siena.c 20.7 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2006-2010 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/module.h>
15
#include <linux/slab.h>
16
#include <linux/random.h>
17 18 19 20 21 22 23 24 25 26 27
#include "net_driver.h"
#include "bitfield.h"
#include "efx.h"
#include "nic.h"
#include "spi.h"
#include "regs.h"
#include "io.h"
#include "phy.h"
#include "workarounds.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
28
#include "selftest.h"
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

/* Hardware control for SFC9000 family including SFL9021 (aka Siena). */

static void siena_init_wol(struct efx_nic *efx);


static void siena_push_irq_moderation(struct efx_channel *channel)
{
	efx_dword_t timer_cmd;

	if (channel->irq_moderation)
		EFX_POPULATE_DWORD_2(timer_cmd,
				     FRF_CZ_TC_TIMER_MODE,
				     FFE_CZ_TIMER_MODE_INT_HLDOFF,
				     FRF_CZ_TC_TIMER_VAL,
				     channel->irq_moderation - 1);
	else
		EFX_POPULATE_DWORD_2(timer_cmd,
				     FRF_CZ_TC_TIMER_MODE,
				     FFE_CZ_TIMER_MODE_DIS,
				     FRF_CZ_TC_TIMER_VAL, 0);
	efx_writed_page_locked(channel->efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
			       channel->channel);
}

static int siena_mdio_write(struct net_device *net_dev,
			    int prtad, int devad, u16 addr, u16 value)
{
	struct efx_nic *efx = netdev_priv(net_dev);
	uint32_t status;
	int rc;

	rc = efx_mcdi_mdio_write(efx, efx->mdio_bus, prtad, devad,
				 addr, value, &status);
	if (rc)
		return rc;
	if (status != MC_CMD_MDIO_STATUS_GOOD)
		return -EIO;

	return 0;
}

static int siena_mdio_read(struct net_device *net_dev,
			   int prtad, int devad, u16 addr)
{
	struct efx_nic *efx = netdev_priv(net_dev);
	uint16_t value;
	uint32_t status;
	int rc;

	rc = efx_mcdi_mdio_read(efx, efx->mdio_bus, prtad, devad,
				addr, &value, &status);
	if (rc)
		return rc;
	if (status != MC_CMD_MDIO_STATUS_GOOD)
		return -EIO;

	return (int)value;
}

/* This call is responsible for hooking in the MAC and PHY operations */
static int siena_probe_port(struct efx_nic *efx)
{
	int rc;

	/* Hook in PHY operations table */
	efx->phy_op = &efx_mcdi_phy_ops;

	/* Set up MDIO structure for PHY */
	efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
	efx->mdio.mdio_read = siena_mdio_read;
	efx->mdio.mdio_write = siena_mdio_write;

102
	/* Fill out MDIO structure, loopback modes, and initial link state */
103 104 105 106 107 108 109 110 111
	rc = efx->phy_op->probe(efx);
	if (rc != 0)
		return rc;

	/* Allocate buffer for stats */
	rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
				  MC_CMD_MAC_NSTATS * sizeof(u64));
	if (rc)
		return rc;
112 113 114 115 116
	netif_dbg(efx, probe, efx->net_dev,
		  "stats buffer at %llx (virt %p phys %llx)\n",
		  (u64)efx->stats_buffer.dma_addr,
		  efx->stats_buffer.addr,
		  (u64)virt_to_phys(efx->stats_buffer.addr));
117 118 119 120 121 122

	efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 1);

	return 0;
}

S
stephen hemminger 已提交
123
static void siena_remove_port(struct efx_nic *efx)
124
{
125
	efx->phy_op->remove(efx);
126 127 128
	efx_nic_free_buffer(efx, &efx->stats_buffer);
}

129 130 131 132 133 134 135 136 137 138 139 140
void siena_prepare_flush(struct efx_nic *efx)
{
	if (efx->fc_disable++ == 0)
		efx_mcdi_set_mac(efx);
}

void siena_finish_flush(struct efx_nic *efx)
{
	if (--efx->fc_disable == 0)
		efx_mcdi_set_mac(efx);
}

