(outlen, 4);
	int i;

	for (i = 0; i < outlen_dw; i++)
		efx_readd(efx, &outbuf[i], pdu + offset + 4 * i);
}

static int siena_mcdi_poll_reboot(struct efx_nic *efx)
{
680
	struct siena_nic_data *nic_data = efx->nic_data;
681 682 683 684 685 686 687 688 689 690 691 692 693
	unsigned int addr = FR_CZ_MC_TREG_SMEM + MCDI_STATUS(efx);
	efx_dword_t reg;
	u32 value;

	efx_readd(efx, &reg, addr);
	value = EFX_DWORD_FIELD(reg, EFX_DWORD_0);

	if (value == 0)
		return 0;

	EFX_ZERO_DWORD(reg);
	efx_writed(efx, &reg, addr);

694 695 696 697 698 699
	/* MAC statistics have been cleared on the NIC; clear the local
	 * copies that we update with efx_update_diff_stat().
	 */
	nic_data->stats[SIENA_STAT_tx_good_bytes] = 0;
	nic_data->stats[SIENA_STAT_rx_good_bytes] = 0;

700 701 702 703 704
	if (value == MC_STATUS_DWORD_ASSERT)
		return -EINTR;
	else
		return -EIO;
}
705

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
/**************************************************************************
 *
 * MTD
 *
 **************************************************************************
 */

#ifdef CONFIG_SFC_MTD

struct siena_nvram_type_info {
	int port;
	const char *name;
};

static const struct siena_nvram_type_info siena_nvram_types[] = {
	[MC_CMD_NVRAM_TYPE_DISABLED_CALLISTO]	= { 0, "sfc_dummy_phy" },
	[MC_CMD_NVRAM_TYPE_MC_FW]		= { 0, "sfc_mcfw" },
	[MC_CMD_NVRAM_TYPE_MC_FW_BACKUP]	= { 0, "sfc_mcfw_backup" },
	[MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT0]	= { 0, "sfc_static_cfg" },
	[MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT1]	= { 1, "sfc_static_cfg" },
	[MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT0]	= { 0, "sfc_dynamic_cfg" },
	[MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT1]	= { 1, "sfc_dynamic_cfg" },
	[MC_CMD_NVRAM_TYPE_EXP_ROM]		= { 0, "sfc_exp_rom" },
	[MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT0]	= { 0, "sfc_exp_rom_cfg" },
	[MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT1]	= { 1, "sfc_exp_rom_cfg" },
	[MC_CMD_NVRAM_TYPE_PHY_PORT0]		= { 0, "sfc_phy_fw" },
	[MC_CMD_NVRAM_TYPE_PHY_PORT1]		= { 1, "sfc_phy_fw" },
	[MC_CMD_NVRAM_TYPE_FPGA]		= { 0, "sfc_fpga" },
};

static int siena_mtd_probe_partition(struct efx_nic *efx,
				     struct efx_mcdi_mtd_partition *part,
				     unsigned int type)
{
	const struct siena_nvram_type_info *info;
	size_t size, erase_size;
	bool protected;
	int rc;

	if (type >= ARRAY_SIZE(siena_nvram_types) ||
	    siena_nvram_types[type].name == NULL)
		return -ENODEV;

	info = &siena_nvram_types[type];

	if (info->port != efx_port_num(efx))
		return -ENODEV;

	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
	if (rc)
		return rc;
	if (protected)
		return -ENODEV; /* hide it */

	part->nvram_type = type;
	part->common.dev_type_name = "Siena NVRAM manager";
	part->common.type_name = info->name;

	part->common.mtd.type = MTD_NORFLASH;
	part->common.mtd.flags = MTD_CAP_NORFLASH;
	part->common.mtd.size = size;
	part->common.mtd.erasesize = erase_size;

	return 0;
}

static int siena_mtd_get_fw_subtypes(struct efx_nic *efx,
				     struct efx_mcdi_mtd_partition *parts,
				     size_t n_parts)
{
	uint16_t fw_subtype_list[
		MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM];
	size_t i;
	int rc;

	rc = efx_mcdi_get_board_cfg(efx, NULL, fw_subtype_list, NULL);
	if (rc)
		return rc;

	for (i = 0; i < n_parts; i++)
		parts[i].fw_subtype = fw_subtype_list[parts[i].nvram_type];

	return 0;
}

static int siena_mtd_probe(struct efx_nic *efx)
{
	struct efx_mcdi_mtd_partition *parts;
	u32 nvram_types;
	unsigned int type;
	size_t n_parts;
	int rc;

	ASSERT_RTNL();

	rc = efx_mcdi_nvram_types(efx, &nvram_types);
	if (rc)
		return rc;

	parts = kcalloc(hweight32(nvram_types), sizeof(*parts), GFP_KERNEL);
	if (!parts)
		return -ENOMEM;

	type = 0;
	n_parts = 0;

	while (nvram_types != 0) {
		if (nvram_types & 1) {
			rc = siena_mtd_probe_partition(efx, &parts[n_parts],
						       type);
			if (rc == 0)
				n_parts++;
			else if (rc != -ENODEV)
				goto fail;
		}
		type++;
		nvram_types >>= 1;
	}

	rc = siena_mtd_get_fw_subtypes(efx, parts, n_parts);
	if (rc)
		goto fail;

	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
fail:
	if (rc)
		kfree(parts);
	return rc;
}

#endif /* CONFIG_SFC_MTD */

838 839 840 841 842 843 844 845 846 847 848 849 850
/**************************************************************************
 *
 * PTP
 *
 **************************************************************************
 */

static void siena_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
{
	_efx_writed(efx, cpu_to_le32(host_time),
		    FR_CZ_MC_TREG_SMEM + MC_SMEM_P0_PTP_TIME_OFST);
}

