uprobes.c 27.1 KB
Newer Older
1
/*
2
 * User-space Probes (UProbes) for x86
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) IBM Corporation, 2008-2011
 * Authors:
 *	Srikar Dronamraju
 *	Jim Keniston
 */
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/ptrace.h>
#include <linux/uprobes.h>
27
#include <linux/uaccess.h>
28 29

#include <linux/kdebug.h>
30
#include <asm/processor.h>
31 32 33 34 35
#include <asm/insn.h>

/* Post-execution fixups. */

/* Adjust IP back to vicinity of actual insn */
36
#define UPROBE_FIX_IP		0x1
37

38
/* Adjust the return address of a call insn */
39
#define UPROBE_FIX_CALL	0x2
40

41 42 43
/* Instruction will modify TF, don't change it */
#define UPROBE_FIX_SETF	0x4

44 45
#define UPROBE_FIX_RIP_AX	0x8000
#define UPROBE_FIX_RIP_CX	0x4000
46

47 48
#define	UPROBE_TRAP_NR		UINT_MAX

49
/* Adaptations for mhiramat x86 decoder v14. */
50 51 52
#define OPCODE1(insn)		((insn)->opcode.bytes[0])
#define OPCODE2(insn)		((insn)->opcode.bytes[1])
#define OPCODE3(insn)		((insn)->opcode.bytes[2])
53
#define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
54 55 56 57 58 59 60 61

#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
	 << (row % 32))

62 63 64 65 66
/*
 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
 * to keep gcc from statically optimizing it out, as variable_test_bit makes
 * some versions of gcc to think only *(unsigned long*) is used.
 */
67
#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
68
static volatile u32 good_insns_32[256 / 32] = {
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
	/*      ----------------------------------------------         */
	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */
	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
	W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */
	W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */
	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
	W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
	W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
	W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
	/*      ----------------------------------------------         */
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
};
90 91 92
#else
#define good_insns_32	NULL
#endif
93

94
/* Good-instruction tables for 64-bit apps */
95
#if defined(CONFIG_X86_64)
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
static volatile u32 good_insns_64[256 / 32] = {
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
	/*      ----------------------------------------------         */
	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */
	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
	W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */
	W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */
	W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
	W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
	W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
	W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
	/*      ----------------------------------------------         */
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
};
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
#else
#define good_insns_64	NULL
#endif

/* Using this for both 64-bit and 32-bit apps */
static volatile u32 good_2byte_insns[256 / 32] = {
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
	/*      ----------------------------------------------         */
	W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */
	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
	W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
	W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
	W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
	W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)   /* f0 */
	/*      ----------------------------------------------         */
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
};
145 146 147 148
#undef W

/*
 * opcodes we'll probably never support:
149 150 151 152 153 154 155 156 157 158
 *
 *  6c-6d, e4-e5, ec-ed - in
 *  6e-6f, e6-e7, ee-ef - out
 *  cc, cd - int3, int
 *  cf - iret
 *  d6 - illegal instruction
 *  f1 - int1/icebp
 *  f4 - hlt
 *  fa, fb - cli, sti
 *  0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2
159 160 161
 *
 * invalid opcodes in 64-bit mode:
 *
162 163
 *  06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5
 *  63 - we support this opcode in x86_64 but not in i386.
164 165
 *
 * opcodes we may need to refine support for:
166 167 168 169 170 171 172 173 174 175 176 177 178 179
 *
 *  0f - 2-byte instructions: For many of these instructions, the validity
 *  depends on the prefix and/or the reg field.  On such instructions, we
 *  just consider the opcode combination valid if it corresponds to any
 *  valid instruction.
 *
 *  8f - Group 1 - only reg = 0 is OK
 *  c6-c7 - Group 11 - only reg = 0 is OK
 *  d9-df - fpu insns with some illegal encodings
 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
 *  certain floating-point instructions, such as addsd.
 *
 *  fe - Group 4 - only reg = 0 or 1 is OK
 *  ff - Group 5 - only reg = 0-6 is OK
180 181
 *
 * others -- Do we need to support these?
182 183 184 185
 *
 *  0f - (floating-point?) prefetch instructions
 *  07, 17, 1f - pop es, pop ss, pop ds
 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
186
 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
187 188 189
 *  67 - addr16 prefix
 *  ce - into
 *  f0 - lock prefix
190 191 192 193 194 195 196 197 198 199 200 201 202 203
 */