141 142
static const struct efx_nic_register_test siena_register_tests[] = {
	{ FR_AZ_ADR_REGION,
143
	  EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
	{ FR_CZ_USR_EV_CFG,
	  EFX_OWORD32(0x000103FF, 0x00000000, 0x00000000, 0x00000000) },
	{ FR_AZ_RX_CFG,
	  EFX_OWORD32(0xFFFFFFFE, 0xFFFFFFFF, 0x0003FFFF, 0x00000000) },
	{ FR_AZ_TX_CFG,
	  EFX_OWORD32(0x7FFF0037, 0xFFFF8000, 0xFFFFFFFF, 0x03FFFFFF) },
	{ FR_AZ_TX_RESERVED,
	  EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
	{ FR_AZ_SRM_TX_DC_CFG,
	  EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
	{ FR_AZ_RX_DC_CFG,
	  EFX_OWORD32(0x00000003, 0x00000000, 0x00000000, 0x00000000) },
	{ FR_AZ_RX_DC_PF_WM,
	  EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
	{ FR_BZ_DP_CTRL,
	  EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
	{ FR_BZ_RX_RSS_TKEY,
	  EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
	{ FR_CZ_RX_RSS_IPV6_REG1,
	  EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
	{ FR_CZ_RX_RSS_IPV6_REG2,
	  EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
	{ FR_CZ_RX_RSS_IPV6_REG3,
	  EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000) },
};

170
static int siena_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
171
{
172
	enum reset_type reset_method = RESET_TYPE_ALL;
173 174 175 176 177 178 179
	int rc, rc2;

	efx_reset_down(efx, reset_method);

	/* Reset the chip immediately so that it is completely
	 * quiescent regardless of what any VF driver does.
	 */
180
	rc = efx_mcdi_reset(efx, reset_method);
181 182 183 184 185 186 187 188
	if (rc)
		goto out;

	tests->registers =
		efx_nic_test_registers(efx, siena_register_tests,
				       ARRAY_SIZE(siena_register_tests))
		? -1 : 1;

189
	rc = efx_mcdi_reset(efx, reset_method);
190 191 192
out:
	rc2 = efx_reset_up(efx, reset_method, rc == 0);
	return rc ? rc : rc2;
193 194 195 196 197 198 199 200 201
}

/**************************************************************************
 *
 * Device reset
 *
 **************************************************************************
 */

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
static int siena_map_reset_flags(u32 *flags)
{
	enum {
		SIENA_RESET_PORT = (ETH_RESET_DMA | ETH_RESET_FILTER |
				    ETH_RESET_OFFLOAD | ETH_RESET_MAC |
				    ETH_RESET_PHY),
		SIENA_RESET_MC = (SIENA_RESET_PORT |
				  ETH_RESET_MGMT << ETH_RESET_SHARED_SHIFT),
	};

	if ((*flags & SIENA_RESET_MC) == SIENA_RESET_MC) {
		*flags &= ~SIENA_RESET_MC;
		return RESET_TYPE_WORLD;
	}

	if ((*flags & SIENA_RESET_PORT) == SIENA_RESET_PORT) {
		*flags &= ~SIENA_RESET_PORT;
		return RESET_TYPE_ALL;
	}

	/* no invisible reset implemented */

	return -EINVAL;
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
#ifdef CONFIG_EEH
/* When a PCI device is isolated from the bus, a subsequent MMIO read is
 * required for the kernel EEH mechanisms to notice. As the Solarflare driver
 * was written to minimise MMIO read (for latency) then a periodic call to check
 * the EEH status of the device is required so that device recovery can happen
 * in a timely fashion.
 */
static void siena_monitor(struct efx_nic *efx)
{
	struct eeh_dev *eehdev =
		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));

	eeh_dev_check_failure(eehdev);
}
#endif

243 244
static int siena_probe_nvconfig(struct efx_nic *efx)
{
245 246 247 248 249 250 251 252 253
	u32 caps = 0;
	int rc;

	rc = efx_mcdi_get_board_cfg(efx, efx->net_dev->perm_addr, NULL, &caps);

	efx->timer_quantum_ns =
		(caps & (1 << MC_CMD_CAPABILITIES_TURBO_ACTIVE_LBN)) ?
		3072 : 6144; /* 768 cycles */
	return rc;
254 255
}

