inode.c 147.7 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include "ext4_jbd2.h"
41 42
#include "xattr.h"
#include "acl.h"
43
#include "ext4_extents.h"
44

45 46
#define MPAGE_DA_EXTENT_TAIL 0x01

47 48 49
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
50 51 52 53
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
54 55
}

56 57
static void ext4_invalidatepage(struct page *page, unsigned long offset);

58 59 60
/*
 * Test whether an inode is a fast symlink.
 */
61
static int ext4_inode_is_fast_symlink(struct inode *inode)
62
{
63
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
64 65 66 67 68 69
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
70
 * The ext4 forget function must perform a revoke if we are freeing data
71 72 73 74 75 76
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
77 78
 *
 * If the handle isn't valid we're not journaling so there's nothing to do.
79
 */
80 81
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
			struct buffer_head *bh, ext4_fsblk_t blocknr)
82 83 84
{
	int err;

85 86 87
	if (!ext4_handle_valid(handle))
		return 0;

88 89 90 91 92 93 94 95 96 97 98 99 100 101
	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
		  "data mode %lx\n",
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

102 103
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
104
		if (bh) {
105
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
106
			return ext4_journal_forget(handle, bh);
107 108 109 110 111 112 113
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
114 115
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
116
	if (err)
117
		ext4_abort(inode->i_sb, __func__,
118 119 120 121 122 123 124 125 126 127 128
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
129
	ext4_lblk_t needed;
130 131 132 133 134 135

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
136
	 * like a regular file for ext4 to try to delete it.  Things
137 138 139 140 141 142 143
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
144 145
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
146

147
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

164
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
165 166 167
	if (!IS_ERR(result))
		return result;

168
	ext4_std_error(inode->i_sb, PTR_ERR(result));
169 170 171 172 173 174 175 176 177 178 179
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
180 181 182
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183
		return 0;
184
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185 186 187 188 189 190 191 192 193
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
194
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195
{
196
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
197
	jbd_debug(2, "restarting handle %p\n", handle);
198
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 200 201 202 203
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
204
void ext4_delete_inode(struct inode *inode)
205 206
{
	handle_t *handle;
207
	int err;
208

209 210
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
211 212 213 214 215
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

216
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217
	if (IS_ERR(handle)) {
218
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
219 220 221 222 223
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
224
		ext4_orphan_del(NULL, inode);
225 226 227 228
		goto no_delete;
	}

	if (IS_SYNC(inode))
229
		ext4_handle_sync(handle);
230
	inode->i_size = 0;
231 232 233 234 235 236
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
		ext4_warning(inode->i_sb, __func__,
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
237
	if (inode->i_blocks)
238
		ext4_truncate(inode);
239 240 241 242 243 244 245

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
246
	if (!ext4_handle_has_enough_credits(handle, 3)) {
247 248 249 250 251 252 253 254 255 256 257 258
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
			ext4_warning(inode->i_sb, __func__,
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

259
	/*
260
	 * Kill off the orphan record which ext4_truncate created.
261
	 * AKPM: I think this can be inside the above `if'.
262
	 * Note that ext4_orphan_del() has to be able to cope with the
263
	 * deletion of a non-existent orphan - this is because we don't
264
	 * know if ext4_truncate() actually created an orphan record.
265 266
	 * (Well, we could do this if we need to, but heck - it works)
	 */
267 268
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
269 270 271 272 273 274 275 276

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
277
	if (ext4_mark_inode_dirty(handle, inode))
278 279 280
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
281 282
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
301
 *	ext4_block_to_path - parse the block number into array of offsets
302 303 304
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
305 306
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
307
 *
308
 *	To store the locations of file's data ext4 uses a data structure common
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

331
static int ext4_block_to_path(struct inode *inode,
A
Aneesh Kumar K.V 已提交
332 333
			ext4_lblk_t i_block,
			ext4_lblk_t offsets[4], int *boundary)
334
{
335 336 337
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
338 339 340 341 342 343
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
344
		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345 346 347
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
348
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
349
		offsets[n++] = EXT4_IND_BLOCK;
350 351 352
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
353
		offsets[n++] = EXT4_DIND_BLOCK;
354 355 356 357
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358
		offsets[n++] = EXT4_TIND_BLOCK;
359 360 361 362 363
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
364
		ext4_warning(inode->i_sb, "ext4_block_to_path",
365
				"block %lu > max in inode %lu",
366
				i_block + direct_blocks +
367
				indirect_blocks + double_blocks, inode->i_ino);
368 369 370 371 372 373 374
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

/**
375
 *	ext4_get_branch - read the chain of indirect blocks leading to data
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
400 401
 *
 *      Need to be called with
402
 *      down_read(&EXT4_I(inode)->i_data_sem)
403
 */
A
Aneesh Kumar K.V 已提交
404 405
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
406 407 408 409 410 411 412 413
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
414
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
415 416 417 418 419 420
	if (!p->key)
		goto no_block;
	while (--depth) {
		bh = sb_bread(sb, le32_to_cpu(p->key));
		if (!bh)
			goto failure;
421
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
422 423 424 425 426 427 428 429 430 431 432 433 434
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
435
 *	ext4_find_near - find a place for allocation with sufficient locality
436 437 438
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
439
 *	This function returns the preferred place for block allocation.
440 441 442 443 444 445 446 447 448 449 450 451 452 453
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
454
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
455
{
456
	struct ext4_inode_info *ei = EXT4_I(inode);
457
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
458
	__le32 *p;
459
	ext4_fsblk_t bg_start;
460
	ext4_fsblk_t last_block;
461
	ext4_grpblk_t colour;
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
477
	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
478 479 480 481
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
482
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
483 484
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
485 486 487 488
	return bg_start + colour;
}

/**
489
 *	ext4_find_goal - find a preferred place for allocation.
490 491 492 493
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
494
 *	Normally this function find the preferred place for block allocation,
495
 *	returns it.
496
 */
A
Aneesh Kumar K.V 已提交
497
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
498
		Indirect *partial)
499 500
{
	/*
501
	 * XXX need to get goal block from mballoc's data structures
502 503
	 */

504
	return ext4_find_near(inode, partial);
505 506 507
}

/**
508
 *	ext4_blks_to_allocate: Look up the block map and count the number
509 510 511 512 513 514 515 516 517 518
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
519
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
520 521
		int blocks_to_boundary)
{
522
	unsigned int count = 0;
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
546
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
547 548 549 550 551 552 553 554
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
555
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
556 557 558
				ext4_lblk_t iblock, ext4_fsblk_t goal,
				int indirect_blks, int blks,
				ext4_fsblk_t new_blocks[4], int *err)
559
{
560
	struct ext4_allocation_request ar;
561
	int target, i;
562
	unsigned long count = 0, blk_allocated = 0;
563
	int index = 0;
564
	ext4_fsblk_t current_block = 0;
565 566 567 568 569 570 571 572 573 574
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
575 576 577
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
578 579
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
580 581
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
582 583 584 585 586 587 588 589 590
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
591 592 593 594 595 596 597 598 599
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
600
			break;
601
		}
602 603
	}

604 605 606 607 608
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
609 610 611 612 613 614 615 616 617 618 619
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
		/*
		 * save the new block number
		 * for the first direct block
		 */
			new_blocks[index] = current_block;
		}
635
		blk_allocated += ar.len;
636 637
	}
allocated:
638
	/* total number of blocks allocated for direct blocks */
639
	ret = blk_allocated;
640 641 642
	*err = 0;
	return ret;
failed_out:
643
	for (i = 0; i < index; i++)
644
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
645 646 647 648
	return ret;
}

/**
649
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
650 651 652 653 654 655 656 657 658 659
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
660
 *	the same format as ext4_get_branch() would do. We are calling it after
661 662
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
663
 *	picture as after the successful ext4_get_block(), except that in one
664 665 666 667 668 669
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
670
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
671 672
 *	as described above and return 0.
 */
673
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
674 675 676
				ext4_lblk_t iblock, int indirect_blks,
				int *blks, ext4_fsblk_t goal,
				ext4_lblk_t *offsets, Indirect *branch)
677 678 679 680 681 682
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
683 684
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
685

686
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
705
		err = ext4_journal_get_create_access(handle, bh);
706 707 708 709 710 711 712 713 714 715
		if (err) {
			unlock_buffer(bh);
			brelse(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
716
		if (n == indirect_blks) {
717 718 719 720 721 722 723 724 725 726 727 728 729
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
			for (i=1; i < num; i++)
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

730 731
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
732 733 734 735 736 737 738 739
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
740
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
741
		ext4_journal_forget(handle, branch[i].bh);
742
	}
743
	for (i = 0; i < indirect_blks; i++)
744
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
745

746
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
747 748 749 750 751

	return err;
}

/**
752
 * ext4_splice_branch - splice the allocated branch onto inode.
753 754 755
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
756
 *	ext4_alloc_branch)
757 758 759 760 761 762 763 764
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
765
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
766
			ext4_lblk_t block, Indirect *where, int num, int blks)
767 768 769
{
	int i;
	int err = 0;
770
	ext4_fsblk_t current_block;
771 772 773 774 775 776 777 778

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
779
		err = ext4_journal_get_write_access(handle, where->bh);
780 781 782 783 784 785 786 787 788 789 790 791 792 793
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
794
			*(where->p + i) = cpu_to_le32(current_block++);
795 796 797 798
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */

