uprobes.c 26.7 KB
Newer Older
1
/*
2
 * User-space Probes (UProbes) for x86
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) IBM Corporation, 2008-2011
 * Authors:
 *	Srikar Dronamraju
 *	Jim Keniston
 */
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/ptrace.h>
#include <linux/uprobes.h>
27
#include <linux/uaccess.h>
28 29

#include <linux/kdebug.h>
30
#include <asm/processor.h>
31 32 33 34 35
#include <asm/insn.h>

/* Post-execution fixups. */

/* Adjust IP back to vicinity of actual insn */
36
#define UPROBE_FIX_IP		0x01
37

38
/* Adjust the return address of a call insn */
39
#define UPROBE_FIX_CALL		0x02
40

41
/* Instruction will modify TF, don't change it */
42
#define UPROBE_FIX_SETF		0x04
43

44 45
#define UPROBE_FIX_RIP_AX	0x08
#define UPROBE_FIX_RIP_CX	0x10
46

47 48
#define	UPROBE_TRAP_NR		UINT_MAX

49
/* Adaptations for mhiramat x86 decoder v14. */
50 51 52
#define OPCODE1(insn)		((insn)->opcode.bytes[0])
#define OPCODE2(insn)		((insn)->opcode.bytes[1])
#define OPCODE3(insn)		((insn)->opcode.bytes[2])
53
#define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
54 55 56 57 58 59 60 61

#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
	 << (row % 32))

62 63 64 65 66
/*
 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
 * to keep gcc from statically optimizing it out, as variable_test_bit makes
 * some versions of gcc to think only *(unsigned long*) is used.
 */
67
#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
68
static volatile u32 good_insns_32[256 / 32] = {
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
	/*      ----------------------------------------------         */
	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */
	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
	W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */
	W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */
	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
	W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
	W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
	W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
	/*      ----------------------------------------------         */
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
};
90 91 92
#else
#define good_insns_32	NULL
#endif
93

94
/* Good-instruction tables for 64-bit apps */
95
#if defined(CONFIG_X86_64)
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
static volatile u32 good_insns_64[256 / 32] = {
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
	/*      ----------------------------------------------         */
	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */
	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
	W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */
	W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */
	W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
	W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
	W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
	W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
	/*      ----------------------------------------------         */
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
};
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
#else
#define good_insns_64	NULL
#endif

/* Using this for both 64-bit and 32-bit apps */
static volatile u32 good_2byte_insns[256 / 32] = {
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
	/*      ----------------------------------------------         */
	W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */
	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
	W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
	W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
	W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
	W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)   /* f0 */
	/*      ----------------------------------------------         */
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
};
145 146 147 148
#undef W

/*
 * opcodes we'll probably never support:
149 150 151 152 153 154 155 156 157 158
 *
 *  6c-6d, e4-e5, ec-ed - in
 *  6e-6f, e6-e7, ee-ef - out
 *  cc, cd - int3, int
 *  cf - iret
 *  d6 - illegal instruction
 *  f1 - int1/icebp
 *  f4 - hlt
 *  fa, fb - cli, sti
 *  0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2
159 160 161
 *
 * invalid opcodes in 64-bit mode:
 *
162 163
 *  06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5
 *  63 - we support this opcode in x86_64 but not in i386.
164 165
 *
 * opcodes we may need to refine support for:
166 167 168 169 170 171 172 173 174 175 176 177 178 179
 *
 *  0f - 2-byte instructions: For many of these instructions, the validity
 *  depends on the prefix and/or the reg field.  On such instructions, we
 *  just consider the opcode combination valid if it corresponds to any
 *  valid instruction.
 *
 *  8f - Group 1 - only reg = 0 is OK
 *  c6-c7 - Group 11 - only reg = 0 is OK
 *  d9-df - fpu insns with some illegal encodings
 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
 *  certain floating-point instructions, such as addsd.
 *
 *  fe - Group 4 - only reg = 0 or 1 is OK
 *  ff - Group 5 - only reg = 0-6 is OK
180 181
 *
 * others -- Do we need to support these?
182 183 184 185
 *
 *  0f - (floating-point?) prefetch instructions
 *  07, 17, 1f - pop es, pop ss, pop ds
 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
186
 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
187 188 189
 *  67 - addr16 prefix
 *  ce - into
 *  f0 - lock prefix
190 191 192 193 194 195 196 197 198 199 200 201 202 203
 */