256 257 258 259 260 261 262 263 264
static void siena_dimension_resources(struct efx_nic *efx)
{
	/* Each port has a small block of internal SRAM dedicated to
	 * the buffer table and descriptor caches.  In theory we can
	 * map both blocks to one port, but we don't.
	 */
	efx_nic_dimension_resources(efx, FR_CZ_BUF_FULL_TBL_ROWS / 2);
}

265 266 267
static int siena_probe_nic(struct efx_nic *efx)
{
	struct siena_nic_data *nic_data;
268
	bool already_attached = false;
269
	efx_oword_t reg;
270 271 272 273 274 275 276 277 278
	int rc;

	/* Allocate storage for hardware specific data */
	nic_data = kzalloc(sizeof(struct siena_nic_data), GFP_KERNEL);
	if (!nic_data)
		return -ENOMEM;
	efx->nic_data = nic_data;

	if (efx_nic_fpga_ver(efx) != 0) {
279 280
		netif_err(efx, probe, efx->net_dev,
			  "Siena FPGA not supported\n");
281 282 283 284
		rc = -ENODEV;
		goto fail1;
	}

285
	efx_reado(efx, &reg, FR_AZ_CS_DEBUG);
286
	efx->port_num = EFX_OWORD_FIELD(reg, FRF_CZ_CS_PORT_NUM) - 1;
287

288 289 290 291 292
	efx_mcdi_init(efx);

	/* Recover from a failed assertion before probing */
	rc = efx_mcdi_handle_assertion(efx);
	if (rc)
293
		goto fail1;
294 295 296 297 298

	/* Let the BMC know that the driver is now in charge of link and
	 * filter settings. We must do this before we reset the NIC */
	rc = efx_mcdi_drv_attach(efx, true, &already_attached);
	if (rc) {
299 300
		netif_err(efx, probe, efx->net_dev,
			  "Unable to register driver with MCPU\n");
301 302 303 304
		goto fail2;
	}
	if (already_attached)
		/* Not a fatal error */
305 306
		netif_err(efx, probe, efx->net_dev,
			  "Host already registered with MCPU\n");
307 308

	/* Now we can reset the NIC */
309
	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
310
	if (rc) {
311
		netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
312 313 314 315 316 317 318 319 320 321 322
		goto fail3;
	}

	siena_init_wol(efx);

	/* Allocate memory for INT_KER */
	rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
	if (rc)
		goto fail4;
	BUG_ON(efx->irq_status.dma_addr & 0x0f);

323 324 325 326 327
	netif_dbg(efx, probe, efx->net_dev,
		  "INT_KER at %llx (virt %p phys %llx)\n",
		  (unsigned long long)efx->irq_status.dma_addr,
		  efx->irq_status.addr,
		  (unsigned long long)virt_to_phys(efx->irq_status.addr));
328 329 330 331

	/* Read in the non-volatile configuration */
	rc = siena_probe_nvconfig(efx);
	if (rc == -EINVAL) {
332 333
		netif_err(efx, probe, efx->net_dev,
			  "NVRAM is invalid therefore using defaults\n");
334 335 336 337 338 339
		efx->phy_type = PHY_TYPE_NONE;
		efx->mdio.prtad = MDIO_PRTAD_NONE;
	} else if (rc) {
		goto fail5;
	}

340 341 342 343
	rc = efx_mcdi_mon_probe(efx);
	if (rc)
		goto fail5;

344
	efx_sriov_probe(efx);
345
	efx_ptp_probe(efx);
346

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
	return 0;

fail5:
	efx_nic_free_buffer(efx, &efx->irq_status);
fail4:
fail3:
	efx_mcdi_drv_attach(efx, false, NULL);
fail2:
fail1:
	kfree(efx->nic_data);
	return rc;
}