K
Kalpak Shah 已提交
799
	inode->i_ctime = ext4_current_time(inode);
800
	ext4_mark_inode_dirty(handle, inode);
801 802 803 804 805 806 807 808 809

	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
810
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
811 812
		 */
		jbd_debug(5, "splicing indirect only\n");
813 814
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
815 816 817 818 819 820 821 822 823 824 825 826 827
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 * Inode was dirtied above.
		 */
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
828
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
829
		ext4_journal_forget(handle, where[i].bh);
830 831
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
832
	}
833
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854

	return err;
}

/*
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
855 856 857
 *
 *
 * Need to be called with
858 859
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
860
 */
861 862 863 864
static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
				  ext4_lblk_t iblock, unsigned int maxblocks,
				  struct buffer_head *bh_result,
				  int create, int extend_disksize)
865 866
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
867
	ext4_lblk_t offsets[4];
868 869
	Indirect chain[4];
	Indirect *partial;
870
	ext4_fsblk_t goal;
871 872 873
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
874
	struct ext4_inode_info *ei = EXT4_I(inode);
875
	int count = 0;
876
	ext4_fsblk_t first_block = 0;
877
	loff_t disksize;
878 879


A
Alex Tomas 已提交
880
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
881
	J_ASSERT(handle != NULL || create == 0);
A
Aneesh Kumar K.V 已提交
882 883
	depth = ext4_block_to_path(inode, iblock, offsets,
					&blocks_to_boundary);
884 885 886 887

	if (depth == 0)
		goto out;

888
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
889 890 891 892 893 894 895 896

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
897
			ext4_fsblk_t blk;
898 899 900 901 902 903 904 905

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
906
		goto got_it;
907 908 909 910 911 912 913
	}

	/* Next simple case - plain lookup or failed read of indirect block */
	if (!create || err == -EIO)
		goto cleanup;

	/*
914
	 * Okay, we need to do block allocation.
915
	*/
916
	goal = ext4_find_goal(inode, iblock, partial);
917 918 919 920 921 922 923 924

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
925
	count = ext4_blks_to_allocate(partial, indirect_blks,
926 927
					maxblocks, blocks_to_boundary);
	/*
928
	 * Block out ext4_truncate while we alter the tree
929
	 */
930 931 932
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
					&count, goal,
					offsets + (partial - chain), partial);
933 934

	/*
935
	 * The ext4_splice_branch call will free and forget any buffers
936 937 938 939 940 941
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
942
		err = ext4_splice_branch(handle, inode, iblock,
943 944
					partial, indirect_blks, count);
	/*
945
	 * i_disksize growing is protected by i_data_sem.  Don't forget to
946
	 * protect it if you're about to implement concurrent
947
	 * ext4_get_block() -bzzz
948
	*/
949 950 951 952 953 954 955
	if (!err && extend_disksize) {
		disksize = ((loff_t) iblock + count) << inode->i_blkbits;
		if (disksize > i_size_read(inode))
			disksize = i_size_read(inode);
		if (disksize > ei->i_disksize)
			ei->i_disksize = disksize;
	}
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
	if (err)
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate @blocks for non extent file based file
 */
static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
{
	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ind_blks, dind_blks, tind_blks;

	/* number of new indirect blocks needed */
	ind_blks = (blocks + icap - 1) / icap;

	dind_blks = (ind_blks + icap - 1) / icap;

	tind_blks = 1;

	return ind_blks + dind_blks + tind_blks;
}

/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate given number of blocks
 */
static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
{
1003 1004 1005
	if (!blocks)
		return 0;

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_calc_metadata_amount(inode, blocks);

	return ext4_indirect_calc_metadata_amount(inode, blocks);
}

static void ext4_da_update_reserve_space(struct inode *inode, int used)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free;

	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	/* recalculate the number of metablocks still need to be reserved */
	total = EXT4_I(inode)->i_reserved_data_blocks - used;
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

1026 1027 1028 1029 1030 1031 1032 1033 1034
	if (mdb_free) {
		/* Account for allocated meta_blocks */
		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;

		/* update fs dirty blocks counter */
		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
		EXT4_I(inode)->i_allocated_meta_blocks = 0;
		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	}
1035 1036 1037 1038 1039 1040 1041 1042

	/* update per-inode reservations */
	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= used;

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
}

1043
/*
1044 1045
 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
 * and returns if the blocks are already mapped.
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1065
int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1066
			unsigned int max_blocks, struct buffer_head *bh,
1067
			int create, int extend_disksize, int flag)
1068 1069
{
	int retval;
1070 1071 1072

	clear_buffer_mapped(bh);

1073 1074 1075 1076 1077 1078 1079 1080
	/*
	 * Try to see if we can get  the block without requesting
	 * for new file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, 0, 0);
1081
	} else {
1082 1083
		retval = ext4_get_blocks_handle(handle,
				inode, block, max_blocks, bh, 0, 0);
1084
	}
1085
	up_read((&EXT4_I(inode)->i_data_sem));
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098

	/* If it is only a block(s) look up */
	if (!create)
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1099 1100 1101
		return retval;

	/*
1102 1103 1104 1105
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1106 1107
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1108 1109 1110 1111 1112 1113 1114 1115 1116

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
	if (flag)
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1117 1118 1119 1120
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1121 1122 1123 1124 1125 1126
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, create, extend_disksize);
	} else {
		retval = ext4_get_blocks_handle(handle, inode, block,
				max_blocks, bh, create, extend_disksize);
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
							~EXT4_EXT_MIGRATE;
		}
1137
	}
1138 1139 1140 1141 1142 1143 1144 1145 1146

	if (flag) {
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
		/*
		 * Update reserved blocks/metadata blocks
		 * after successful block allocation
		 * which were deferred till now
		 */
		if ((retval > 0) && buffer_delay(bh))
1147
			ext4_da_update_reserve_space(inode, retval);
1148 1149
	}

1150
	up_write((&EXT4_I(inode)->i_data_sem));
1151 1152 1153
	return retval;
}

1154 1155 1156
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1157 1158
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create)
1159
{
1160
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1161
	int ret = 0, started = 0;
1162
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1163
	int dio_credits;
1164

J
Jan Kara 已提交
1165 1166 1167 1168
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
1169 1170
		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1171
		if (IS_ERR(handle)) {
1172
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1173
			goto out;
1174
		}
J
Jan Kara 已提交
1175
		started = 1;
1176 1177
	}

J
Jan Kara 已提交
1178
	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1179
					max_blocks, bh_result, create, 0, 0);
J
Jan Kara 已提交
1180 1181 1182
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1183
	}
J
Jan Kara 已提交
1184 1185 1186
	if (started)
		ext4_journal_stop(handle);
out:
1187 1188 1189 1190 1191 1192
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1193
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1194
				ext4_lblk_t block, int create, int *errp)
1195 1196 1197 1198 1199 1200 1201 1202 1203
{
	struct buffer_head dummy;
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
A
Alex Tomas 已提交
1204
	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1205
					&dummy, create, 1, 0);
1206
	/*
1207
	 * ext4_get_blocks_handle() returns number of blocks
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	 * mapped. 0 in case of a HOLE.
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1225
			J_ASSERT(handle != NULL);
1226 1227 1228 1229 1230

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1231
			 * writes use ext4_get_block instead, so it's not a
1232 1233 1234 1235
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1236
			fatal = ext4_journal_get_create_access(handle, bh);
1237
			if (!fatal && !buffer_uptodate(bh)) {
1238
				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1239 1240 1241
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1242 1243
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			err = ext4_handle_dirty_metadata(handle, inode, bh);
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1260
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1261
			       ext4_lblk_t block, int create, int *err)
1262
{
1263
	struct buffer_head *bh;
1264

1265
	bh = ext4_getblk(handle, inode, block, create, err);
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1279 1280 1281 1282 1283 1284 1285
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1286 1287 1288 1289 1290 1291 1292
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1293 1294 1295
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
	     block_start = block_end, bh = next)
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	{
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1314
 * close off a transaction and start a new one between the ext4_get_block()
1315
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1316 1317
 * prepare_write() is the right place.
 *
1318 1319
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1320 1321 1322 1323
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1324
 * By accident, ext4 can be reentered when a transaction is open via
1325 1326 1327 1328 1329 1330
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1331
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1332 1333 1334 1335 1336 1337 1338 1339 1340
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
					struct buffer_head *bh)
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1341
	return ext4_journal_get_write_access(handle, bh);
1342 1343
}

N
Nick Piggin 已提交
1344 1345 1346
static int ext4_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
1347
{
1348
	struct inode *inode = mapping->host;
1349
	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1350 1351
	handle_t *handle;
	int retries = 0;
1352
	struct page *page;
N
Nick Piggin 已提交
1353
 	pgoff_t index;
1354
	unsigned from, to;
N
Nick Piggin 已提交
1355

1356 1357 1358 1359
	trace_mark(ext4_write_begin,
		   "dev %s ino %lu pos %llu len %u flags %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, flags);
N
Nick Piggin 已提交
1360
 	index = pos >> PAGE_CACHE_SHIFT;
1361 1362
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1363 1364

retry:
1365 1366 1367 1368
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1369
	}
1370

1371
	page = grab_cache_page_write_begin(mapping, index, flags);
1372 1373 1374 1375 1376 1377 1378
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