/*
 * TODO:
 * - Where necessary, examine the modrm byte and allow only valid instructions
 * in the different Groups and fpu instructions.
 */

static bool is_prefix_bad(struct insn *insn)
{
	int i;

	for (i = 0; i < insn->prefixes.nbytes; i++) {
		switch (insn->prefixes.bytes[i]) {
204 205 206 207 208
		case 0x26:	/* INAT_PFX_ES   */
		case 0x2E:	/* INAT_PFX_CS   */
		case 0x36:	/* INAT_PFX_DS   */
		case 0x3E:	/* INAT_PFX_SS   */
		case 0xF0:	/* INAT_PFX_LOCK */
209 210 211 212 213 214
			return true;
		}
	}
	return false;
}

215
static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
216
{
217 218 219
	u32 volatile *good_insns;

	insn_init(insn, auprobe->insn, x86_64);
220 221 222 223
	/* has the side-effect of processing the entire instruction */
	insn_get_length(insn);
	if (WARN_ON_ONCE(!insn_complete(insn)))
		return -ENOEXEC;
224 225 226

	if (is_prefix_bad(insn))
		return -ENOTSUPP;
227

228 229 230 231 232 233
	if (x86_64)
		good_insns = good_insns_64;
	else
		good_insns = good_insns_32;

	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
234
		return 0;
235

236 237 238 239
	if (insn->opcode.nbytes == 2) {
		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
			return 0;
	}
240

241 242 243 244
	return -ENOTSUPP;
}

#ifdef CONFIG_X86_64
245 246 247
static inline bool is_64bit_mm(struct mm_struct *mm)
{
	return	!config_enabled(CONFIG_IA32_EMULATION) ||
248
		!(mm->context.ia32_compat == TIF_IA32);
249
}
250
/*
251
 * If arch_uprobe->insn doesn't use rip-relative addressing, return
252 253
 * immediately.  Otherwise, rewrite the instruction so that it accesses
 * its memory operand indirectly through a scratch register.  Set
254 255 256
 * def->fixups and def->riprel_target accordingly. (The contents of the
 * scratch register will be saved before we single-step the modified
 * instruction, and restored afterward).
257 258 259 260 261 262 263 264 265
 *
 * We do this because a rip-relative instruction can access only a
 * relatively small area (+/- 2 GB from the instruction), and the XOL
 * area typically lies beyond that area.  At least for instructions
 * that store to memory, we can't execute the original instruction
 * and "fix things up" later, because the misdirected store could be
 * disastrous.
 *
 * Some useful facts about rip-relative instructions:
266 267 268 269
 *
 *  - There's always a modrm byte.
 *  - There's never a SIB byte.
 *  - The displacement is always 4 bytes.
270
 */
271
static void
272
handle_riprel_insn(struct arch_uprobe *auprobe, struct insn *insn)
273 274 275 276 277 278 279 280 281 282 283 284 285
{
	u8 *cursor;
	u8 reg;

	if (!insn_rip_relative(insn))
		return;

	/*
	 * insn_rip_relative() would have decoded rex_prefix, modrm.
	 * Clear REX.b bit (extension of MODRM.rm field):
	 * we want to encode rax/rcx, not r8/r9.
	 */
	if (insn->rex_prefix.nbytes) {
286
		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
287 288 289 290 291 292 293 294
		*cursor &= 0xfe;	/* Clearing REX.B bit */
	}

	/*
	 * Point cursor at the modrm byte.  The next 4 bytes are the
	 * displacement.  Beyond the displacement, for some instructions,
	 * is the immediate operand.
	 */
295
	cursor = auprobe->insn + insn_offset_modrm(insn);
296 297 298 299 300 301 302 303 304 305 306 307 308 309
	/*
	 * Convert from rip-relative addressing to indirect addressing
	 * via a scratch register.  Change the r/m field from 0x5 (%rip)
	 * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field.
	 */
	reg = MODRM_REG(insn);
	if (reg == 0) {
		/*
		 * The register operand (if any) is either the A register
		 * (%rax, %eax, etc.) or (if the 0x4 bit is set in the
		 * REX prefix) %r8.  In any case, we know the C register
		 * is NOT the register operand, so we use %rcx (register
		 * #1) for the scratch register.
		 */
310
		auprobe->def.fixups = UPROBE_FIX_RIP_CX;
311 312 313 314
		/* Change modrm from 00 000 101 to 00 000 001. */
		*cursor = 0x1;
	} else {
		/* Use %rax (register #0) for the scratch register. */
315
		auprobe->def.fixups = UPROBE_FIX_RIP_AX;
316 317 318 319 320
		/* Change modrm from 00 xxx 101 to 00 xxx 000 */
		*cursor = (reg << 3);
	}