/*
 * TODO:
 * - Where necessary, examine the modrm byte and allow only valid instructions
 * in the different Groups and fpu instructions.
 */

static bool is_prefix_bad(struct insn *insn)
{
	int i;

	for (i = 0; i < insn->prefixes.nbytes; i++) {
		switch (insn->prefixes.bytes[i]) {
204 205 206 207 208
		case 0x26:	/* INAT_PFX_ES   */
		case 0x2E:	/* INAT_PFX_CS   */
		case 0x36:	/* INAT_PFX_DS   */
		case 0x3E:	/* INAT_PFX_SS   */
		case 0xF0:	/* INAT_PFX_LOCK */
209 210 211 212 213 214
			return true;
		}
	}
	return false;
}

215
static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
216
{
217 218 219
	u32 volatile *good_insns;

	insn_init(insn, auprobe->insn, x86_64);
220 221 222 223
	/* has the side-effect of processing the entire instruction */
	insn_get_length(insn);
	if (WARN_ON_ONCE(!insn_complete(insn)))
		return -ENOEXEC;
224 225 226

	if (is_prefix_bad(insn))
		return -ENOTSUPP;
227

228 229 230 231 232 233
	if (x86_64)
		good_insns = good_insns_64;
	else
		good_insns = good_insns_32;

	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
234
		return 0;
235

236 237 238 239
	if (insn->opcode.nbytes == 2) {
		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
			return 0;
	}
240

241 242 243 244
	return -ENOTSUPP;
}

#ifdef CONFIG_X86_64
245 246 247
static inline bool is_64bit_mm(struct mm_struct *mm)
{
	return	!config_enabled(CONFIG_IA32_EMULATION) ||
248
		!(mm->context.ia32_compat == TIF_IA32);
249
}
250
/*
251
 * If arch_uprobe->insn doesn't use rip-relative addressing, return
252 253
 * immediately.  Otherwise, rewrite the instruction so that it accesses
 * its memory operand indirectly through a scratch register.  Set
254 255 256
 * def->fixups and def->riprel_target accordingly. (The contents of the
 * scratch register will be saved before we single-step the modified
 * instruction, and restored afterward).
257 258 259 260 261 262 263 264 265
 *
 * We do this because a rip-relative instruction can access only a
 * relatively small area (+/- 2 GB from the instruction), and the XOL
 * area typically lies beyond that area.  At least for instructions
 * that store to memory, we can't execute the original instruction
 * and "fix things up" later, because the misdirected store could be
 * disastrous.
 *
 * Some useful facts about rip-relative instructions:
266 267 268 269
 *
 *  - There's always a modrm byte.
 *  - There's never a SIB byte.
 *  - The displacement is always 4 bytes.
270
 */
271
static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
272 273 274 275 276 277 278 279 280 281 282 283 284
{
	u8 *cursor;
	u8 reg;

	if (!insn_rip_relative(insn))
		return;

	/*
	 * insn_rip_relative() would have decoded rex_prefix, modrm.
	 * Clear REX.b bit (extension of MODRM.rm field):
	 * we want to encode rax/rcx, not r8/r9.
	 */
	if (insn->rex_prefix.nbytes) {
285
		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
286 287 288 289 290 291 292 293
		*cursor &= 0xfe;	/* Clearing REX.B bit */
	}

	/*
	 * Point cursor at the modrm byte.  The next 4 bytes are the
	 * displacement.  Beyond the displacement, for some instructions,
	 * is the immediate operand.
	 */
294
	cursor = auprobe->insn + insn_offset_modrm(insn);
295 296 297 298 299 300 301 302 303 304 305 306 307 308
	/*
	 * Convert from rip-relative addressing to indirect addressing
	 * via a scratch register.  Change the r/m field from 0x5 (%rip)
	 * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field.
	 */
	reg = MODRM_REG(insn);
	if (reg == 0) {
		/*
		 * The register operand (if any) is either the A register
		 * (%rax, %eax, etc.) or (if the 0x4 bit is set in the
		 * REX prefix) %r8.  In any case, we know the C register
		 * is NOT the register operand, so we use %rcx (register
		 * #1) for the scratch register.
		 */
309
		auprobe->def.fixups |= UPROBE_FIX_RIP_CX;
310 311 312 313
		/* Change modrm from 00 000 101 to 00 000 001. */
		*cursor = 0x1;
	} else {
		/* Use %rax (register #0) for the scratch register. */
314
		auprobe->def.fixups |= UPROBE_FIX_RIP_AX;
315 316 317 318 319
		/* Change modrm from 00 xxx 101 to 00 xxx 000 */
		*cursor = (reg << 3);
	}

