rtc-bfin.c 12.8 KB
Newer Older
1 2
/*
 * Blackfin On-Chip Real Time Clock Driver
3
 *  Supports BF52[257]/BF53[123]/BF53[467]/BF54[24789]
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
 *
 * Copyright 2004-2007 Analog Devices Inc.
 *
 * Enter bugs at http://blackfin.uclinux.org/
 *
 * Licensed under the GPL-2 or later.
 */

/* The biggest issue we deal with in this driver is that register writes are
 * synced to the RTC frequency of 1Hz.  So if you write to a register and
 * attempt to write again before the first write has completed, the new write
 * is simply discarded.  This can easily be troublesome if userspace disables
 * one event (say periodic) and then right after enables an event (say alarm).
 * Since all events are maintained in the same interrupt mask register, if
 * we wrote to it to disable the first event and then wrote to it again to
 * enable the second event, that second event would not be enabled as the
 * write would be discarded and things quickly fall apart.
 *
 * To keep this delay from significantly degrading performance (we, in theory,
 * would have to sleep for up to 1 second everytime we wanted to write a
 * register), we only check the write pending status before we start to issue
 * a new write.  We bank on the idea that it doesnt matter when the sync
 * happens so long as we don't attempt another write before it does.  The only
 * time userspace would take this penalty is when they try and do multiple
 * operations right after another ... but in this case, they need to take the
 * sync penalty, so we should be OK.
 *
 * Also note that the RTC_ISTAT register does not suffer this penalty; its
 * writes to clear status registers complete immediately.
 */

#include <linux/bcd.h>
36 37
#include <linux/completion.h>
#include <linux/delay.h>
38
#include <linux/init.h>
39 40 41
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
42
#include <linux/platform_device.h>
43
#include <linux/rtc.h>
44 45 46 47
#include <linux/seq_file.h>

#include <asm/blackfin.h>

48
#define dev_dbg_stamp(dev) dev_dbg(dev, "%s:%i: here i am\n", __func__, __LINE__)
49 50 51 52

struct bfin_rtc {
	struct rtc_device *rtc_dev;
	struct rtc_time rtc_alarm;
53
	u16 rtc_wrote_regs;
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
};

/* Bit values for the ISTAT / ICTL registers */
#define RTC_ISTAT_WRITE_COMPLETE  0x8000
#define RTC_ISTAT_WRITE_PENDING   0x4000
#define RTC_ISTAT_ALARM_DAY       0x0040
#define RTC_ISTAT_24HR            0x0020
#define RTC_ISTAT_HOUR            0x0010
#define RTC_ISTAT_MIN             0x0008
#define RTC_ISTAT_SEC             0x0004
#define RTC_ISTAT_ALARM           0x0002
#define RTC_ISTAT_STOPWATCH       0x0001

/* Shift values for RTC_STAT register */
#define DAY_BITS_OFF    17
#define HOUR_BITS_OFF   12
#define MIN_BITS_OFF    6
#define SEC_BITS_OFF    0

/* Some helper functions to convert between the common RTC notion of time
74
 * and the internal Blackfin notion that is encoded in 32bits.
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
 */
static inline u32 rtc_time_to_bfin(unsigned long now)
{
	u32 sec  = (now % 60);
	u32 min  = (now % (60 * 60)) / 60;
	u32 hour = (now % (60 * 60 * 24)) / (60 * 60);
	u32 days = (now / (60 * 60 * 24));
	return (sec  << SEC_BITS_OFF) +
	       (min  << MIN_BITS_OFF) +
	       (hour << HOUR_BITS_OFF) +
	       (days << DAY_BITS_OFF);
}
static inline unsigned long rtc_bfin_to_time(u32 rtc_bfin)
{
	return (((rtc_bfin >> SEC_BITS_OFF)  & 0x003F)) +
	       (((rtc_bfin >> MIN_BITS_OFF)  & 0x003F) * 60) +
	       (((rtc_bfin >> HOUR_BITS_OFF) & 0x001F) * 60 * 60) +
	       (((rtc_bfin >> DAY_BITS_OFF)  & 0x7FFF) * 60 * 60 * 24);
}
static inline void rtc_bfin_to_tm(u32 rtc_bfin, struct rtc_time *tm)
{
	rtc_time_to_tm(rtc_bfin_to_time(rtc_bfin), tm);
}