	/* Target address = address of next instruction + (signed) offset */
321
	auprobe->def.riprel_target = (long)insn->length + insn->displacement.value;
322

323 324 325
	/* Displacement field is gone; slide immediate field (if any) over. */
	if (insn->immediate.nbytes) {
		cursor++;
326
		memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes);
327 328 329
	}
}

330 331 332 333 334 335 336 337
/*
 * If we're emulating a rip-relative instruction, save the contents
 * of the scratch register and store the target address in that register.
 */
static void
pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
				struct arch_uprobe_task *autask)
{
338
	if (auprobe->def.fixups & UPROBE_FIX_RIP_AX) {
339 340
		autask->saved_scratch_register = regs->ax;
		regs->ax = current->utask->vaddr;
341 342
		regs->ax += auprobe->def.riprel_target;
	} else if (auprobe->def.fixups & UPROBE_FIX_RIP_CX) {
343 344
		autask->saved_scratch_register = regs->cx;
		regs->cx = current->utask->vaddr;
345
		regs->cx += auprobe->def.riprel_target;
346 347 348 349 350 351
	}
}

static void
handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
{
352
	if (auprobe->def.fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) {
353 354 355
		struct arch_uprobe_task *autask;

		autask = &current->utask->autask;
356
		if (auprobe->def.fixups & UPROBE_FIX_RIP_AX)
357 358 359 360 361 362 363 364 365 366 367 368 369 370
			regs->ax = autask->saved_scratch_register;
		else
			regs->cx = autask->saved_scratch_register;

		/*
		 * The original instruction includes a displacement, and so
		 * is 4 bytes longer than what we've just single-stepped.
		 * Caller may need to apply other fixups to handle stuff
		 * like "jmpq *...(%rip)" and "callq *...(%rip)".
		 */
		if (correction)
			*correction += 4;
	}
}
371 372
#else /* 32-bit: */
static inline bool is_64bit_mm(struct mm_struct *mm)
373
{
374
	return false;
375
}
376 377 378
/*
 * No RIP-relative addressing on 32-bit
 */
379
static void handle_riprel_insn(struct arch_uprobe *auprobe, struct insn *insn)
380
{
381 382 383 384 385 386 387 388
}
static void pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
				struct arch_uprobe_task *autask)
{
}
static void handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs,
					long *correction)
{
389 390 391
}
#endif /* CONFIG_X86_64 */

392 393 394 395
struct uprobe_xol_ops {
	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
396
	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
397 398
};

399 400 401 402 403
static inline int sizeof_long(void)
{
	return is_ia32_task() ? 4 : 8;
}

404 405 406 407 408 409 410 411 412 413 414
static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	pre_xol_rip_insn(auprobe, regs, &current->utask->autask);
	return 0;
}

/*
 * Adjust the return address pushed by a call insn executed out of line.
 */
static int adjust_ret_addr(unsigned long sp, long correction)
{
415 416
	int rasize = sizeof_long();
	long ra;
417

418
	if (copy_from_user(&ra, (void __user *)sp, rasize))
419 420 421
		return -EFAULT;

	ra += correction;
422
	if (copy_to_user((void __user *)sp, &ra, rasize))
423 424 425 426 427 428 429 430 431 432 433
		return -EFAULT;

	return 0;
}

static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;
	long correction = (long)(utask->vaddr - utask->xol_vaddr);

	handle_riprel_post_xol(auprobe, regs, &correction);
434
	if (auprobe->def.fixups & UPROBE_FIX_IP)
435 436
		regs->ip += correction;

437
	if (auprobe->def.fixups & UPROBE_FIX_CALL) {
438
		if (adjust_ret_addr(regs->sp, correction)) {
439
			regs->sp += sizeof_long();
440 441 442
			return -ERESTART;
		}
	}
443
	/* popf; tell the caller to not touch TF */
444
	if (auprobe->def.fixups & UPROBE_FIX_SETF)
445
		utask->autask.saved_tf = true;
446