N
Nick Piggin 已提交
1379 1380 1381 1382
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_get_block);

	if (!ret && ext4_should_journal_data(inode)) {
1383 1384 1385
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1386 1387

	if (ret) {
1388
		unlock_page(page);
1389
		ext4_journal_stop(handle);
1390
		page_cache_release(page);
1391 1392 1393 1394 1395 1396 1397
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
			vmtruncate(inode, inode->i_size);
N
Nick Piggin 已提交
1398 1399
	}

1400
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1401
		goto retry;
1402
out:
1403 1404 1405
	return ret;
}

N
Nick Piggin 已提交
1406 1407
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1408 1409 1410 1411
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1412
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1413 1414 1415 1416 1417 1418
}

/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1419
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1420 1421
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1422 1423 1424 1425
static int ext4_ordered_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1426
{
1427
	handle_t *handle = ext4_journal_current_handle();
1428
	struct inode *inode = mapping->host;
1429 1430
	int ret = 0, ret2;

1431 1432 1433 1434
	trace_mark(ext4_ordered_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
1435
	ret = ext4_jbd2_file_inode(handle, inode);
1436 1437 1438 1439

	if (ret == 0) {
		loff_t new_i_size;

N
Nick Piggin 已提交
1440
		new_i_size = pos + copied;
1441 1442 1443 1444 1445 1446 1447 1448 1449
		if (new_i_size > EXT4_I(inode)->i_disksize) {
			ext4_update_i_disksize(inode, new_i_size);
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
		}

1450
		ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1451
							page, fsdata);
1452 1453 1454
		copied = ret2;
		if (ret2 < 0)
			ret = ret2;
1455
	}
1456
	ret2 = ext4_journal_stop(handle);
1457 1458
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1459 1460

	return ret ? ret : copied;
1461 1462
}

N
Nick Piggin 已提交
1463 1464 1465 1466
static int ext4_writeback_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1467
{
1468
	handle_t *handle = ext4_journal_current_handle();
1469
	struct inode *inode = mapping->host;
1470 1471 1472
	int ret = 0, ret2;
	loff_t new_i_size;

1473 1474 1475 1476
	trace_mark(ext4_writeback_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
N
Nick Piggin 已提交
1477
	new_i_size = pos + copied;
1478 1479 1480 1481 1482 1483 1484 1485
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_mark_inode_dirty(handle, inode);
	}
1486

1487
	ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1488
							page, fsdata);
1489 1490 1491
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
1492

1493
	ret2 = ext4_journal_stop(handle);
1494 1495
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1496 1497

	return ret ? ret : copied;
1498 1499
}

N
Nick Piggin 已提交
1500 1501 1502 1503
static int ext4_journalled_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1504
{
1505
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1506
	struct inode *inode = mapping->host;
1507 1508
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1509
	unsigned from, to;
1510
	loff_t new_i_size;
1511

1512 1513 1514 1515
	trace_mark(ext4_journalled_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
N
Nick Piggin 已提交
1516 1517 1518 1519 1520 1521 1522 1523
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1524 1525

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1526
				to, &partial, write_end_fn);
1527 1528
	if (!partial)
		SetPageUptodate(page);
1529 1530
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1531
		i_size_write(inode, pos+copied);
1532
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1533 1534
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1535
		ret2 = ext4_mark_inode_dirty(handle, inode);
1536 1537 1538
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1539

1540
	unlock_page(page);
1541
	ret2 = ext4_journal_stop(handle);
1542 1543
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1544 1545 1546
	page_cache_release(page);

	return ret ? ret : copied;
1547
}
1548 1549 1550

static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
{
A
Aneesh Kumar K.V 已提交
1551
	int retries = 0;
1552 1553 1554 1555 1556 1557 1558 1559
       struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
       unsigned long md_needed, mdblocks, total = 0;

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1560
repeat:
1561 1562 1563 1564 1565 1566 1567 1568
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
	mdblocks = ext4_calc_metadata_amount(inode, total);
	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);

	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
	total = md_needed + nrblocks;

1569
	if (ext4_claim_free_blocks(sbi, total)) {
1570
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1571 1572 1573 1574
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1575 1576 1577 1578 1579 1580 1581 1582 1583
		return -ENOSPC;
	}
	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
	return 0;       /* success */
}

1584
static void ext4_da_release_space(struct inode *inode, int to_free)
1585 1586 1587 1588
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int total, mdb, mdb_free, release;

1589 1590 1591
	if (!to_free)
		return;		/* Nothing to release, exit */

1592
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607

	if (!EXT4_I(inode)->i_reserved_data_blocks) {
		/*
		 * if there is no reserved blocks, but we try to free some
		 * then the counter is messed up somewhere.
		 * but since this function is called from invalidate
		 * page, it's harmless to return without any action
		 */
		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
			    "blocks for inode %lu, but there is no reserved "
			    "data blocks\n", to_free, inode->i_ino);
		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
		return;
	}

1608
	/* recalculate the number of metablocks still need to be reserved */
1609
	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1610 1611 1612 1613 1614 1615 1616 1617
	mdb = ext4_calc_metadata_amount(inode, total);

	/* figure out how many metablocks to release */
	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;

	release = to_free + mdb_free;

1618 1619
	/* update fs dirty blocks counter for truncate case */
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1620 1621

	/* update per-inode reservations */
1622 1623
	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
}

static void ext4_da_page_release_reservation(struct page *page,
						unsigned long offset)
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1648
	ext4_da_release_space(page->mapping->host, to_release);
1649
}
1650

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
/*
 * Delayed allocation stuff
 */

struct mpage_da_data {
	struct inode *inode;
	struct buffer_head lbh;			/* extent of blocks */
	unsigned long first_page, next_page;	/* extent of pages */
	get_block_t *get_block;
	struct writeback_control *wbc;
1661
	int io_done;
1662
	int pages_written;
1663
	int retval;
1664 1665 1666 1667
};

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1668
 * them with writepage() call back
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 * @mpd->get_block: the filesystem's block mapper function
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
1682
	long pages_skipped;
1683 1684 1685 1686 1687
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1688 1689

	BUG_ON(mpd->next_page <= mpd->first_page);
1690 1691 1692 1693 1694 1695
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
	 * If we look at mpd->lbh.b_blocknr we would only be looking
	 * at the currently mapped buffer_heads.
	 */
1696 1697 1698
	index = mpd->first_page;
	end = mpd->next_page - 1;

1699
	pagevec_init(&pvec, 0);
1700
	while (index <= end) {
1701
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1702 1703 1704 1705 1706
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

1707 1708 1709 1710 1711 1712 1713 1714
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1715
			pages_skipped = mpd->wbc->pages_skipped;
1716
			err = mapping->a_ops->writepage(page, mpd->wbc);
1717 1718 1719 1720 1721
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
1722
				mpd->pages_written++;
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * @mpd->inode - inode to walk through
 * @exbh->b_blocknr - first block on a disk
 * @exbh->b_size - amount of space in bytes
 * @logical - first logical block to start assignment with
 *
 * the function goes through all passed space and put actual disk
 * block numbers into buffer heads, dropping BH_Delay
 */
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
				 struct buffer_head *exbh)
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
	int blocks = exbh->b_size >> inode->i_blkbits;
	sector_t pblock = exbh->b_blocknr, cur_logical;
	struct buffer_head *head, *bh;
1755
	pgoff_t index, end;
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	struct pagevec pvec;
	int nr_pages, i;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
				if (cur_logical >= logical)
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
				if (cur_logical >= logical + blocks)
					break;
				if (buffer_delay(bh)) {
					bh->b_blocknr = pblock;
					clear_buffer_delay(bh);
1798 1799 1800 1801 1802 1803 1804
					bh->b_bdev = inode->i_sb->s_bdev;
				} else if (buffer_unwritten(bh)) {
					bh->b_blocknr = pblock;
					clear_buffer_unwritten(bh);
					set_buffer_mapped(bh);
					set_buffer_new(bh);
					bh->b_bdev = inode->i_sb->s_bdev;
1805
				} else if (buffer_mapped(bh))
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
					BUG_ON(bh->b_blocknr != pblock);

				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


/*
 * __unmap_underlying_blocks - just a helper function to unmap
 * set of blocks described by @bh
 */
static inline void __unmap_underlying_blocks(struct inode *inode,
					     struct buffer_head *bh)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	int blocks, i;

	blocks = bh->b_size >> inode->i_blkbits;
	for (i = 0; i < blocks; i++)
		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
}

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
	}
	return;
}

1865 1866 1867 1868 1869 1870 1871
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	printk(KERN_EMERG "Total free blocks count %lld\n",
			ext4_count_free_blocks(inode->i_sb));
	printk(KERN_EMERG "Free/Dirty block details\n");
	printk(KERN_EMERG "free_blocks=%lld\n",
1872
			(long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1873
	printk(KERN_EMERG "dirty_blocks=%lld\n",
1874
			(long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1875
	printk(KERN_EMERG "Block reservation details\n");
1876
	printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1877
			EXT4_I(inode)->i_reserved_data_blocks);
1878
	printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1879 1880 1881 1882
			EXT4_I(inode)->i_reserved_meta_blocks);
	return;
}