/* This call performs hardware-specific global initialisation, such as
 * defining the descriptor cache sizes and number of RSS channels.
 * It does not set up any buffers, descriptor rings or event queues.
 */
static int siena_init_nic(struct efx_nic *efx)
{
	efx_oword_t temp;
	int rc;

	/* Recover from a failed assertion post-reset */
	rc = efx_mcdi_handle_assertion(efx);
	if (rc)
		return rc;

	/* Squash TX of packets of 16 bytes or less */
	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
	EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);

	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
	 * descriptors (which is bad).
	 */
	efx_reado(efx, &temp, FR_AZ_TX_CFG);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
	EFX_SET_OWORD_FIELD(temp, FRF_CZ_TX_FILTER_EN_BIT, 1);
	efx_writeo(efx, &temp, FR_AZ_TX_CFG);

	efx_reado(efx, &temp, FR_AZ_RX_CFG);
	EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_DESC_PUSH_EN, 0);
	EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_INGR_EN, 1);
390 391 392 393 394 395
	/* Enable hash insertion. This is broken for the 'Falcon' hash
	 * if IPv6 hashing is also enabled, so also select Toeplitz
	 * TCP/IPv4 and IPv4 hashes. */
	EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_INSRT_HDR, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_ALG, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_IP_HASH, 1);
396 397
	EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_USR_BUF_SIZE,
			    EFX_RX_USR_BUF_SIZE >> 5);
398 399
	efx_writeo(efx, &temp, FR_AZ_RX_CFG);

400 401 402 403
	/* Set hash key for IPv4 */
	memcpy(&temp, efx->rx_hash_key, sizeof(temp));
	efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);

404
	/* Enable IPv6 RSS */
405
	BUILD_BUG_ON(sizeof(efx->rx_hash_key) <
406 407
		     2 * sizeof(temp) + FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8 ||
		     FRF_CZ_RX_RSS_IPV6_TKEY_HI_LBN != 0);
408
	memcpy(&temp, efx->rx_hash_key, sizeof(temp));
409
	efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG1);
410
	memcpy(&temp, efx->rx_hash_key + sizeof(temp), sizeof(temp));
411 412 413
	efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG2);
	EFX_POPULATE_OWORD_2(temp, FRF_CZ_RX_RSS_IPV6_THASH_ENABLE, 1,
			     FRF_CZ_RX_RSS_IPV6_IP_THASH_ENABLE, 1);
414
	memcpy(&temp, efx->rx_hash_key + 2 * sizeof(temp),
415 416 417
	       FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8);
	efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG3);

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	/* Enable event logging */
	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
	if (rc)
		return rc;

	/* Set destination of both TX and RX Flush events */
	EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
	efx_writeo(efx, &temp, FR_BZ_DP_CTRL);

	EFX_POPULATE_OWORD_1(temp, FRF_CZ_USREV_DIS, 1);
	efx_writeo(efx, &temp, FR_CZ_USR_EV_CFG);

	efx_nic_init_common(efx);
	return 0;
}

static void siena_remove_nic(struct efx_nic *efx)
{
436 437
	efx_mcdi_mon_remove(efx);

438 439
	efx_nic_free_buffer(efx, &efx->irq_status);

440
	efx_mcdi_reset(efx, RESET_TYPE_ALL);
441 442

	/* Relinquish the device back to the BMC */
443
	efx_mcdi_drv_attach(efx, false, NULL);
444 445

	/* Tear down the private nic state */
446
	kfree(efx->nic_data);
447 448 449
	efx->nic_data = NULL;
}

450
#define STATS_GENERATION_INVALID ((__force __le64)(-1))
451 452 453

static int siena_try_update_nic_stats(struct efx_nic *efx)
{
454
	__le64 *dma_stats;
455
	struct efx_mac_stats *mac_stats;
456
	__le64 generation_start, generation_end;
457 458

	mac_stats = &efx->mac_stats;
459
	dma_stats = efx->stats_buffer.addr;
460 461 462 463 464 465 466