	/* Target address = address of next instruction + (signed) offset */
320
	auprobe->def.riprel_target = (long)insn->length + insn->displacement.value;
321

322 323 324
	/* Displacement field is gone; slide immediate field (if any) over. */
	if (insn->immediate.nbytes) {
		cursor++;
325
		memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes);
326 327 328
	}
}

329 330 331 332
/*
 * If we're emulating a rip-relative instruction, save the contents
 * of the scratch register and store the target address in that register.
 */
333
static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
334
{
335 336
	struct uprobe_task *utask = current->utask;

337
	if (auprobe->def.fixups & UPROBE_FIX_RIP_AX) {
338 339
		utask->autask.saved_scratch_register = regs->ax;
		regs->ax = utask->vaddr;
340 341
		regs->ax += auprobe->def.riprel_target;
	} else if (auprobe->def.fixups & UPROBE_FIX_RIP_CX) {
342 343
		utask->autask.saved_scratch_register = regs->cx;
		regs->cx = utask->vaddr;
344
		regs->cx += auprobe->def.riprel_target;
345 346 347
	}
}

348 349
static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs,
				long *correction)
350
{
351
	if (auprobe->def.fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) {
352 353 354
		struct arch_uprobe_task *autask;

		autask = &current->utask->autask;
355
		if (auprobe->def.fixups & UPROBE_FIX_RIP_AX)
356 357 358 359 360 361 362 363 364 365 366 367 368 369
			regs->ax = autask->saved_scratch_register;
		else
			regs->cx = autask->saved_scratch_register;

		/*
		 * The original instruction includes a displacement, and so
		 * is 4 bytes longer than what we've just single-stepped.
		 * Caller may need to apply other fixups to handle stuff
		 * like "jmpq *...(%rip)" and "callq *...(%rip)".
		 */
		if (correction)
			*correction += 4;
	}
}
370 371
#else /* 32-bit: */
static inline bool is_64bit_mm(struct mm_struct *mm)
372
{
373
	return false;
374
}
375 376 377
/*
 * No RIP-relative addressing on 32-bit
 */
378
static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
379
{
380
}
381
static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
382 383
{
}
384
static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs,
385 386
					long *correction)
{
387 388 389
}
#endif /* CONFIG_X86_64 */

390 391 392 393
struct uprobe_xol_ops {
	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
394
	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
395 396
};

397 398 399 400 401
static inline int sizeof_long(void)
{
	return is_ia32_task() ? 4 : 8;
}

402 403
static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
404
	riprel_pre_xol(auprobe, regs);
405 406 407
	return 0;
}

408 409 410 411 412 413 414 415 416 417 418
static int push_ret_address(struct pt_regs *regs, unsigned long ip)
{
	unsigned long new_sp = regs->sp - sizeof_long();

	if (copy_to_user((void __user *)new_sp, &ip, sizeof_long()))
		return -EFAULT;

	regs->sp = new_sp;
	return 0;
}

419 420 421 422 423
static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;
	long correction = (long)(utask->vaddr - utask->xol_vaddr);

424
	riprel_post_xol(auprobe, regs, &correction);
425
	if (auprobe->def.fixups & UPROBE_FIX_IP) {
426
		regs->ip += correction;
427
	} else if (auprobe->def.fixups & UPROBE_FIX_CALL) {
428 429
		regs->sp += sizeof_long();
		if (push_ret_address(regs, utask->vaddr + auprobe->def.ilen))
430 431
			return -ERESTART;
	}
432
	/* popf; tell the caller to not touch TF */
433
	if (auprobe->def.fixups & UPROBE_FIX_SETF)
434
		utask->autask.saved_tf = true;
435