1883 1884 1885 1886 1887 1888 1889 1890 1891
/*
 * mpage_da_map_blocks - go through given space
 *
 * @mpd->lbh - bh describing space
 * @mpd->get_block - the filesystem's block mapper function
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1892
static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1893
{
1894
	int err = 0;
A
Aneesh Kumar K.V 已提交
1895
	struct buffer_head new;
1896
	struct buffer_head *lbh = &mpd->lbh;
1897
	sector_t next;
1898 1899 1900 1901 1902

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
	if (buffer_mapped(lbh) && !buffer_delay(lbh))
1903
		return 0;
1904 1905 1906
	new.b_state = lbh->b_state;
	new.b_blocknr = 0;
	new.b_size = lbh->b_size;
1907
	next = lbh->b_blocknr;
1908 1909 1910 1911 1912
	/*
	 * If we didn't accumulate anything
	 * to write simply return
	 */
	if (!new.b_size)
1913
		return 0;
1914
	err = mpd->get_block(mpd->inode, next, &new, 1);
1915 1916 1917 1918 1919 1920 1921 1922 1923
	if (err) {

		/* If get block returns with error
		 * we simply return. Later writepage
		 * will redirty the page and writepages
		 * will find the dirty page again
		 */
		if (err == -EAGAIN)
			return 0;
1924 1925 1926 1927 1928 1929 1930

		if (err == -ENOSPC &&
				ext4_count_free_blocks(mpd->inode->i_sb)) {
			mpd->retval = err;
			return 0;
		}

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
		/*
		 * get block failure will cause us
		 * to loop in writepages. Because
		 * a_ops->writepage won't be able to
		 * make progress. The page will be redirtied
		 * by writepage and writepages will again
		 * try to write the same.
		 */
		printk(KERN_EMERG "%s block allocation failed for inode %lu "
				  "at logical offset %llu with max blocks "
				  "%zd with error %d\n",
				  __func__, mpd->inode->i_ino,
				  (unsigned long long)next,
				  lbh->b_size >> mpd->inode->i_blkbits, err);
		printk(KERN_EMERG "This should not happen.!! "
					"Data will be lost\n");
A
Aneesh Kumar K.V 已提交
1947
		if (err == -ENOSPC) {
1948
			ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1949
		}
1950 1951 1952 1953 1954
		/* invlaidate all the pages */
		ext4_da_block_invalidatepages(mpd, next,
				lbh->b_size >> mpd->inode->i_blkbits);
		return err;
	}
1955
	BUG_ON(new.b_size == 0);
1956

1957 1958
	if (buffer_new(&new))
		__unmap_underlying_blocks(mpd->inode, &new);
1959

1960 1961 1962 1963 1964 1965
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
	if (buffer_delay(lbh) || buffer_unwritten(lbh))
		mpage_put_bnr_to_bhs(mpd, next, &new);
1966

1967
	return 0;
1968 1969
}

1970 1971
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
				   sector_t logical, struct buffer_head *bh)
{
	sector_t next;
1986 1987 1988
	size_t b_size = bh->b_size;
	struct buffer_head *lbh = &mpd->lbh;
	int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1989

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	/* check if thereserved journal credits might overflow */
	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2012 2013 2014 2015 2016
	/*
	 * First block in the extent
	 */
	if (lbh->b_size == 0) {
		lbh->b_blocknr = logical;
2017
		lbh->b_size = b_size;
2018 2019 2020 2021
		lbh->b_state = bh->b_state & BH_FLAGS;
		return;
	}

2022
	next = lbh->b_blocknr + nrblocks;
2023 2024 2025 2026
	/*
	 * Can we merge the block to our big extent?
	 */
	if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
2027
		lbh->b_size += b_size;
2028 2029 2030
		return;
	}

2031
flush_it:
2032 2033 2034 2035
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2036 2037
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2038 2039
	mpd->io_done = 1;
	return;
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
}

/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
	struct buffer_head *bh, *head, fake;
	sector_t logical;

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	if (mpd->io_done) {
		/*
		 * Rest of the page in the page_vec
		 * redirty then and skip then. We will
		 * try to to write them again after
		 * starting a new transaction
		 */
		redirty_page_for_writepage(wbc, page);
		unlock_page(page);
		return MPAGE_DA_EXTENT_TAIL;
	}
2070 2071 2072 2073 2074 2075
	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2076
		 * and start IO on them using writepage()
2077 2078
		 */
		if (mpd->next_page != mpd->first_page) {
2079 2080
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2081 2082 2083 2084 2085 2086 2087
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
		mpd->lbh.b_size = 0;
		mpd->lbh.b_state = 0;
		mpd->lbh.b_blocknr = 0;
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
		/*
		 * There is no attached buffer heads yet (mmap?)
		 * we treat the page asfull of dirty blocks
		 */
		bh = &fake;
		bh->b_size = PAGE_CACHE_SIZE;
		bh->b_state = 0;
		set_buffer_dirty(bh);
		set_buffer_uptodate(bh);
		mpage_add_bh_to_extent(mpd, logical, bh);
2118 2119
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2120 2121 2122 2123 2124 2125 2126 2127
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2128 2129 2130 2131 2132 2133
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
			 * with the page in ext4_da_writepage
			 */
2134 2135
			if (buffer_dirty(bh) &&
				(!buffer_mapped(bh) || buffer_delay(bh))) {
2136
				mpage_add_bh_to_extent(mpd, logical, bh);
2137 2138
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
				if (mpd->lbh.b_size == 0)
					mpd->lbh.b_state =
						bh->b_state & BH_FLAGS;
2151
			}
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
 * mpage_da_writepages - walk the list of dirty pages of the given
 * address space, allocates non-allocated blocks, maps newly-allocated
 * blocks to existing bhs and issue IO them
 *
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 * @get_block: the filesystem's block mapper function.
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
static int mpage_da_writepages(struct address_space *mapping,
			       struct writeback_control *wbc,
2173
			       struct mpage_da_data *mpd)
2174 2175 2176
{
	int ret;

2177
	if (!mpd->get_block)
2178 2179
		return generic_writepages(mapping, wbc);

2180 2181 2182 2183 2184 2185 2186 2187
	mpd->lbh.b_size = 0;
	mpd->lbh.b_state = 0;
	mpd->lbh.b_blocknr = 0;
	mpd->first_page = 0;
	mpd->next_page = 0;
	mpd->io_done = 0;
	mpd->pages_written = 0;
	mpd->retval = 0;
2188

2189
	ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2190 2191 2192
	/*
	 * Handle last extent of pages
	 */
2193 2194 2195
	if (!mpd->io_done && mpd->next_page != mpd->first_page) {
		if (mpage_da_map_blocks(mpd) == 0)
			mpage_da_submit_io(mpd);
2196

2197 2198 2199 2200
		mpd->io_done = 1;
		ret = MPAGE_DA_EXTENT_TAIL;
	}
	wbc->nr_to_write -= mpd->pages_written;
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
	return ret;
}

/*
 * this is a special callback for ->write_begin() only
 * it's intention is to return mapped block or reserve space
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
				  struct buffer_head *bh_result, int create)
{
	int ret = 0;

	BUG_ON(create == 0);
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2221 2222 2223
	ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
	if ((ret == 0) && !buffer_delay(bh_result)) {
		/* the block isn't (pre)allocated yet, let's reserve space */
2224 2225 2226 2227
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2228 2229 2230 2231 2232
		ret = ext4_da_reserve_space(inode, 1);
		if (ret)
			/* not enough space to reserve */
			return ret;

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
		map_bh(bh_result, inode->i_sb, 0);
		set_buffer_new(bh_result);
		set_buffer_delay(bh_result);
	} else if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}

	return ret;
}
2243
#define		EXT4_DELALLOC_RSVED	1
2244 2245 2246
static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create)
{
2247
	int ret;
2248 2249 2250 2251
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
	loff_t disksize = EXT4_I(inode)->i_disksize;
	handle_t *handle = NULL;

2252
	handle = ext4_journal_current_handle();
2253 2254 2255
	BUG_ON(!handle);
	ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
			bh_result, create, 0, EXT4_DELALLOC_RSVED);
2256
	if (ret > 0) {
2257

2258 2259
		bh_result->b_size = (ret << inode->i_blkbits);

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
		if (ext4_should_order_data(inode)) {
			int retval;
			retval = ext4_jbd2_file_inode(handle, inode);
			if (retval)
				/*
				 * Failed to add inode for ordered
				 * mode. Don't update file size
				 */
				return retval;
		}

2271 2272 2273 2274 2275 2276 2277 2278 2279
		/*
		 * Update on-disk size along with block allocation
		 * we don't use 'extend_disksize' as size may change
		 * within already allocated block -bzzz
		 */
		disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
		if (disksize > i_size_read(inode))
			disksize = i_size_read(inode);
		if (disksize > EXT4_I(inode)->i_disksize) {
2280 2281 2282
			ext4_update_i_disksize(inode, disksize);
			ret = ext4_mark_inode_dirty(handle, inode);
			return ret;
2283 2284 2285 2286 2287
		}
		ret = 0;
	}
	return ret;
}
2288 2289 2290

static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
{
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
	/*
	 * unmapped buffer is possible for holes.
	 * delay buffer is possible with delayed allocation
	 */
	return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
}

static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create)
{
	int ret = 0;
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

	/*
	 * we don't want to do block allocation in writepage
	 * so call get_block_wrap with create = 0
	 */
	ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
				   bh_result, 0, 0, 0);
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}
	return ret;
2315 2316 2317
}