99 100 101 102
/**
 *	bfin_rtc_sync_pending - make sure pending writes have complete
 *
 * Wait for the previous write to a RTC register to complete.
103 104 105 106 107 108 109 110 111 112 113 114 115 116
 * Unfortunately, we can't sleep here as that introduces a race condition when
 * turning on interrupt events.  Consider this:
 *  - process sets alarm
 *  - process enables alarm
 *  - process sleeps while waiting for rtc write to sync
 *  - interrupt fires while process is sleeping
 *  - interrupt acks the event by writing to ISTAT
 *  - interrupt sets the WRITE PENDING bit
 *  - interrupt handler finishes
 *  - process wakes up, sees WRITE PENDING bit set, goes to sleep
 *  - interrupt fires while process is sleeping
 * If anyone can point out the obvious solution here, i'm listening :).  This
 * shouldn't be an issue on an SMP or preempt system as this function should
 * only be called with the rtc lock held.
117 118 119 120 121
 *
 * Other options:
 *  - disable PREN so the sync happens at 32.768kHZ ... but this changes the
 *    inc rate for all RTC registers from 1HZ to 32.768kHZ ...
 *  - use the write complete IRQ
122
 */
123 124
/*
static void bfin_rtc_sync_pending_polled(void)
125
{
126
	while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_COMPLETE))
127 128 129 130
		if (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING))
			break;
	bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE);
}
131 132 133 134 135 136 137 138 139
*/
static DECLARE_COMPLETION(bfin_write_complete);
static void bfin_rtc_sync_pending(struct device *dev)
{
	dev_dbg_stamp(dev);
	while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)
		wait_for_completion_timeout(&bfin_write_complete, HZ * 5);
	dev_dbg_stamp(dev);
}
140

141 142 143 144 145 146 147
/**
 *	bfin_rtc_reset - set RTC to sane/known state
 *
 * Initialize the RTC.  Enable pre-scaler to scale RTC clock
 * to 1Hz and clear interrupt/status registers.
 */
static void bfin_rtc_reset(struct device *dev)
148
{
149
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
150 151
	dev_dbg_stamp(dev);
	bfin_rtc_sync_pending(dev);
152
	bfin_write_RTC_PREN(0x1);
153
	bfin_write_RTC_ICTL(RTC_ISTAT_WRITE_COMPLETE);
154 155 156
	bfin_write_RTC_SWCNT(0);
	bfin_write_RTC_ALARM(0);
	bfin_write_RTC_ISTAT(0xFFFF);
157
	rtc->rtc_wrote_regs = 0;
158 159
}

160 161 162 163 164 165 166 167 168 169 170
/**
 *	bfin_rtc_interrupt - handle interrupt from RTC
 *
 * Since we handle all RTC events here, we have to make sure the requested
 * interrupt is enabled (in RTC_ICTL) as the event status register (RTC_ISTAT)
 * always gets updated regardless of the interrupt being enabled.  So when one
 * even we care about (e.g. stopwatch) goes off, we don't want to turn around
 * and say that other events have happened as well (e.g. second).  We do not
 * have to worry about pending writes to the RTC_ICTL register as interrupts
 * only fire if they are enabled in the RTC_ICTL register.
 */
171 172
static irqreturn_t bfin_rtc_interrupt(int irq, void *dev_id)
{
173 174
	struct device *dev = dev_id;
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
175
	unsigned long events = 0;
176 177
	bool write_complete = false;
	u16 rtc_istat, rtc_ictl;
178

179
	dev_dbg_stamp(dev);
180 181

	rtc_istat = bfin_read_RTC_ISTAT();
182
	rtc_ictl = bfin_read_RTC_ICTL();
183

184 185 186 187
	if (rtc_istat & RTC_ISTAT_WRITE_COMPLETE) {
		bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE);
		write_complete = true;
		complete(&bfin_write_complete);
188 189
	}

190 191 192 193 194
	if (rtc_ictl & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)) {
		if (rtc_istat & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)) {
			bfin_write_RTC_ISTAT(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY);
			events |= RTC_AF | RTC_IRQF;
		}
195 196
	}

197 198 199 200 201 202
	if (rtc_ictl & RTC_ISTAT_STOPWATCH) {
		if (rtc_istat & RTC_ISTAT_STOPWATCH) {
			bfin_write_RTC_ISTAT(RTC_ISTAT_STOPWATCH);
			events |= RTC_PF | RTC_IRQF;
			bfin_write_RTC_SWCNT(rtc->rtc_dev->irq_freq);
		}
203 204
	}