436
	return 0;
437 438
}

439 440
static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
441
	riprel_post_xol(auprobe, regs, NULL);
442 443
}

444 445 446
static struct uprobe_xol_ops default_xol_ops = {
	.pre_xol  = default_pre_xol_op,
	.post_xol = default_post_xol_op,
447
	.abort	  = default_abort_op,
448 449
};

450 451 452 453 454
static bool branch_is_call(struct arch_uprobe *auprobe)
{
	return auprobe->branch.opc1 == 0xe8;
}

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
#define CASE_COND					\
	COND(70, 71, XF(OF))				\
	COND(72, 73, XF(CF))				\
	COND(74, 75, XF(ZF))				\
	COND(78, 79, XF(SF))				\
	COND(7a, 7b, XF(PF))				\
	COND(76, 77, XF(CF) || XF(ZF))			\
	COND(7c, 7d, XF(SF) != XF(OF))			\
	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))

#define COND(op_y, op_n, expr)				\
	case 0x ## op_y: DO((expr) != 0)		\
	case 0x ## op_n: DO((expr) == 0)

#define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))

static bool is_cond_jmp_opcode(u8 opcode)
{
	switch (opcode) {
	#define DO(expr)	\
		return true;
	CASE_COND
	#undef	DO

	default:
		return false;
	}
}

static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	unsigned long flags = regs->flags;

	switch (auprobe->branch.opc1) {
	#define DO(expr)	\
		return expr;
	CASE_COND
	#undef	DO

	default:	/* not a conditional jmp */
		return true;
	}
}

#undef	XF
#undef	COND
#undef	CASE_COND

503 504
static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
505
	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
506
	unsigned long offs = (long)auprobe->branch.offs;
507 508 509 510 511 512 513 514 515 516 517

	if (branch_is_call(auprobe)) {
		/*
		 * If it fails we execute this (mangled, see the comment in
		 * branch_clear_offset) insn out-of-line. In the likely case
		 * this should trigger the trap, and the probed application
		 * should die or restart the same insn after it handles the
		 * signal, arch_uprobe_post_xol() won't be even called.
		 *
		 * But there is corner case, see the comment in ->post_xol().
		 */
518
		if (push_ret_address(regs, new_ip))
519
			return false;
520 521
	} else if (!check_jmp_cond(auprobe, regs)) {
		offs = 0;
522 523
	}

524
	regs->ip = new_ip + offs;
525 526 527
	return true;
}

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	BUG_ON(!branch_is_call(auprobe));
	/*
	 * We can only get here if branch_emulate_op() failed to push the ret
	 * address _and_ another thread expanded our stack before the (mangled)
	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
	 * We could also restore ->ip and try to call branch_emulate_op() again.
	 */
	regs->sp += sizeof_long();
	return -ERESTART;
}

static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
{
	/*
	 * Turn this insn into "call 1f; 1:", this is what we will execute
	 * out-of-line if ->emulate() fails. We only need this to generate
	 * a trap, so that the probed task receives the correct signal with
	 * the properly filled siginfo.
	 *
	 * But see the comment in ->post_xol(), in the unlikely case it can
	 * succeed. So we need to ensure that the new ->ip can not fall into
	 * the non-canonical area and trigger #GP.
	 *
	 * We could turn it into (say) "pushf", but then we would need to
	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
	 * of ->insn[] for set_orig_insn().
	 */
	memset(auprobe->insn + insn_offset_immediate(insn),
		0, insn->immediate.nbytes);
}

561 562
static struct uprobe_xol_ops branch_xol_ops = {
	.emulate  = branch_emulate_op,
563
	.post_xol = branch_post_xol_op,
564 565 566 567 568
};

/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
{
569
	u8 opc1 = OPCODE1(insn);
570
	int i;
571 572

	switch (opc1) {
573 574
	case 0xeb:	/* jmp 8 */
	case 0xe9:	/* jmp 32 */
575
	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
576
		break;
577 578 579 580

	case 0xe8:	/* call relative */
		branch_clear_offset(auprobe, insn);
		break;
581

582 583 584 585 586 587 588 589
	case 0x0f:
		if (insn->opcode.nbytes != 2)
			return -ENOSYS;
		/*
		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
		 * OPCODE1() of the "short" jmp which checks the same condition.
		 */
		opc1 = OPCODE2(insn) - 0x10;
590
	default:
591 592
		if (!is_cond_jmp_opcode(opc1))
			return -ENOSYS;
593 594
	}