/*
2318 2319 2320 2321
 * get called vi ext4_da_writepages after taking page lock (have journal handle)
 * get called via journal_submit_inode_data_buffers (no journal handle)
 * get called via shrink_page_list via pdflush (no journal handle)
 * or grab_page_cache when doing write_begin (have journal handle)
2322
 */
2323 2324 2325 2326
static int ext4_da_writepage(struct page *page,
				struct writeback_control *wbc)
{
	int ret = 0;
2327
	loff_t size;
2328
	unsigned int len;
2329 2330 2331
	struct buffer_head *page_bufs;
	struct inode *inode = page->mapping->host;

2332 2333 2334
	trace_mark(ext4_da_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
2335 2336 2337 2338 2339
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2340

2341
	if (page_has_buffers(page)) {
2342
		page_bufs = page_buffers(page);
2343 2344
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
					ext4_bh_unmapped_or_delay)) {
2345
			/*
2346 2347
			 * We don't want to do  block allocation
			 * So redirty the page and return
2348 2349 2350
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
						ext4_normal_get_block_write);
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
						ext4_bh_unmapped_or_delay)) {
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2387 2388 2389 2390 2391
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2392 2393
		/* now mark the buffer_heads as dirty and uptodate */
		block_commit_write(page, 0, PAGE_CACHE_SIZE);
2394 2395 2396
	}

	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2397
		ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2398
	else
2399 2400 2401
		ret = block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
2402 2403 2404 2405

	return ret;
}

2406
/*
2407 2408 2409 2410 2411
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2412
 */
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2430

2431
static int ext4_da_writepages(struct address_space *mapping,
2432
			      struct writeback_control *wbc)
2433
{
2434 2435
	pgoff_t	index;
	int range_whole = 0;
2436
	handle_t *handle = NULL;
2437
	struct mpage_da_data mpd;
2438
	struct inode *inode = mapping->host;
2439
	int no_nrwrite_index_update;
2440 2441
	int pages_written = 0;
	long pages_skipped;
2442 2443
	int needed_blocks, ret = 0, nr_to_writebump = 0;
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2444

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
	trace_mark(ext4_da_writepages,
		   "dev %s ino %lu nr_t_write %ld "
		   "pages_skipped %ld range_start %llu "
		   "range_end %llu nonblocking %d "
		   "for_kupdate %d for_reclaim %d "
		   "for_writepages %d range_cyclic %d",
		   inode->i_sb->s_id, inode->i_ino,
		   wbc->nr_to_write, wbc->pages_skipped,
		   (unsigned long long) wbc->range_start,
		   (unsigned long long) wbc->range_end,
		   wbc->nonblocking, wbc->for_kupdate,
		   wbc->for_reclaim, wbc->for_writepages,
		   wbc->range_cyclic);

2459 2460 2461 2462 2463
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2464
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2465
		return 0;
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
	 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
	if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
		return -EROFS;

2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
	/*
	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
	 * This make sure small files blocks are allocated in
	 * single attempt. This ensure that small files
	 * get less fragmented.
	 */
	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
		wbc->nr_to_write = sbi->s_mb_stream_request;
	}
2490 2491
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2492

2493 2494 2495 2496
	if (wbc->range_cyclic)
		index = mapping->writeback_index;
	else
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2497

2498 2499 2500
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

2501 2502 2503 2504 2505 2506 2507 2508 2509
	/*
	 * we don't want write_cache_pages to update
	 * nr_to_write and writeback_index
	 */
	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
	wbc->no_nrwrite_index_update = 1;
	pages_skipped = wbc->pages_skipped;

	while (!ret && wbc->nr_to_write > 0) {
2510 2511 2512 2513 2514 2515 2516 2517

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2518
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2519

2520 2521 2522 2523
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2524
			printk(KERN_CRIT "%s: jbd2_start: "
2525 2526 2527
			       "%ld pages, ino %lu; err %d\n", __func__,
				wbc->nr_to_write, inode->i_ino, ret);
			dump_stack();
2528 2529
			goto out_writepages;
		}
2530 2531 2532
		mpd.get_block = ext4_da_get_block_write;
		ret = mpage_da_writepages(mapping, wbc, &mpd);

2533
		ext4_journal_stop(handle);
2534

2535 2536 2537 2538 2539
		if (mpd.retval == -ENOSPC) {
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2540
			jbd2_journal_force_commit_nested(sbi->s_journal);
2541 2542 2543
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2544 2545 2546 2547
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2548 2549
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
2550
			ret = 0;
2551
		} else if (wbc->nr_to_write)
2552 2553 2554 2555 2556 2557
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2558
	}
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
	if (pages_skipped != wbc->pages_skipped)
		printk(KERN_EMERG "This should not happen leaving %s "
				"with nr_to_write = %ld ret = %d\n",
				__func__, wbc->nr_to_write, ret);

	/* Update index */
	index += pages_written;
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
2572

2573
out_writepages:
2574 2575 2576
	if (!no_nrwrite_index_update)
		wbc->no_nrwrite_index_update = 0;
	wbc->nr_to_write -= nr_to_writebump;
2577 2578 2579 2580 2581 2582 2583 2584
	trace_mark(ext4_da_writepage_result,
		   "dev %s ino %lu ret %d pages_written %d "
		   "pages_skipped %ld congestion %d "
		   "more_io %d no_nrwrite_index_update %d",
		   inode->i_sb->s_id, inode->i_ino, ret,
		   pages_written, wbc->pages_skipped,
		   wbc->encountered_congestion, wbc->more_io,
		   wbc->no_nrwrite_index_update);
2585
	return ret;
2586 2587
}

2588 2589 2590 2591 2592 2593 2594 2595 2596
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2597
	 * counters can get slightly wrong with percpu_counter_batch getting
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
		 * free block count is less that 150% of dirty blocks
		 * or free blocks is less that watermark
		 */
		return 1;
	}
	return 0;
}

2615 2616 2617 2618
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
2619
	int ret, retries = 0;
2620 2621 2622 2623 2624 2625 2626 2627 2628
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
2629 2630 2631 2632 2633 2634 2635

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2636 2637 2638 2639 2640

	trace_mark(ext4_da_write_begin,
		   "dev %s ino %lu pos %llu len %u flags %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, flags);
2641
retry:
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

2654
	page = grab_cache_page_write_begin(mapping, index, flags);
2655 2656 2657 2658 2659
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2660 2661 2662 2663 2664 2665 2666 2667
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_da_get_block_prep);
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2668 2669 2670 2671 2672 2673 2674
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
			vmtruncate(inode, inode->i_size);
2675 2676
	}

2677 2678
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2679 2680 2681 2682
out:
	return ret;
}

2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
					 unsigned long offset)
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2698
	for (i = 0; i < idx; i++)
2699 2700 2701 2702 2703 2704 2705
		bh = bh->b_this_page;

	if (!buffer_mapped(bh) || (buffer_delay(bh)))
		return 0;
	return 1;
}

2706 2707 2708 2709 2710 2711 2712 2713 2714
static int ext4_da_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2715
	unsigned long start, end;
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
2729

2730 2731 2732 2733
	trace_mark(ext4_da_write_end,
		   "dev %s ino %lu pos %llu len %u copied %u",
		   inode->i_sb->s_id, inode->i_ino,
		   (unsigned long long) pos, len, copied);
2734
	start = pos & (PAGE_CACHE_SIZE - 1);
2735
	end = start + copied - 1;
2736 2737 2738 2739 2740 2741 2742 2743

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2755

2756 2757 2758
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2759 2760 2761 2762 2763
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2764
		}
2765
	}
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2787
	ext4_da_page_release_reservation(page, offset);
2788 2789 2790 2791 2792 2793 2794 2795

out:
	ext4_invalidatepage(page, offset);

	return;
}


2796 2797 2798 2799 2800
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2801
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2802 2803 2804 2805 2806 2807 2808 2809
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2810
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2811 2812 2813 2814 2815
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2826
	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2838
		 * NB. EXT4_STATE_JDATA is not set on files other than
2839 2840 2841 2842 2843 2844
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2845 2846
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
2847 2848 2849
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2850 2851 2852 2853 2854

		if (err)
			return 0;
	}

2855
	return generic_block_bmap(mapping, block, ext4_get_block);
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
}

static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

/*
2871 2872 2873 2874 2875 2876 2877 2878
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
2879
 *
2880
 * In all journaling modes block_write_full_page() will start the I/O.
2881 2882 2883
 *
 * Problem:
 *
2884 2885
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
2886 2887 2888
 *
 * Similar for:
 *
2889
 *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2890
 *
2891
 * Same applies to ext4_get_block().  We will deadlock on various things like
2892
 * lock_journal and i_data_sem
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
 *
 * Setting PF_MEMALLOC here doesn't work - too many internal memory
 * allocations fail.
 *
 * 16May01: If we're reentered then journal_current_handle() will be
 *	    non-zero. We simply *return*.
 *
 * 1 July 2001: @@@ FIXME:
 *   In journalled data mode, a data buffer may be metadata against the
 *   current transaction.  But the same file is part of a shared mapping
 *   and someone does a writepage() on it.
 *
 *   We will move the buffer onto the async_data list, but *after* it has
 *   been dirtied. So there's a small window where we have dirty data on
 *   BJ_Metadata.
 *
 *   Note that this only applies to the last partial page in the file.  The
 *   bit which block_write_full_page() uses prepare/commit for.  (That's
 *   broken code anyway: it's wrong for msync()).
 *
 *   It's a rare case: affects the final partial page, for journalled data
 *   where the file is subject to bith write() and writepage() in the same
 *   transction.  To fix it we'll need a custom block_write_full_page().
 *   We'll probably need that anyway for journalling writepage() output.
 *
 * We don't honour synchronous mounts for writepage().  That would be
 * disastrous.  Any write() or metadata operation will sync the fs for
 * us.
 *
 */
2923
static int __ext4_normal_writepage(struct page *page,
2924 2925 2926 2927 2928
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;

	if (test_opt(inode->i_sb, NOBH))
2929 2930
		return nobh_writepage(page,
					ext4_normal_get_block_write, wbc);
2931
	else
2932 2933 2934
		return block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
2935 2936
}