205 206 207 208 209 210
	if (rtc_ictl & RTC_ISTAT_SEC) {
		if (rtc_istat & RTC_ISTAT_SEC) {
			bfin_write_RTC_ISTAT(RTC_ISTAT_SEC);
			events |= RTC_UF | RTC_IRQF;
		}
	}
211

212 213
	if (events)
		rtc_update_irq(rtc->rtc_dev, 1, events);
214

215 216 217 218
	if (write_complete || events)
		return IRQ_HANDLED;
	else
		return IRQ_NONE;
219 220 221 222 223 224
}

static int bfin_rtc_open(struct device *dev)
{
	int ret;

225
	dev_dbg_stamp(dev);
226

227 228 229
	ret = request_irq(IRQ_RTC, bfin_rtc_interrupt, IRQF_SHARED, to_platform_device(dev)->name, dev);
	if (!ret)
		bfin_rtc_reset(dev);
230 231 232 233 234 235

	return ret;
}

static void bfin_rtc_release(struct device *dev)
{
236
	dev_dbg_stamp(dev);
237
	bfin_rtc_reset(dev);
238 239 240
	free_irq(IRQ_RTC, dev);
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
static void bfin_rtc_int_set(struct bfin_rtc *rtc, u16 rtc_int)
{
	bfin_write_RTC_ISTAT(rtc_int);
	bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | rtc_int);
}
static void bfin_rtc_int_clear(struct bfin_rtc *rtc, u16 rtc_int)
{
	bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & rtc_int);
}
static void bfin_rtc_int_set_alarm(struct bfin_rtc *rtc)
{
	/* Blackfin has different bits for whether the alarm is
	 * more than 24 hours away.
	 */
	bfin_rtc_int_set(rtc, (rtc->rtc_alarm.tm_yday == -1 ? RTC_ISTAT_ALARM : RTC_ISTAT_ALARM_DAY));
}
257 258 259
static int bfin_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
260
	int ret = 0;
261

262
	dev_dbg_stamp(dev);
263

264 265
	bfin_rtc_sync_pending(dev);

266 267
	switch (cmd) {
	case RTC_PIE_ON:
268
		dev_dbg_stamp(dev);
269
		bfin_rtc_int_set(rtc, RTC_ISTAT_STOPWATCH);
270
		bfin_write_RTC_SWCNT(rtc->rtc_dev->irq_freq);
271
		break;
272
	case RTC_PIE_OFF:
273
		dev_dbg_stamp(dev);
274 275
		bfin_rtc_int_clear(rtc, ~RTC_ISTAT_STOPWATCH);
		break;
276 277

	case RTC_UIE_ON:
278
		dev_dbg_stamp(dev);
279 280
		bfin_rtc_int_set(rtc, RTC_ISTAT_SEC);
		break;
281
	case RTC_UIE_OFF:
282
		dev_dbg_stamp(dev);
283 284
		bfin_rtc_int_clear(rtc, ~RTC_ISTAT_SEC);
		break;
285

286
	case RTC_AIE_ON:
287
		dev_dbg_stamp(dev);
288 289
		bfin_rtc_int_set_alarm(rtc);
		break;
290
	case RTC_AIE_OFF:
291
		dev_dbg_stamp(dev);
292 293 294 295 296 297
		bfin_rtc_int_clear(rtc, ~(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
		break;

	default:
		dev_dbg_stamp(dev);
		ret = -ENOIOCTLCMD;
298 299
	}

300
	return ret;
301 302 303 304 305 306
}

static int bfin_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);

307
	dev_dbg_stamp(dev);
308

309 310 311
	if (rtc->rtc_wrote_regs & 0x1)
		bfin_rtc_sync_pending(dev);

312 313 314 315 316 317 318 319 320 321 322
	rtc_bfin_to_tm(bfin_read_RTC_STAT(), tm);

	return 0;
}

static int bfin_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
	int ret;
	unsigned long now;

323
	dev_dbg_stamp(dev);
324 325 326

	ret = rtc_tm_to_time(tm, &now);
	if (ret == 0) {
327 328
		if (rtc->rtc_wrote_regs & 0x1)
			bfin_rtc_sync_pending(dev);
329
		bfin_write_RTC_STAT(rtc_time_to_bfin(now));
330
		rtc->rtc_wrote_regs = 0x1;
331 332 333 334 335 336 337 338
	}

	return ret;
}

static int bfin_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
339
	dev_dbg_stamp(dev);
340
	alrm->time = rtc->rtc_alarm;
341
	bfin_rtc_sync_pending(dev);
342
	alrm->enabled = !!(bfin_read_RTC_ICTL() & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
343 344 345 346 347 348
	return 0;
}

static int bfin_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
349 350
	unsigned long rtc_alarm;