595 596 597 598 599 600 601 602 603 604
	/*
	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
	 * No one uses these insns, reject any branch insns with such prefix.
	 */
	for (i = 0; i < insn->prefixes.nbytes; i++) {
		if (insn->prefixes.bytes[i] == 0x66)
			return -ENOTSUPP;
	}

605
	auprobe->branch.opc1 = opc1;
606 607 608 609 610 611 612
	auprobe->branch.ilen = insn->length;
	auprobe->branch.offs = insn->immediate.value;

	auprobe->ops = &branch_xol_ops;
	return 0;
}

613
/**
614
 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
615
 * @mm: the probed address space.
616
 * @arch_uprobe: the probepoint information.
617
 * @addr: virtual address at which to install the probepoint
618 619
 * Return 0 on success or a -ve number on error.
 */
620
int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
621 622
{
	struct insn insn;
623
	u8 fix_ip_or_call = UPROBE_FIX_IP;
624
	int ret;
625

626
	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
627
	if (ret)
628
		return ret;
629

630 631 632 633
	ret = branch_setup_xol_ops(auprobe, &insn);
	if (ret != -ENOSYS)
		return ret;

634
	/*
635 636 637
	 * Figure out which fixups default_post_xol_op() will need to perform,
	 * and annotate def->fixups accordingly. To start with, ->fixups is
	 * either zero or it reflects rip-related fixups.
638 639 640
	 */
	switch (OPCODE1(&insn)) {
	case 0x9d:		/* popf */
641
		auprobe->def.fixups |= UPROBE_FIX_SETF;
642 643 644 645 646
		break;
	case 0xc3:		/* ret or lret -- ip is correct */
	case 0xcb:
	case 0xc2:
	case 0xca:
647 648
	case 0xea:		/* jmp absolute -- ip is correct */
		fix_ip_or_call = 0;
649 650
		break;
	case 0x9a:		/* call absolute - Fix return addr, not ip */
651
		fix_ip_or_call = UPROBE_FIX_CALL;
652 653 654 655
		break;
	case 0xff:
		switch (MODRM_REG(&insn)) {
		case 2: case 3:			/* call or lcall, indirect */
656 657
			fix_ip_or_call = UPROBE_FIX_CALL;
			break;
658
		case 4: case 5:			/* jmp or ljmp, indirect */
659 660
			fix_ip_or_call = 0;
			break;
661
		}
662
		/* fall through */
663
	default:
664
		riprel_analyze(auprobe, &insn);
665 666
	}

667
	auprobe->def.ilen = insn.length;
668
	auprobe->def.fixups |= fix_ip_or_call;
669

670
	auprobe->ops = &default_xol_ops;
671 672
	return 0;
}
673 674 675 676 677 678 679 680

/*
 * arch_uprobe_pre_xol - prepare to execute out of line.
 * @auprobe: the probepoint information.
 * @regs: reflects the saved user state of current task.
 */
int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
681
	struct uprobe_task *utask = current->utask;
682

683 684 685 686 687 688
	if (auprobe->ops->pre_xol) {
		int err = auprobe->ops->pre_xol(auprobe, regs);
		if (err)
			return err;
	}

689 690
	regs->ip = utask->xol_vaddr;
	utask->autask.saved_trap_nr = current->thread.trap_nr;
691 692
	current->thread.trap_nr = UPROBE_TRAP_NR;

693
	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
694 695 696 697
	regs->flags |= X86_EFLAGS_TF;
	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
		set_task_blockstep(current, false);