2937
static int ext4_normal_writepage(struct page *page,
2938 2939 2940
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
2941 2942 2943
	loff_t size = i_size_read(inode);
	loff_t len;

2944 2945 2946
	trace_mark(ext4_normal_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
2947 2948 2949 2950 2951
	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
2966 2967

	if (!ext4_journal_current_handle())
2968
		return __ext4_normal_writepage(page, wbc);
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980

	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				struct writeback_control *wbc)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
2981 2982 2983 2984
	handle_t *handle = NULL;
	int ret = 0;
	int err;

2985 2986
	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
					ext4_normal_get_block_write);
2987 2988 2989 2990 2991 2992 2993 2994 2995
	if (ret != 0)
		goto out_unlock;

	page_bufs = page_buffers(page);
	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
								bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);
2996

2997
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2998 2999
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
3000
		goto out;
3001 3002
	}

3003 3004
	ret = walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3005

3006 3007 3008 3009
	err = walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, write_end_fn);
	if (ret == 0)
		ret = err;
3010
	err = ext4_journal_stop(handle);
3011 3012 3013
	if (!ret)
		ret = err;

3014 3015 3016 3017 3018 3019
	walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, bput_one);
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	goto out;

out_unlock:
3020
	unlock_page(page);
3021
out:
3022 3023 3024
	return ret;
}

3025
static int ext4_journalled_writepage(struct page *page,
3026 3027 3028
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
3029 3030
	loff_t size = i_size_read(inode);
	loff_t len;
3031

3032 3033 3034
	trace_mark(ext4_journalled_writepage,
		   "dev %s ino %lu page_index %lu",
		   inode->i_sb->s_id, inode->i_ino, page->index);
3035 3036 3037 3038 3039
	J_ASSERT(PageLocked(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053

	if (page_has_buffers(page)) {
		/* if page has buffers it should all be mapped
		 * and allocated. If there are not buffers attached
		 * to the page we know the page is dirty but it lost
		 * buffers. That means that at some moment in time
		 * after write_begin() / write_end() has been called
		 * all buffers have been clean and thus they must have been
		 * written at least once. So they are all mapped and we can
		 * happily proceed with mapping them and writing the page.
		 */
		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
					ext4_bh_unmapped_or_delay));
	}
3054

3055
	if (ext4_journal_current_handle())
3056 3057
		goto no_write;

3058
	if (PageChecked(page)) {
3059 3060 3061 3062 3063
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
3064
		return __ext4_journalled_writepage(page, wbc);
3065 3066 3067 3068 3069 3070
	} else {
		/*
		 * It may be a page full of checkpoint-mode buffers.  We don't
		 * really know unless we go poke around in the buffer_heads.
		 * But block_write_full_page will do the right thing.
		 */
3071 3072 3073
		return block_write_full_page(page,
						ext4_normal_get_block_write,
						wbc);
3074 3075 3076 3077
	}
no_write:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
3078
	return 0;
3079 3080
}

3081
static int ext4_readpage(struct file *file, struct page *page)
3082
{
3083
	return mpage_readpage(page, ext4_get_block);
3084 3085 3086
}

static int
3087
ext4_readpages(struct file *file, struct address_space *mapping,
3088 3089
		struct list_head *pages, unsigned nr_pages)
{
3090
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3091 3092
}

3093
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3094
{
3095
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3096 3097 3098 3099 3100 3101 3102

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3103 3104 3105 3106
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3107 3108
}

3109
static int ext4_releasepage(struct page *page, gfp_t wait)
3110
{
3111
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3112 3113 3114 3115

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3116 3117 3118 3119
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3120 3121 3122 3123 3124 3125 3126 3127
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3128 3129
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3130
 */
3131
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3132 3133 3134 3135 3136
			const struct iovec *iov, loff_t offset,
			unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3137
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3138
	handle_t *handle;
3139 3140 3141 3142 3143 3144 3145 3146
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3147 3148 3149 3150 3151 3152
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3153
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3154 3155 3156 3157
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3158 3159
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3160
			ext4_journal_stop(handle);
3161 3162 3163 3164 3165
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3166
				 ext4_get_block, NULL);
3167

J
Jan Kara 已提交
3168
	if (orphan) {
3169 3170
		int err;

J
Jan Kara 已提交
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
3181
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3182
		if (ret > 0) {
3183 3184 3185 3186 3187 3188 3189 3190
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3191
				 * ext4_mark_inode_dirty() to userspace.  So
3192 3193
				 * ignore it.
				 */
3194
				ext4_mark_inode_dirty(handle, inode);
3195 3196
			}
		}
3197
		err = ext4_journal_stop(handle);
3198 3199 3200 3201 3202 3203 3204 3205
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
3206
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3218
static int ext4_journalled_set_page_dirty(struct page *page)
3219 3220 3221 3222 3223
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3224
static const struct address_space_operations ext4_ordered_aops = {
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3237 3238
};

3239
static const struct address_space_operations ext4_writeback_aops = {
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_normal_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3252 3253
};

3254
static const struct address_space_operations ext4_journalled_aops = {
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_journalled_writepage,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3266 3267
};

3268
static const struct address_space_operations ext4_da_aops = {
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
	.writepage		= ext4_da_writepage,
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3282 3283
};

3284
void ext4_set_aops(struct inode *inode)
3285
{
3286 3287 3288 3289
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3290
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3291 3292 3293
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3294 3295
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3296
	else
3297
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3298 3299 3300
}

/*
3301
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3302 3303 3304 3305
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3306
int ext4_block_truncate_page(handle_t *handle,
3307 3308
		struct address_space *mapping, loff_t from)
{
3309
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3310
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3311 3312
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3313 3314
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3315
	struct page *page;
3316 3317
	int err = 0;

3318 3319 3320 3321
	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
	if (!page)
		return -EINVAL;

3322 3323 3324 3325 3326 3327 3328 3329 3330
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3331
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3332
		zero_user(page, offset, length);
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3357
		ext4_get_block(inode, iblock, bh, 0);
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3378
	if (ext4_should_journal_data(inode)) {
3379
		BUFFER_TRACE(bh, "get write access");
3380
		err = ext4_journal_get_write_access(handle, bh);
3381 3382 3383 3384
		if (err)
			goto unlock;
	}

3385
	zero_user(page, offset, length);
3386 3387 3388 3389

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3390
	if (ext4_should_journal_data(inode)) {
3391
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3392
	} else {
3393
		if (ext4_should_order_data(inode))
3394
			err = ext4_jbd2_file_inode(handle, inode);
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
3418
 *	ext4_find_shared - find the indirect blocks for partial truncation.
3419 3420
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
3421
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3422 3423 3424
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
3425
 *	This is a helper function used by ext4_truncate().
3426 3427 3428 3429 3430 3431 3432
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
3433
 *	past the truncation point is possible until ext4_truncate()
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

3452
static Indirect *ext4_find_shared(struct inode *inode, int depth,
A
Aneesh Kumar K.V 已提交
3453
			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3454 3455 3456 3457 3458 3459 3460 3461
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
3462
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
3473
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
3485
		/* Nope, don't do this in ext4.  Must leave the tree intact */
3486 3487 3488 3489 3490 3491
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

3492
	while (partial > p) {
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
3508 3509
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3510 3511 3512 3513 3514
		unsigned long count, __le32 *first, __le32 *last)
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
3515 3516
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
3517
		}
3518 3519
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
3520 3521
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
3522
			ext4_journal_get_write_access(handle, bh);
3523 3524 3525 3526 3527
		}
	}

	/*
	 * Any buffers which are on the journal will be in memory. We find
3528
	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3529
	 * on them.  We've already detached each block from the file, so
3530
	 * bforget() in jbd2_journal_forget() should be safe.
3531
	 *
3532
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3533 3534 3535 3536
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
3537
			struct buffer_head *tbh;
3538 3539

			*p = 0;
A
Aneesh Kumar K.V 已提交
3540 3541
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
3542 3543 3544
		}
	}

3545
	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3546 3547 3548
}

/**
3549
 * ext4_free_data - free a list of data blocks
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
3567
static void ext4_free_data(handle_t *handle, struct inode *inode,
3568 3569 3570
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
3571
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3572 3573 3574 3575
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
3576
	ext4_fsblk_t nr;		    /* Current block # */
3577 3578 3579 3580 3581 3582
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
3583
		err = ext4_journal_get_write_access(handle, this_bh);
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
3601
				ext4_clear_blocks(handle, inode, this_bh,
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
3612
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3613 3614 3615
				  count, block_to_free_p, p);

	if (this_bh) {
3616
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3617 3618 3619 3620 3621 3622 3623