	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
	if (generation_end == STATS_GENERATION_INVALID)
		return 0;
	rmb();

#define MAC_STAT(M, D) \
467
	mac_stats->M = le64_to_cpu(dma_stats[MC_CMD_MAC_ ## D])
468 469 470

	MAC_STAT(tx_bytes, TX_BYTES);
	MAC_STAT(tx_bad_bytes, TX_BAD_BYTES);
471 472
	efx_update_diff_stat(&mac_stats->tx_good_bytes,
			     mac_stats->tx_bytes - mac_stats->tx_bad_bytes);
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
	MAC_STAT(tx_packets, TX_PKTS);
	MAC_STAT(tx_bad, TX_BAD_FCS_PKTS);
	MAC_STAT(tx_pause, TX_PAUSE_PKTS);
	MAC_STAT(tx_control, TX_CONTROL_PKTS);
	MAC_STAT(tx_unicast, TX_UNICAST_PKTS);
	MAC_STAT(tx_multicast, TX_MULTICAST_PKTS);
	MAC_STAT(tx_broadcast, TX_BROADCAST_PKTS);
	MAC_STAT(tx_lt64, TX_LT64_PKTS);
	MAC_STAT(tx_64, TX_64_PKTS);
	MAC_STAT(tx_65_to_127, TX_65_TO_127_PKTS);
	MAC_STAT(tx_128_to_255, TX_128_TO_255_PKTS);
	MAC_STAT(tx_256_to_511, TX_256_TO_511_PKTS);
	MAC_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS);
	MAC_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS);
	MAC_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS);
	MAC_STAT(tx_gtjumbo, TX_GTJUMBO_PKTS);
	mac_stats->tx_collision = 0;
	MAC_STAT(tx_single_collision, TX_SINGLE_COLLISION_PKTS);
	MAC_STAT(tx_multiple_collision, TX_MULTIPLE_COLLISION_PKTS);
	MAC_STAT(tx_excessive_collision, TX_EXCESSIVE_COLLISION_PKTS);
	MAC_STAT(tx_deferred, TX_DEFERRED_PKTS);
	MAC_STAT(tx_late_collision, TX_LATE_COLLISION_PKTS);
	mac_stats->tx_collision = (mac_stats->tx_single_collision +
				   mac_stats->tx_multiple_collision +
				   mac_stats->tx_excessive_collision +
				   mac_stats->tx_late_collision);
	MAC_STAT(tx_excessive_deferred, TX_EXCESSIVE_DEFERRED_PKTS);
	MAC_STAT(tx_non_tcpudp, TX_NON_TCPUDP_PKTS);
	MAC_STAT(tx_mac_src_error, TX_MAC_SRC_ERR_PKTS);
	MAC_STAT(tx_ip_src_error, TX_IP_SRC_ERR_PKTS);
	MAC_STAT(rx_bytes, RX_BYTES);
	MAC_STAT(rx_bad_bytes, RX_BAD_BYTES);
505 506
	efx_update_diff_stat(&mac_stats->rx_good_bytes,
			     mac_stats->rx_bytes - mac_stats->rx_bad_bytes);
507 508
	MAC_STAT(rx_packets, RX_PKTS);
	MAC_STAT(rx_good, RX_GOOD_PKTS);
509
	MAC_STAT(rx_bad, RX_BAD_FCS_PKTS);
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
	MAC_STAT(rx_pause, RX_PAUSE_PKTS);
	MAC_STAT(rx_control, RX_CONTROL_PKTS);
	MAC_STAT(rx_unicast, RX_UNICAST_PKTS);
	MAC_STAT(rx_multicast, RX_MULTICAST_PKTS);
	MAC_STAT(rx_broadcast, RX_BROADCAST_PKTS);
	MAC_STAT(rx_lt64, RX_UNDERSIZE_PKTS);
	MAC_STAT(rx_64, RX_64_PKTS);
	MAC_STAT(rx_65_to_127, RX_65_TO_127_PKTS);
	MAC_STAT(rx_128_to_255, RX_128_TO_255_PKTS);
	MAC_STAT(rx_256_to_511, RX_256_TO_511_PKTS);
	MAC_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS);
	MAC_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS);
	MAC_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS);
	MAC_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS);
	mac_stats->rx_bad_lt64 = 0;
	mac_stats->rx_bad_64_to_15xx = 0;
	mac_stats->rx_bad_15xx_to_jumbo = 0;
	MAC_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS);
	MAC_STAT(rx_overflow, RX_OVERFLOW_PKTS);
	mac_stats->rx_missed = 0;
	MAC_STAT(rx_false_carrier, RX_FALSE_CARRIER_PKTS);
	MAC_STAT(rx_symbol_error, RX_SYMBOL_ERROR_PKTS);
	MAC_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS);
	MAC_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS);
	MAC_STAT(rx_internal_error, RX_INTERNAL_ERROR_PKTS);
	mac_stats->rx_good_lt64 = 0;