447
	return 0;
448 449
}

450 451 452 453 454
static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	handle_riprel_post_xol(auprobe, regs, NULL);
}

455 456 457
static struct uprobe_xol_ops default_xol_ops = {
	.pre_xol  = default_pre_xol_op,
	.post_xol = default_post_xol_op,
458
	.abort	  = default_abort_op,
459 460
};

461 462 463 464 465
static bool branch_is_call(struct arch_uprobe *auprobe)
{
	return auprobe->branch.opc1 == 0xe8;
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
#define CASE_COND					\
	COND(70, 71, XF(OF))				\
	COND(72, 73, XF(CF))				\
	COND(74, 75, XF(ZF))				\
	COND(78, 79, XF(SF))				\
	COND(7a, 7b, XF(PF))				\
	COND(76, 77, XF(CF) || XF(ZF))			\
	COND(7c, 7d, XF(SF) != XF(OF))			\
	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))

#define COND(op_y, op_n, expr)				\
	case 0x ## op_y: DO((expr) != 0)		\
	case 0x ## op_n: DO((expr) == 0)

#define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))

static bool is_cond_jmp_opcode(u8 opcode)
{
	switch (opcode) {
	#define DO(expr)	\
		return true;
	CASE_COND
	#undef	DO

	default:
		return false;
	}
}

static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	unsigned long flags = regs->flags;

	switch (auprobe->branch.opc1) {
	#define DO(expr)	\
		return expr;
	CASE_COND
	#undef	DO

	default:	/* not a conditional jmp */
		return true;
	}
}

#undef	XF
#undef	COND
#undef	CASE_COND

514 515
static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
516
	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
517
	unsigned long offs = (long)auprobe->branch.offs;
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532

	if (branch_is_call(auprobe)) {
		unsigned long new_sp = regs->sp - sizeof_long();
		/*
		 * If it fails we execute this (mangled, see the comment in
		 * branch_clear_offset) insn out-of-line. In the likely case
		 * this should trigger the trap, and the probed application
		 * should die or restart the same insn after it handles the
		 * signal, arch_uprobe_post_xol() won't be even called.
		 *
		 * But there is corner case, see the comment in ->post_xol().
		 */
		if (copy_to_user((void __user *)new_sp, &new_ip, sizeof_long()))
			return false;
		regs->sp = new_sp;
533 534
	} else if (!check_jmp_cond(auprobe, regs)) {
		offs = 0;
535 536
	}

537
	regs->ip = new_ip + offs;
538 539 540
	return true;
}

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	BUG_ON(!branch_is_call(auprobe));
	/*
	 * We can only get here if branch_emulate_op() failed to push the ret
	 * address _and_ another thread expanded our stack before the (mangled)
	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
	 * We could also restore ->ip and try to call branch_emulate_op() again.
	 */
	regs->sp += sizeof_long();
	return -ERESTART;
}

static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
{
	/*
	 * Turn this insn into "call 1f; 1:", this is what we will execute
	 * out-of-line if ->emulate() fails. We only need this to generate
	 * a trap, so that the probed task receives the correct signal with
	 * the properly filled siginfo.
	 *
	 * But see the comment in ->post_xol(), in the unlikely case it can
	 * succeed. So we need to ensure that the new ->ip can not fall into
	 * the non-canonical area and trigger #GP.
	 *
	 * We could turn it into (say) "pushf", but then we would need to
	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
	 * of ->insn[] for set_orig_insn().
	 */
	memset(auprobe->insn + insn_offset_immediate(insn),
		0, insn->immediate.nbytes);
}

574 575
static struct uprobe_xol_ops branch_xol_ops = {
	.emulate  = branch_emulate_op,
576
	.post_xol = branch_post_xol_op,
577 578 579 580 581
};

/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
{
582
	u8 opc1 = OPCODE1(insn);
583
	int i;
584 585

	switch (opc1) {
586 587
	case 0xeb:	/* jmp 8 */
	case 0xe9:	/* jmp 32 */
588
	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
589
		break;
590 591 592 593

	case 0xe8:	/* call relative */
		branch_clear_offset(auprobe, insn);
		break;
594