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
3624
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3625
			ext4_handle_dirty_metadata(handle, inode, this_bh);
3626 3627 3628 3629 3630 3631
		else
			ext4_error(inode->i_sb, __func__,
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
3632 3633 3634 3635
	}
}

/**
3636
 *	ext4_free_branches - free an array of branches
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
3648
static void ext4_free_branches(handle_t *handle, struct inode *inode,
3649 3650 3651
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
3652
	ext4_fsblk_t nr;
3653 3654
	__le32 *p;

3655
	if (ext4_handle_is_aborted(handle))
3656 3657 3658 3659
		return;

	if (depth--) {
		struct buffer_head *bh;
3660
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
3675
				ext4_error(inode->i_sb, "ext4_free_branches",
3676
					   "Read failure, inode=%lu, block=%llu",
3677 3678 3679 3680 3681 3682
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
3683
			ext4_free_branches(handle, inode, bh,
3684 3685 3686
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
3687 3688 3689 3690 3691

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
3692
			 * jbd2_journal_revoke().
3693 3694 3695
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
3696
			 * transaction then jbd2_journal_forget() will simply
3697
			 * brelse() it.  That means that if the underlying
3698
			 * block is reallocated in ext4_get_block(),
3699 3700 3701 3702 3703 3704 3705 3706
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
3707
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
3725
			if (ext4_handle_is_aborted(handle))
3726 3727
				return;
			if (try_to_extend_transaction(handle, inode)) {
3728 3729
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
3730 3731
			}

3732
			ext4_free_blocks(handle, inode, nr, 1, 1);
3733 3734 3735 3736 3737 3738 3739

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
3740
				if (!ext4_journal_get_write_access(handle,
3741 3742 3743
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
3744 3745 3746 3747
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
3748 3749 3750 3751 3752 3753
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
3754
		ext4_free_data(handle, inode, parent_bh, first, last);
3755 3756 3757
	}
}

3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3771
/*
3772
 * ext4_truncate()
3773
 *
3774 3775
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3792
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3793
 * that this inode's truncate did not complete and it will again call
3794 3795
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3796
 * that's fine - as long as they are linked from the inode, the post-crash
3797
 * ext4_truncate() run will find them and release them.
3798
 */
3799
void ext4_truncate(struct inode *inode)
3800 3801
{
	handle_t *handle;
3802
	struct ext4_inode_info *ei = EXT4_I(inode);
3803
	__le32 *i_data = ei->i_data;
3804
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3805
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
3806
	ext4_lblk_t offsets[4];
3807 3808 3809 3810
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
3811
	ext4_lblk_t last_block;
3812 3813
	unsigned blocksize = inode->i_sb->s_blocksize;

3814
	if (!ext4_can_truncate(inode))
3815 3816
		return;

A
Aneesh Kumar K.V 已提交
3817
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3818
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
3819 3820
		return;
	}
A
Alex Tomas 已提交
3821

3822
	handle = start_transaction(inode);
3823
	if (IS_ERR(handle))
3824 3825 3826
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
3827
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3828

3829 3830 3831
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
3832

3833
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
3846
	if (ext4_orphan_add(handle, inode))
3847 3848
		goto out_stop;

3849 3850 3851 3852 3853
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
3854

3855
	ext4_discard_preallocations(inode);
3856

3857 3858 3859 3860 3861
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
3862
	 * ext4 *really* writes onto the disk inode.
3863 3864 3865 3866
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
3867 3868
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
3869 3870 3871
		goto do_indirects;
	}

3872
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3873 3874 3875 3876
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
3877
			ext4_free_branches(handle, inode, NULL,
3878 3879 3880 3881 3882 3883 3884 3885 3886
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
3887
			ext4_free_branches(handle, inode, partial->bh,
3888 3889 3890 3891 3892 3893
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
3894
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse (partial->bh);
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
3905
		nr = i_data[EXT4_IND_BLOCK];
3906
		if (nr) {
3907 3908
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
3909
		}
3910 3911
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
3912
		if (nr) {
3913 3914
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
3915
		}
3916 3917
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
3918
		if (nr) {
3919 3920
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
3921
		}
3922
	case EXT4_TIND_BLOCK:
3923 3924 3925
		;
	}

3926
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
3927
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3928
	ext4_mark_inode_dirty(handle, inode);
3929 3930 3931 3932 3933 3934

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
3935
		ext4_handle_sync(handle);
3936 3937 3938 3939 3940
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
3941
	 * ext4_delete_inode(), and we allow that function to clean up the
3942 3943 3944
	 * orphan info for us.
	 */
	if (inode->i_nlink)
3945
		ext4_orphan_del(handle, inode);
3946

3947
	ext4_journal_stop(handle);
3948 3949 3950
}

/*
3951
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3952 3953 3954 3955
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3956 3957
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3958
{
3959 3960 3961 3962 3963 3964
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3965
	iloc->bh = NULL;
3966 3967
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3968

3969 3970 3971
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3972 3973
		return -EIO;

3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3984
	if (!bh) {
3985 3986 3987
		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
			   "inode block - inode=%lu, block=%llu",
			   inode->i_ino, block);
3988 3989 3990 3991
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4015
			int i, start;
4016

4017
			start = inode_offset & ~(inodes_per_block - 1);
4018

4019 4020
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4033
			for (i = start; i < start + inodes_per_block; i++) {
4034 4035
				if (i == inode_offset)
					continue;
4036
				if (ext4_test_bit(i, bitmap_bh->b_data))
4037 4038 4039
					break;
			}
			brelse(bitmap_bh);
4040
			if (i == start + inodes_per_block) {
4041 4042 4043 4044 4045 4046 4047 4048 4049
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
			/* Make sure s_inode_readahead_blks is a power of 2 */
			while (EXT4_SB(sb)->s_inode_readahead_blks &
			       (EXT4_SB(sb)->s_inode_readahead_blks-1))
				EXT4_SB(sb)->s_inode_readahead_blks = 
				   (EXT4_SB(sb)->s_inode_readahead_blks &
				    (EXT4_SB(sb)->s_inode_readahead_blks-1));
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4072
				num -= ext4_itable_unused_count(sb, gdp);
4073 4074 4075 4076 4077 4078 4079
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4090 4091 4092
			ext4_error(sb, __func__,
				   "unable to read inode block - inode=%lu, "
				   "block=%llu", inode->i_ino, block);
4093 4094 4095 4096 4097 4098 4099 4100 4101
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4102
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4103 4104
{
	/* We have all inode data except xattrs in memory here. */
4105 4106
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4107 4108
}

4109
void ext4_set_inode_flags(struct inode *inode)
4110
{
4111
	unsigned int flags = EXT4_I(inode)->i_flags;
4112 4113

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4114
	if (flags & EXT4_SYNC_FL)
4115
		inode->i_flags |= S_SYNC;
4116
	if (flags & EXT4_APPEND_FL)
4117
		inode->i_flags |= S_APPEND;
4118
	if (flags & EXT4_IMMUTABLE_FL)
4119
		inode->i_flags |= S_IMMUTABLE;
4120
	if (flags & EXT4_NOATIME_FL)
4121
		inode->i_flags |= S_NOATIME;
4122
	if (flags & EXT4_DIRSYNC_FL)
4123 4124 4125
		inode->i_flags |= S_DIRSYNC;
}

4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
4144 4145 4146 4147
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
					struct ext4_inode_info *ei)
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4148 4149
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4150 4151 4152 4153 4154 4155

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
4156 4157 4158 4159 4160 4161
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4162 4163 4164 4165
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4166

4167
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4168
{
4169 4170
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4171
	struct ext4_inode_info *ei;
4172
	struct buffer_head *bh;
4173 4174
	struct inode *inode;
	long ret;
4175 4176
	int block;

4177 4178 4179 4180 4181 4182 4183
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
T
Theodore Ts'o 已提交
4184
#ifdef CONFIG_EXT4_FS_POSIX_ACL
4185 4186
	ei->i_acl = EXT4_ACL_NOT_CACHED;
	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4187 4188
#endif