851 852 853 854 855 856 857
/**************************************************************************
 *
 * Revision-dependent attributes used by efx.c and nic.c
 *
 **************************************************************************
 */

858
const struct efx_nic_type siena_a0_nic_type = {
859
	.mem_map_size = siena_mem_map_size,
860 861 862
	.probe = siena_probe_nic,
	.remove = siena_remove_nic,
	.init = siena_init_nic,
863
	.dimension_resources = siena_dimension_resources,
864
	.fini = efx_port_dummy_op_void,
865 866 867
#ifdef CONFIG_EEH
	.monitor = siena_monitor,
#else
868
	.monitor = NULL,
869
#endif
870
	.map_reset_reason = efx_mcdi_map_reset_reason,
871
	.map_reset_flags = siena_map_reset_flags,
872
	.reset = efx_mcdi_reset,
873 874
	.probe_port = efx_mcdi_port_probe,
	.remove_port = efx_mcdi_port_remove,
875
	.fini_dmaq = efx_farch_fini_dmaq,
876 877
	.prepare_flush = siena_prepare_flush,
	.finish_flush = siena_finish_flush,
878
	.describe_stats = siena_describe_nic_stats,
879
	.update_stats = siena_update_nic_stats,
880 881
	.start_stats = efx_mcdi_mac_start_stats,
	.stop_stats = efx_mcdi_mac_stop_stats,
882 883
	.set_id_led = efx_mcdi_set_id_led,
	.push_irq_moderation = siena_push_irq_moderation,
884
	.reconfigure_mac = siena_mac_reconfigure,
885
	.check_mac_fault = efx_mcdi_mac_check_fault,
886
	.reconfigure_port = efx_mcdi_port_reconfigure,
887 888 889
	.get_wol = siena_get_wol,
	.set_wol = siena_set_wol,
	.resume_wol = siena_init_wol,
890
	.test_chip = siena_test_chip,
891
	.test_nvram = efx_mcdi_nvram_test_all,
892 893 894 895
	.mcdi_request = siena_mcdi_request,
	.mcdi_poll_response = siena_mcdi_poll_response,
	.mcdi_read_response = siena_mcdi_read_response,
	.mcdi_poll_reboot = siena_mcdi_poll_reboot,
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
	.irq_enable_master = efx_farch_irq_enable_master,
	.irq_test_generate = efx_farch_irq_test_generate,
	.irq_disable_non_ev = efx_farch_irq_disable_master,
	.irq_handle_msi = efx_farch_msi_interrupt,
	.irq_handle_legacy = efx_farch_legacy_interrupt,
	.tx_probe = efx_farch_tx_probe,
	.tx_init = efx_farch_tx_init,
	.tx_remove = efx_farch_tx_remove,
	.tx_write = efx_farch_tx_write,
	.rx_push_indir_table = efx_farch_rx_push_indir_table,
	.rx_probe = efx_farch_rx_probe,
	.rx_init = efx_farch_rx_init,
	.rx_remove = efx_farch_rx_remove,
	.rx_write = efx_farch_rx_write,
	.rx_defer_refill = efx_farch_rx_defer_refill,
	.ev_probe = efx_farch_ev_probe,
	.ev_init = efx_farch_ev_init,
	.ev_fini = efx_farch_ev_fini,
	.ev_remove = efx_farch_ev_remove,
	.ev_process = efx_farch_ev_process,
	.ev_read_ack = efx_farch_ev_read_ack,
	.ev_test_generate = efx_farch_ev_test_generate,
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
	.filter_table_probe = efx_farch_filter_table_probe,
	.filter_table_restore = efx_farch_filter_table_restore,
	.filter_table_remove = efx_farch_filter_table_remove,
	.filter_update_rx_scatter = efx_farch_filter_update_rx_scatter,
	.filter_insert = efx_farch_filter_insert,
	.filter_remove_safe = efx_farch_filter_remove_safe,
	.filter_get_safe = efx_farch_filter_get_safe,
	.filter_clear_rx = efx_farch_filter_clear_rx,
	.filter_count_rx_used = efx_farch_filter_count_rx_used,
	.filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
	.filter_get_rx_ids = efx_farch_filter_get_rx_ids,
#ifdef CONFIG_RFS_ACCEL
	.filter_rfs_insert = efx_farch_filter_rfs_insert,
	.filter_rfs_expire_one = efx_farch_filter_rfs_expire_one,
#endif
933 934 935 936 937 938 939 940
#ifdef CONFIG_SFC_MTD
	.mtd_probe = siena_mtd_probe,
	.mtd_rename = efx_mcdi_mtd_rename,
	.mtd_read = efx_mcdi_mtd_read,
	.mtd_erase = efx_mcdi_mtd_erase,
	.mtd_write = efx_mcdi_mtd_write,
	.mtd_sync = efx_mcdi_mtd_sync,
#endif
941
	.ptp_write_host_time = siena_ptp_write_host_time,
942 943 944 945 946 947 948 949

	.revision = EFX_REV_SIENA_A0,
	.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
	.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
	.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
	.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
	.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
950 951
	.rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
	.rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
952
	.rx_buffer_padding = 0,
953
	.can_rx_scatter = true,
954
	.max_interrupt_mode = EFX_INT_MODE_MSIX,
955
	.timer_period_max = 1 << FRF_CZ_TC_TIMER_VAL_WIDTH,
956
	.offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
957
			     NETIF_F_RXHASH | NETIF_F_NTUPLE),
B
Ben Hutchings 已提交
958
	.mcdi_max_ver = 1,
959
	.max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
960
};