memcontrol.c 22.8 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
24
#include <linux/smp.h>
25
#include <linux/page-flags.h>
26
#include <linux/backing-dev.h>
27 28
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
29 30 31
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
32
#include <linux/seq_file.h>
B
Balbir Singh 已提交
33

34 35
#include <asm/uaccess.h>

B
Balbir Singh 已提交
36
struct cgroup_subsys mem_cgroup_subsys;
37
static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
B
Balbir Singh 已提交
38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
	struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
};

/*
 * For accounting under irq disable, no need for increment preempt count.
 */
static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx, int val)
{
	int cpu = smp_processor_id();
	stat->cpustat[cpu].count[idx] += val;
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

B
Balbir Singh 已提交
80 81 82 83 84 85 86
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
87 88 89
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
90 91 92 93 94 95 96
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
97 98 99 100 101 102 103
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 * TODO: Consider making these lists per zone
	 */
	struct list_head active_list;
	struct list_head inactive_list;
104 105 106 107
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
	spinlock_t lru_lock;
108
	unsigned long control_type;	/* control RSS or RSS+Pagecache */
109 110 111 112
	/*
	 * statistics.
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
113 114
};

115 116 117 118 119 120 121 122
/*
 * We use the lower bit of the page->page_cgroup pointer as a bit spin
 * lock. We need to ensure that page->page_cgroup is atleast two
 * byte aligned (based on comments from Nick Piggin)
 */
#define PAGE_CGROUP_LOCK_BIT 	0x0
#define PAGE_CGROUP_LOCK 		(1 << PAGE_CGROUP_LOCK_BIT)

B
Balbir Singh 已提交
123 124 125 126 127 128 129 130
/*
 * A page_cgroup page is associated with every page descriptor. The
 * page_cgroup helps us identify information about the cgroup
 */
struct page_cgroup {
	struct list_head lru;		/* per cgroup LRU list */
	struct page *page;
	struct mem_cgroup *mem_cgroup;
131 132
	atomic_t ref_cnt;		/* Helpful when pages move b/w  */
					/* mapped and cached states     */
133
	int	 flags;
B
Balbir Singh 已提交
134
};
135
#define PAGE_CGROUP_FLAG_CACHE	(0x1)	/* charged as cache */
136
#define PAGE_CGROUP_FLAG_ACTIVE (0x2)	/* page is active in this cgroup */
B
Balbir Singh 已提交
137

138 139 140 141 142 143 144 145
enum {
	MEM_CGROUP_TYPE_UNSPEC = 0,
	MEM_CGROUP_TYPE_MAPPED,
	MEM_CGROUP_TYPE_CACHED,
	MEM_CGROUP_TYPE_ALL,
	MEM_CGROUP_TYPE_MAX,
};

146 147 148 149 150
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
};

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
/*
 * Always modified under lru lock. Then, not necessary to preempt_disable()
 */
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
					bool charge)
{
	int val = (charge)? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
	VM_BUG_ON(!irqs_disabled());

	if (flags & PAGE_CGROUP_FLAG_CACHE)
		__mem_cgroup_stat_add_safe(stat,
					MEM_CGROUP_STAT_CACHE, val);
	else
		__mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);

}

169
static struct mem_cgroup init_mem_cgroup;
B
Balbir Singh 已提交
170 171 172 173 174 175 176 177 178

static inline
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static inline
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
{
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
{
	struct mem_cgroup *mem;

	mem = mem_cgroup_from_task(p);
	css_get(&mem->css);
	mm->mem_cgroup = mem;
}

void mm_free_cgroup(struct mm_struct *mm)
{
	css_put(&mm->mem_cgroup->css);
}

200 201 202 203 204 205
static inline int page_cgroup_locked(struct page *page)
{
	return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
					&page->page_cgroup);
}

206 207
void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
{
208 209 210 211 212 213 214 215 216 217 218
	int locked;