351
	dev_dbg_stamp(dev);
352 353 354 355

	if (rtc_tm_to_time(&alrm->time, &rtc_alarm))
		return -EINVAL;

356
	rtc->rtc_alarm = alrm->time;
357 358 359 360 361 362

	bfin_rtc_sync_pending(dev);
	bfin_write_RTC_ALARM(rtc_time_to_bfin(rtc_alarm));
	if (alrm->enabled)
		bfin_rtc_int_set_alarm(rtc);

363 364 365 366 367
	return 0;
}

static int bfin_rtc_proc(struct device *dev, struct seq_file *seq)
{
368
#define yesno(x) ((x) ? "yes" : "no")
369
	u16 ictl = bfin_read_RTC_ICTL();
370
	dev_dbg_stamp(dev);
371 372 373 374 375 376 377 378 379
	seq_printf(seq,
		"alarm_IRQ\t: %s\n"
		"wkalarm_IRQ\t: %s\n"
		"seconds_IRQ\t: %s\n"
		"periodic_IRQ\t: %s\n",
		yesno(ictl & RTC_ISTAT_ALARM),
		yesno(ictl & RTC_ISTAT_ALARM_DAY),
		yesno(ictl & RTC_ISTAT_SEC),
		yesno(ictl & RTC_ISTAT_STOPWATCH));
380
	return 0;
381
#undef yesno
382 383
}

384 385 386 387 388 389 390 391
/**
 *	bfin_irq_set_freq - make sure hardware supports requested freq
 *	@dev: pointer to RTC device structure
 *	@freq: requested frequency rate
 *
 *	The Blackfin RTC can only generate periodic events at 1 per
 *	second (1 Hz), so reject any attempt at changing it.
 */
392 393
static int bfin_irq_set_freq(struct device *dev, int freq)
{
394
	dev_dbg_stamp(dev);
395
	return -ENOTTY;
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
}

static struct rtc_class_ops bfin_rtc_ops = {
	.open          = bfin_rtc_open,
	.release       = bfin_rtc_release,
	.ioctl         = bfin_rtc_ioctl,
	.read_time     = bfin_rtc_read_time,
	.set_time      = bfin_rtc_set_time,
	.read_alarm    = bfin_rtc_read_alarm,
	.set_alarm     = bfin_rtc_set_alarm,
	.proc          = bfin_rtc_proc,
	.irq_set_freq  = bfin_irq_set_freq,
};

static int __devinit bfin_rtc_probe(struct platform_device *pdev)
{
	struct bfin_rtc *rtc;
	int ret = 0;

415
	dev_dbg_stamp(&pdev->dev);
416 417 418 419 420 421

	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
	if (unlikely(!rtc))
		return -ENOMEM;

	rtc->rtc_dev = rtc_device_register(pdev->name, &pdev->dev, &bfin_rtc_ops, THIS_MODULE);
422
	if (IS_ERR(rtc)) {
423 424 425
		ret = PTR_ERR(rtc->rtc_dev);
		goto err;
	}
426
	rtc->rtc_dev->irq_freq = 1;
427 428 429 430 431

	platform_set_drvdata(pdev, rtc);

	return 0;

432
 err:
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
	kfree(rtc);
	return ret;
}

static int __devexit bfin_rtc_remove(struct platform_device *pdev)
{
	struct bfin_rtc *rtc = platform_get_drvdata(pdev);

	rtc_device_unregister(rtc->rtc_dev);
	platform_set_drvdata(pdev, NULL);
	kfree(rtc);

	return 0;
}

static struct platform_driver bfin_rtc_driver = {
	.driver		= {
		.name	= "rtc-bfin",
		.owner	= THIS_MODULE,
	},
	.probe		= bfin_rtc_probe,
	.remove		= __devexit_p(bfin_rtc_remove),
};

static int __init bfin_rtc_init(void)
{
	return platform_driver_register(&bfin_rtc_driver);
}

static void __exit bfin_rtc_exit(void)
{
	platform_driver_unregister(&bfin_rtc_driver);
}

module_init(bfin_rtc_init);
module_exit(bfin_rtc_exit);

MODULE_DESCRIPTION("Blackfin On-Chip Real Time Clock Driver");
MODULE_AUTHOR("Mike Frysinger <vapier@gentoo.org>");
MODULE_LICENSE("GPL");
473
MODULE_ALIAS("platform:rtc-bfin");