4189 4190
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4191 4192
		goto bad_inode;
	bh = iloc.bh;
4193
	raw_inode = ext4_raw_inode(&iloc);
4194 4195 4196
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4197
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4213
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4214
			/* this inode is deleted */
4215
			brelse(bh);
4216
			ret = -ESTALE;
4217 4218 4219 4220 4221 4222 4223 4224
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4225
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4226
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4227
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4228
	    cpu_to_le32(EXT4_OS_HURD)) {
B
Badari Pulavarty 已提交
4229 4230
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4231
	}
4232
	inode->i_size = ext4_isize(raw_inode);
4233 4234 4235 4236 4237 4238 4239
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4240
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4241 4242 4243
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4244
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4245
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4246
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4247
		    EXT4_INODE_SIZE(inode->i_sb)) {
4248
			brelse(bh);
4249
			ret = -EIO;
4250
			goto bad_inode;
4251
		}
4252 4253
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4254 4255
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4256 4257
		} else {
			__le32 *magic = (void *)raw_inode +
4258
					EXT4_GOOD_OLD_INODE_SIZE +
4259
					ei->i_extra_isize;
4260 4261
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
				 ei->i_state |= EXT4_STATE_XATTR;
4262 4263 4264 4265
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4266 4267 4268 4269 4270
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4271 4272 4273 4274 4275 4276 4277
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4278
	if (S_ISREG(inode->i_mode)) {
4279 4280 4281
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4282
	} else if (S_ISDIR(inode->i_mode)) {
4283 4284
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4285
	} else if (S_ISLNK(inode->i_mode)) {
4286
		if (ext4_inode_is_fast_symlink(inode)) {
4287
			inode->i_op = &ext4_fast_symlink_inode_operations;
4288 4289 4290
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4291 4292
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4293 4294
		}
	} else {
4295
		inode->i_op = &ext4_special_inode_operations;
4296 4297 4298 4299 4300 4301 4302
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
	}
4303
	brelse(iloc.bh);
4304
	ext4_set_inode_flags(inode);
4305 4306
	unlock_new_inode(inode);
	return inode;
4307 4308

bad_inode:
4309 4310
	iget_failed(inode);
	return ERR_PTR(ret);
4311 4312
}

4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4326
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4327
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
4328
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4329 4330 4331 4332 4333 4334
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4335 4336 4337 4338
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4339
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4340
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
4341
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4342
	} else {
A
Aneesh Kumar K.V 已提交
4343 4344 4345 4346 4347
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4348
	}
4349
	return 0;
4350 4351
}

4352 4353 4354 4355 4356 4357 4358
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4359
static int ext4_do_update_inode(handle_t *handle,
4360
				struct inode *inode,
4361
				struct ext4_iloc *iloc)
4362
{
4363 4364
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4365 4366 4367 4368 4369
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4370 4371
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4372

4373
	ext4_get_inode_flags(ei);
4374
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4375
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4376 4377 4378 4379 4380 4381
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4382
		if (!ei->i_dtime) {
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4400 4401 4402 4403 4404 4405

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4406 4407
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4408
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4409 4410
	/* clear the migrate flag in the raw_inode */
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4411 4412
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4413 4414
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4415
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4432
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4433
			sb->s_dirt = 1;
4434 4435
			ext4_handle_sync(handle);
			err = ext4_handle_dirty_metadata(handle, inode,
4436
					EXT4_SB(sb)->s_sbh);
4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4451
	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4452 4453
		raw_inode->i_block[block] = ei->i_data[block];

4454 4455 4456 4457 4458
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4459
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4460 4461
	}

4462 4463
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
	rc = ext4_handle_dirty_metadata(handle, inode, bh);
4464 4465
	if (!err)
		err = rc;
4466
	ei->i_state &= ~EXT4_STATE_NEW;
4467 4468

out_brelse:
4469
	brelse(bh);
4470
	ext4_std_error(inode->i_sb, err);
4471 4472 4473 4474
	return err;
}

/*
4475
 * ext4_write_inode()
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4492
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4509
int ext4_write_inode(struct inode *inode, int wait)
4510 4511 4512 4513
{
	if (current->flags & PF_MEMALLOC)
		return 0;

4514
	if (ext4_journal_current_handle()) {
M
Mingming Cao 已提交
4515
		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4516 4517 4518 4519 4520 4521 4522
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

4523
	return ext4_force_commit(inode->i_sb);
4524 4525
}

4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
{
	int err = 0;

	mark_buffer_dirty(bh);
	if (inode && inode_needs_sync(inode)) {
		sync_dirty_buffer(bh);
		if (buffer_req(bh) && !buffer_uptodate(bh)) {
			ext4_error(inode->i_sb, __func__,
				   "IO error syncing inode, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long)bh->b_blocknr);
			err = -EIO;
		}
	}
	return err;
}

4545
/*
4546
 * ext4_setattr()
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4560 4561 4562 4563 4564 4565 4566 4567
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4568
 */
4569
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4585 4586
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4587 4588 4589 4590 4591 4592
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
		if (error) {
4593
			ext4_journal_stop(handle);
4594 4595 4596 4597 4598 4599 4600 4601
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4602 4603
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4604 4605
	}

4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

4617 4618 4619 4620
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

4621
		handle = ext4_journal_start(inode, 3);
4622 4623 4624 4625 4626
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

4627 4628 4629
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4630 4631
		if (!error)
			error = rc;
4632
		ext4_journal_stop(handle);
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4649 4650 4651 4652
	}

	rc = inode_setattr(inode, attr);

4653
	/* If inode_setattr's call to ext4_truncate failed to get a
4654 4655 4656
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
4657
		ext4_orphan_del(NULL, inode);
4658 4659

	if (!rc && (ia_valid & ATTR_MODE))
4660
		rc = ext4_acl_chmod(inode);
4661 4662

err_out:
4663
	ext4_std_error(inode->i_sb, error);
4664 4665 4666 4667 4668
	if (!error)
		error = rc;
	return error;
}

4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4695

4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4724 4725
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4726
}
4727

4728
/*
4729 4730 4731
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4732
 *
4733 4734 4735
 * If datablocks are discontiguous, they are possible to spread over
 * different block groups too. If they are contiugous, with flexbg,
 * they could still across block group boundary.
4736
 *
4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
	int groups, gdpblocks;
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
	if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
		groups = EXT4_SB(inode->i_sb)->s_groups_count;
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
4784 4785
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4786
 *
4787
 * This could be called via ext4_write_begin()
4788
 *
4789
 * We need to consider the worse case, when
4790
 * one new block per extent.
4791
 */
A
Alex Tomas 已提交
4792
int ext4_writepage_trans_blocks(struct inode *inode)
4793
{
4794
	int bpp = ext4_journal_blocks_per_page(inode);
4795 4796
	int ret;

4797
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4798

4799
	/* Account for data blocks for journalled mode */
4800
	if (ext4_should_journal_data(inode))
4801
		ret += bpp;
4802 4803
	return ret;
}
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4819
/*
4820
 * The caller must have previously called ext4_reserve_inode_write().
4821 4822
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4823 4824
int ext4_mark_iloc_dirty(handle_t *handle,
		struct inode *inode, struct ext4_iloc *iloc)
4825 4826 4827
{
	int err = 0;

4828 4829 4830
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

4831 4832 4833
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4834
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4835
	err = ext4_do_update_inode(handle, inode, iloc);
4836 4837 4838 4839 4840 4841 4842 4843 4844 4845
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4846 4847
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4848
{
4849 4850 4851 4852 4853 4854 4855 4856 4857
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4858 4859
		}
	}
4860
	ext4_std_error(inode->i_sb, err);
4861 4862 4863
	return err;
}

4864 4865 4866 4867
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4868 4869 4870 4871
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
4920
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4921
{
4922
	struct ext4_iloc iloc;
4923 4924 4925
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4926 4927

	might_sleep();
4928
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4929 4930
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
4946 4947
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4948
					ext4_warning(inode->i_sb, __func__,
4949 4950 4951
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4952 4953
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4954 4955 4956 4957
				}
			}
		}
	}
4958
	if (!err)
4959
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4960 4961 4962 4963
	return err;
}

/*
4964
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4977
void ext4_dirty_inode(struct inode *inode)
4978
{
4979
	handle_t *current_handle = ext4_journal_current_handle();
4980 4981
	handle_t *handle;

4982 4983 4984 4985 4986
	if (!ext4_handle_valid(current_handle)) {
		ext4_mark_inode_dirty(current_handle, inode);
		return;
	}

4987
	handle = ext4_journal_start(inode, 2);
4988 4989 4990 4991 4992 4993
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
4994
		       __func__);
4995 4996 4997
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
4998
		ext4_mark_inode_dirty(handle, inode);
4999
	}
5000
	ext4_journal_stop(handle);
5001 5002 5003 5004 5005 5006 5007 5008
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5009
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5010 5011 5012
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5013
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5014
{
5015
	struct ext4_iloc iloc;
5016 5017 5018

	int err = 0;
	if (handle) {
5019
		err = ext4_get_inode_loc(inode, &iloc);
5020 5021
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5022
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5023
			if (!err)
5024 5025 5026
				err = ext4_handle_dirty_metadata(handle,
								 inode,
								 iloc.bh);
5027 5028 5029
			brelse(iloc.bh);
		}
	}
5030
	ext4_std_error(inode->i_sb, err);
5031 5032 5033 5034
	return err;
}
#endif

5035
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5051
	journal = EXT4_JOURNAL(inode);
5052 5053
	if (!journal)
		return 0;
5054
	if (is_journal_aborted(journal))
5055 5056
		return -EROFS;

5057 5058
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5059 5060 5061 5062 5063 5064 5065 5066 5067 5068

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5069
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5070
	else
5071 5072
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
5073

5074
	jbd2_journal_unlock_updates(journal);
5075 5076 5077

	/* Finally we can mark the inode as dirty. */

5078
	handle = ext4_journal_start(inode, 1);
5079 5080 5081
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5082
	err = ext4_mark_inode_dirty(handle, inode);
5083
	ext4_handle_sync(handle);
5084 5085
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5086 5087 5088

	return err;
}
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
{
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5100
	void *fsdata;
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

	if (page_has_buffers(page)) {
		/* return if we have all the buffers mapped */
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
				       ext4_bh_unmapped))
			goto out_unlock;
	}
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5139
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5140 5141 5142
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5143
			len, len, page, fsdata);
5144 5145 5146 5147 5148 5149 5150
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
	up_read(&inode->i_alloc_sem);
	return ret;
}