537 538
	efx->n_rx_nodesc_drop_cnt =
		le64_to_cpu(dma_stats[MC_CMD_MAC_RX_NODESC_DROPS]);
539 540 541 542 543 544 545 546 547 548 549 550 551

#undef MAC_STAT

	rmb();
	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
	if (generation_end != generation_start)
		return -EAGAIN;

	return 0;
}

static void siena_update_nic_stats(struct efx_nic *efx)
{
552 553 554 555 556 557 558 559 560 561 562
	int retry;

	/* If we're unlucky enough to read statistics wduring the DMA, wait
	 * up to 10ms for it to finish (typically takes <500us) */
	for (retry = 0; retry < 100; ++retry) {
		if (siena_try_update_nic_stats(efx) == 0)
			return;
		udelay(100);
	}

	/* Use the old values instead */
563 564 565 566
}

static void siena_start_nic_stats(struct efx_nic *efx)
{
567
	__le64 *dma_stats = efx->stats_buffer.addr;
568 569 570 571 572 573 574 575 576 577 578 579

	dma_stats[MC_CMD_MAC_GENERATION_END] = STATS_GENERATION_INVALID;

	efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr,
			   MC_CMD_MAC_NSTATS * sizeof(u64), 1, 0);
}

static void siena_stop_nic_stats(struct efx_nic *efx)
{
	efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 0);
}

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
static int siena_mac_reconfigure(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_MCAST_HASH_IN_LEN);
	int rc;

	BUILD_BUG_ON(MC_CMD_SET_MCAST_HASH_IN_LEN !=
		     MC_CMD_SET_MCAST_HASH_IN_HASH0_OFST +
		     sizeof(efx->multicast_hash));

	WARN_ON(!mutex_is_locked(&efx->mac_lock));

	rc = efx_mcdi_set_mac(efx);
	if (rc != 0)
		return rc;

	memcpy(MCDI_PTR(inbuf, SET_MCAST_HASH_IN_HASH0),
	       efx->multicast_hash.byte, sizeof(efx->multicast_hash));
	return efx_mcdi_rpc(efx, MC_CMD_SET_MCAST_HASH,
			    inbuf, sizeof(inbuf), NULL, 0, NULL);
}

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
/**************************************************************************
 *
 * Wake on LAN
 *
 **************************************************************************
 */

static void siena_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
{
	struct siena_nic_data *nic_data = efx->nic_data;

	wol->supported = WAKE_MAGIC;
	if (nic_data->wol_filter_id != -1)
		wol->wolopts = WAKE_MAGIC;
	else
		wol->wolopts = 0;
	memset(&wol->sopass, 0, sizeof(wol->sopass));
}


static int siena_set_wol(struct efx_nic *efx, u32 type)
{
	struct siena_nic_data *nic_data = efx->nic_data;
	int rc;

	if (type & ~WAKE_MAGIC)
		return -EINVAL;