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
	return 0;
}

/*
 * If xol insn itself traps and generates a signal(Say,
 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
 * instruction jumps back to its own address. It is assumed that anything
 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
 *
 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
 */
bool arch_uprobe_xol_was_trapped(struct task_struct *t)
{
	if (t->thread.trap_nr != UPROBE_TRAP_NR)
		return true;

	return false;
}

/*
 * Called after single-stepping. To avoid the SMP problems that can
 * occur when we temporarily put back the original opcode to
 * single-step, we single-stepped a copy of the instruction.
 *
 * This function prepares to resume execution after the single-step.
 * We have to fix things up as follows:
 *
 * Typically, the new ip is relative to the copied instruction.  We need
 * to make it relative to the original instruction (FIX_IP).  Exceptions
 * are return instructions and absolute or indirect jump or call instructions.
 *
 * If the single-stepped instruction was a call, the return address that
 * is atop the stack is the address following the copied instruction.  We
 * need to make it the address following the original instruction (FIX_CALL).
 *
 * If the original instruction was a rip-relative instruction such as
 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
 * instruction using a scratch register -- e.g., "movl %edx,(%rax)".
 * We need to restore the contents of the scratch register and adjust
 * the ip, keeping in mind that the instruction we executed is 4 bytes
 * shorter than the original instruction (since we squeezed out the offset
 * field).  (FIX_RIP_AX or FIX_RIP_CX)
 */
int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
745
	struct uprobe_task *utask = current->utask;
746 747
	bool send_sigtrap = utask->autask.saved_tf;
	int err = 0;
748 749

	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
750
	current->thread.trap_nr = utask->autask.saved_trap_nr;
751 752

	if (auprobe->ops->post_xol) {
753
		err = auprobe->ops->post_xol(auprobe, regs);
754
		if (err) {
755
			/*
756 757 758
			 * Restore ->ip for restart or post mortem analysis.
			 * ->post_xol() must not return -ERESTART unless this
			 * is really possible.
759
			 */
760
			regs->ip = utask->vaddr;
761
			if (err == -ERESTART)
762 763
				err = 0;
			send_sigtrap = false;
764 765
		}
	}
766 767 768 769 770
	/*
	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
	 * so we can get an extra SIGTRAP if we do not clear TF. We need
	 * to examine the opcode to make it right.
	 */
771
	if (send_sigtrap)
772
		send_sig(SIGTRAP, current, 0);
773 774

	if (!utask->autask.saved_tf)
775 776
		regs->flags &= ~X86_EFLAGS_TF;

777
	return err;
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
}

/* callback routine for handling exceptions. */
int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
{
	struct die_args *args = data;
	struct pt_regs *regs = args->regs;
	int ret = NOTIFY_DONE;

	/* We are only interested in userspace traps */
	if (regs && !user_mode_vm(regs))
		return NOTIFY_DONE;

	switch (val) {
	case DIE_INT3:
		if (uprobe_pre_sstep_notifier(regs))
			ret = NOTIFY_STOP;

		break;

	case DIE_DEBUG:
		if (uprobe_post_sstep_notifier(regs))
			ret = NOTIFY_STOP;

	default:
		break;
	}

	return ret;
}

/*
 * This function gets called when XOL instruction either gets trapped or
811 812
 * the thread has a fatal signal. Reset the instruction pointer to its
 * probed address for the potential restart or for post mortem analysis.
813 814 815 816 817
 */
void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;

818 819
	if (auprobe->ops->abort)
		auprobe->ops->abort(auprobe, regs);
820

821 822
	current->thread.trap_nr = utask->autask.saved_trap_nr;
	regs->ip = utask->vaddr;
823 824 825
	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
	if (!utask->autask.saved_tf)
		regs->flags &= ~X86_EFLAGS_TF;
826 827
}

828
static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
829
{
830 831
	if (auprobe->ops->emulate)
		return auprobe->ops->emulate(auprobe, regs);
832 833
	return false;
}
834

835 836 837 838 839 840 841
bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	bool ret = __skip_sstep(auprobe, regs);
	if (ret && (regs->flags & X86_EFLAGS_TF))
		send_sig(SIGTRAP, current, 0);
	return ret;
}
842 843 844 845

unsigned long
arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
{
846
	int rasize = sizeof_long(), nleft;
847 848
	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */

849
	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
850 851 852 853 854 855
		return -1;

	/* check whether address has been already hijacked */
	if (orig_ret_vaddr == trampoline_vaddr)
		return orig_ret_vaddr;

856 857
	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
	if (likely(!nleft))
858 859
		return orig_ret_vaddr;

860
	if (nleft != rasize) {
861 862 863 864 865 866 867 868
		pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
			"%%ip=%#lx\n", current->pid, regs->sp, regs->ip);

		force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
	}

	return -1;
}