595 596 597 598 599 600 601 602
	case 0x0f:
		if (insn->opcode.nbytes != 2)
			return -ENOSYS;
		/*
		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
		 * OPCODE1() of the "short" jmp which checks the same condition.
		 */
		opc1 = OPCODE2(insn) - 0x10;
603
	default:
604 605
		if (!is_cond_jmp_opcode(opc1))
			return -ENOSYS;
606 607
	}

608 609 610 611 612 613 614 615 616 617
	/*
	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
	 * No one uses these insns, reject any branch insns with such prefix.
	 */
	for (i = 0; i < insn->prefixes.nbytes; i++) {
		if (insn->prefixes.bytes[i] == 0x66)
			return -ENOTSUPP;
	}

618
	auprobe->branch.opc1 = opc1;
619 620 621 622 623 624 625
	auprobe->branch.ilen = insn->length;
	auprobe->branch.offs = insn->immediate.value;

	auprobe->ops = &branch_xol_ops;
	return 0;
}

626
/**
627
 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
628
 * @mm: the probed address space.
629
 * @arch_uprobe: the probepoint information.
630
 * @addr: virtual address at which to install the probepoint
631 632
 * Return 0 on success or a -ve number on error.
 */
633
int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
634 635
{
	struct insn insn;
636 637
	bool fix_ip = true, fix_call = false;
	int ret;
638

639
	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
640
	if (ret)
641
		return ret;
642

643 644 645 646
	ret = branch_setup_xol_ops(auprobe, &insn);
	if (ret != -ENOSYS)
		return ret;

647
	/*
648 649 650
	 * Figure out which fixups default_post_xol_op() will need to perform,
	 * and annotate def->fixups accordingly. To start with, ->fixups is
	 * either zero or it reflects rip-related fixups.
651 652 653
	 */
	switch (OPCODE1(&insn)) {
	case 0x9d:		/* popf */
654
		auprobe->def.fixups |= UPROBE_FIX_SETF;
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
		break;
	case 0xc3:		/* ret or lret -- ip is correct */
	case 0xcb:
	case 0xc2:
	case 0xca:
		fix_ip = false;
		break;
	case 0x9a:		/* call absolute - Fix return addr, not ip */
		fix_call = true;
		fix_ip = false;
		break;
	case 0xea:		/* jmp absolute -- ip is correct */
		fix_ip = false;
		break;
	case 0xff:
		switch (MODRM_REG(&insn)) {
		case 2: case 3:			/* call or lcall, indirect */
			fix_call = true;
		case 4: case 5:			/* jmp or ljmp, indirect */
			fix_ip = false;
		}
676
		/* fall through */
677
	default:
678
		handle_riprel_insn(auprobe, &insn);
679 680 681
	}

	if (fix_ip)
682
		auprobe->def.fixups |= UPROBE_FIX_IP;
683
	if (fix_call)
684
		auprobe->def.fixups |= UPROBE_FIX_CALL;
685

686
	auprobe->ops = &default_xol_ops;
687 688
	return 0;
}
689 690 691 692 693 694 695 696

/*
 * arch_uprobe_pre_xol - prepare to execute out of line.
 * @auprobe: the probepoint information.
 * @regs: reflects the saved user state of current task.
 */
int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
697
	struct uprobe_task *utask = current->utask;
698

699 700 701 702 703 704
	if (auprobe->ops->pre_xol) {
		int err = auprobe->ops->pre_xol(auprobe, regs);
		if (err)
			return err;
	}

705 706
	regs->ip = utask->xol_vaddr;
	utask->autask.saved_trap_nr = current->thread.trap_nr;
707 708
	current->thread.trap_nr = UPROBE_TRAP_NR;

709
	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
710 711 712 713
	regs->flags |= X86_EFLAGS_TF;
	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
		set_task_blockstep(current, false);