	if (type & WAKE_MAGIC) {
		if (nic_data->wol_filter_id != -1)
			efx_mcdi_wol_filter_remove(efx,
						   nic_data->wol_filter_id);
633
		rc = efx_mcdi_wol_filter_set_magic(efx, efx->net_dev->dev_addr,
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
						   &nic_data->wol_filter_id);
		if (rc)
			goto fail;

		pci_wake_from_d3(efx->pci_dev, true);
	} else {
		rc = efx_mcdi_wol_filter_reset(efx);
		nic_data->wol_filter_id = -1;
		pci_wake_from_d3(efx->pci_dev, false);
		if (rc)
			goto fail;
	}

	return 0;
 fail:
649 650
	netif_err(efx, hw, efx->net_dev, "%s failed: type=%d rc=%d\n",
		  __func__, type, rc);
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
	return rc;
}


static void siena_init_wol(struct efx_nic *efx)
{
	struct siena_nic_data *nic_data = efx->nic_data;
	int rc;

	rc = efx_mcdi_wol_filter_get_magic(efx, &nic_data->wol_filter_id);

	if (rc != 0) {
		/* If it failed, attempt to get into a synchronised
		 * state with MC by resetting any set WoL filters */
		efx_mcdi_wol_filter_reset(efx);
		nic_data->wol_filter_id = -1;
	} else if (nic_data->wol_filter_id != -1) {
		pci_wake_from_d3(efx->pci_dev, true);
	}
}


/**************************************************************************
 *
 * Revision-dependent attributes used by efx.c and nic.c
 *
 **************************************************************************
 */

680
const struct efx_nic_type siena_a0_nic_type = {
681 682 683
	.probe = siena_probe_nic,
	.remove = siena_remove_nic,
	.init = siena_init_nic,
684
	.dimension_resources = siena_dimension_resources,
685
	.fini = efx_port_dummy_op_void,
686 687 688
#ifdef CONFIG_EEH
	.monitor = siena_monitor,
#else
689
	.monitor = NULL,
690
#endif
691
	.map_reset_reason = efx_mcdi_map_reset_reason,
692
	.map_reset_flags = siena_map_reset_flags,
693
	.reset = efx_mcdi_reset,
694 695
	.probe_port = siena_probe_port,
	.remove_port = siena_remove_port,
696 697
	.prepare_flush = siena_prepare_flush,
	.finish_flush = siena_finish_flush,
698 699 700 701 702
	.update_stats = siena_update_nic_stats,
	.start_stats = siena_start_nic_stats,
	.stop_stats = siena_stop_nic_stats,
	.set_id_led = efx_mcdi_set_id_led,
	.push_irq_moderation = siena_push_irq_moderation,
703
	.reconfigure_mac = siena_mac_reconfigure,
704
	.check_mac_fault = efx_mcdi_mac_check_fault,
705 706 707 708
	.reconfigure_port = efx_mcdi_phy_reconfigure,
	.get_wol = siena_get_wol,
	.set_wol = siena_set_wol,
	.resume_wol = siena_init_wol,
709
	.test_chip = siena_test_chip,
710
	.test_nvram = efx_mcdi_nvram_test_all,
711 712

	.revision = EFX_REV_SIENA_A0,
713 714
	.mem_map_size = (FR_CZ_MC_TREG_SMEM +
			 FR_CZ_MC_TREG_SMEM_STEP * FR_CZ_MC_TREG_SMEM_ROWS),
715 716 717 718 719 720
	.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
	.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
	.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
	.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
	.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
721
	.rx_buffer_hash_size = 0x10,
722
	.rx_buffer_padding = 0,
723
	.can_rx_scatter = true,
724 725 726 727
	.max_interrupt_mode = EFX_INT_MODE_MSIX,
	.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
				   * interrupt handler only supports 32
				   * channels */
728
	.timer_period_max = 1 << FRF_CZ_TC_TIMER_VAL_WIDTH,
729
	.offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
730
			     NETIF_F_RXHASH | NETIF_F_NTUPLE),
731
};