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	return 0;
}

/*
 * If xol insn itself traps and generates a signal(Say,
 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
 * instruction jumps back to its own address. It is assumed that anything
 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
 *
 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
 */
bool arch_uprobe_xol_was_trapped(struct task_struct *t)
{
	if (t->thread.trap_nr != UPROBE_TRAP_NR)
		return true;

	return false;
}

/*
 * Called after single-stepping. To avoid the SMP problems that can
 * occur when we temporarily put back the original opcode to
 * single-step, we single-stepped a copy of the instruction.
 *
 * This function prepares to resume execution after the single-step.
 * We have to fix things up as follows:
 *
 * Typically, the new ip is relative to the copied instruction.  We need
 * to make it relative to the original instruction (FIX_IP).  Exceptions
 * are return instructions and absolute or indirect jump or call instructions.
 *
 * If the single-stepped instruction was a call, the return address that
 * is atop the stack is the address following the copied instruction.  We
 * need to make it the address following the original instruction (FIX_CALL).
 *
 * If the original instruction was a rip-relative instruction such as
 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
 * instruction using a scratch register -- e.g., "movl %edx,(%rax)".
 * We need to restore the contents of the scratch register and adjust
 * the ip, keeping in mind that the instruction we executed is 4 bytes
 * shorter than the original instruction (since we squeezed out the offset
 * field).  (FIX_RIP_AX or FIX_RIP_CX)
 */
int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
761
	struct uprobe_task *utask = current->utask;
762 763
	bool send_sigtrap = utask->autask.saved_tf;
	int err = 0;
764 765

	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
766
	current->thread.trap_nr = utask->autask.saved_trap_nr;
767 768

	if (auprobe->ops->post_xol) {
769
		err = auprobe->ops->post_xol(auprobe, regs);
770
		if (err) {
771
			/*
772 773 774
			 * Restore ->ip for restart or post mortem analysis.
			 * ->post_xol() must not return -ERESTART unless this
			 * is really possible.
775
			 */
776
			regs->ip = utask->vaddr;
777
			if (err == -ERESTART)
778 779
				err = 0;
			send_sigtrap = false;
780 781
		}
	}
782 783 784 785 786
	/*
	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
	 * so we can get an extra SIGTRAP if we do not clear TF. We need
	 * to examine the opcode to make it right.
	 */
787
	if (send_sigtrap)
788
		send_sig(SIGTRAP, current, 0);
789 790

	if (!utask->autask.saved_tf)
791 792
		regs->flags &= ~X86_EFLAGS_TF;

793
	return err;
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
}

/* callback routine for handling exceptions. */
int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
{
	struct die_args *args = data;
	struct pt_regs *regs = args->regs;
	int ret = NOTIFY_DONE;

	/* We are only interested in userspace traps */
	if (regs && !user_mode_vm(regs))
		return NOTIFY_DONE;

	switch (val) {
	case DIE_INT3:
		if (uprobe_pre_sstep_notifier(regs))
			ret = NOTIFY_STOP;

		break;

	case DIE_DEBUG:
		if (uprobe_post_sstep_notifier(regs))
			ret = NOTIFY_STOP;

	default:
		break;
	}

	return ret;
}

/*
 * This function gets called when XOL instruction either gets trapped or
827 828
 * the thread has a fatal signal. Reset the instruction pointer to its
 * probed address for the potential restart or for post mortem analysis.
829 830 831 832 833
 */
void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;

834 835
	if (auprobe->ops->abort)
		auprobe->ops->abort(auprobe, regs);
836

837 838
	current->thread.trap_nr = utask->autask.saved_trap_nr;
	regs->ip = utask->vaddr;
839 840 841
	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
	if (!utask->autask.saved_tf)
		regs->flags &= ~X86_EFLAGS_TF;
842 843
}

844
static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
845
{
846 847
	if (auprobe->ops->emulate)
		return auprobe->ops->emulate(auprobe, regs);
848 849
	return false;
}
850

851 852 853 854 855 856 857
bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	bool ret = __skip_sstep(auprobe, regs);
	if (ret && (regs->flags & X86_EFLAGS_TF))
		send_sig(SIGTRAP, current, 0);
	return ret;
}
858 859 860 861

unsigned long
arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
{
862
	int rasize = sizeof_long(), nleft;
863 864
	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */

865
	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
866 867 868 869 870 871
		return -1;

	/* check whether address has been already hijacked */
	if (orig_ret_vaddr == trampoline_vaddr)
		return orig_ret_vaddr;

872 873
	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
	if (likely(!nleft))
874 875
		return orig_ret_vaddr;

876
	if (nleft != rasize) {
877 878 879 880 881 882 883 884
		pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
			"%%ip=%#lx\n", current->pid, regs->sp, regs->ip);

		force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
	}

	return -1;
}