	/*
	 * While resetting the page_cgroup we might not hold the
	 * page_cgroup lock. free_hot_cold_page() is an example
	 * of such a scenario
	 */
	if (pc)
		VM_BUG_ON(!page_cgroup_locked(page));
	locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
	page->page_cgroup = ((unsigned long)pc | locked);
219 220 221 222
}

struct page_cgroup *page_get_page_cgroup(struct page *page)
{
223 224 225 226
	return (struct page_cgroup *)
		(page->page_cgroup & ~PAGE_CGROUP_LOCK);
}

227
static void __always_inline lock_page_cgroup(struct page *page)
228 229 230 231 232
{
	bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
	VM_BUG_ON(!page_cgroup_locked(page));
}

233
static void __always_inline unlock_page_cgroup(struct page *page)
234 235 236 237
{
	bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
}

238 239 240 241 242
/*
 * Tie new page_cgroup to struct page under lock_page_cgroup()
 * This can fail if the page has been tied to a page_cgroup.
 * If success, returns 0.
 */
243 244
static int page_cgroup_assign_new_page_cgroup(struct page *page,
						struct page_cgroup *pc)
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
{
	int ret = 0;

	lock_page_cgroup(page);
	if (!page_get_page_cgroup(page))
		page_assign_page_cgroup(page, pc);
	else /* A page is tied to other pc. */
		ret = 1;
	unlock_page_cgroup(page);
	return ret;
}

/*
 * Clear page->page_cgroup member under lock_page_cgroup().
 * If given "pc" value is different from one page->page_cgroup,
 * page->cgroup is not cleared.
 * Returns a value of page->page_cgroup at lock taken.
 * A can can detect failure of clearing by following
 *  clear_page_cgroup(page, pc) == pc
 */

266 267
static struct page_cgroup *clear_page_cgroup(struct page *page,
						struct page_cgroup *pc)
268 269 270 271 272 273 274 275 276 277 278
{
	struct page_cgroup *ret;
	/* lock and clear */
	lock_page_cgroup(page);
	ret = page_get_page_cgroup(page);
	if (likely(ret == pc))
		page_assign_page_cgroup(page, NULL);
	unlock_page_cgroup(page);
	return ret;
}

279
static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
280
{
281 282
	if (active) {
		pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
283
		list_move(&pc->lru, &pc->mem_cgroup->active_list);
284 285
	} else {
		pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
286
		list_move(&pc->lru, &pc->mem_cgroup->inactive_list);
287
	}
288 289
}

290 291 292 293 294 295 296 297 298 299
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;

	task_lock(task);
	ret = task->mm && mm_cgroup(task->mm) == mem;
	task_unlock(task);
	return ret;
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
/*
 * This routine assumes that the appropriate zone's lru lock is already held
 */
void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
{
	struct mem_cgroup *mem;
	if (!pc)
		return;

	mem = pc->mem_cgroup;

	spin_lock(&mem->lru_lock);
	__mem_cgroup_move_lists(pc, active);
	spin_unlock(&mem->lru_lock);
}

unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
					int active)
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
328
	struct page_cgroup *pc, *tmp;
329 330 331 332 333 334 335

	if (active)
		src = &mem_cont->active_list;
	else
		src = &mem_cont->inactive_list;

	spin_lock(&mem_cont->lru_lock);
336 337
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
338
		if (scan >= nr_to_scan)
339
			break;
340 341 342
		page = pc->page;
		VM_BUG_ON(!pc);

H
Hugh Dickins 已提交
343
		if (unlikely(!PageLRU(page)))
344 345
			continue;

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
		if (PageActive(page) && !active) {
			__mem_cgroup_move_lists(pc, true);
			continue;
		}
		if (!PageActive(page) && active) {
			__mem_cgroup_move_lists(pc, false);
			continue;
		}

		/*
		 * Reclaim, per zone
		 * TODO: make the active/inactive lists per zone
		 */
		if (page_zone(page) != z)
			continue;

H
Hugh Dickins 已提交
362 363
		scan++;
		list_move(&pc->lru, &pc_list);
364 365 366 367 368 369 370 371 372 373 374 375 376 377

		if (__isolate_lru_page(page, mode) == 0) {
			list_move(&page->lru, dst);
			nr_taken++;
		}
	}

	list_splice(&pc_list, src);
	spin_unlock(&mem_cont->lru_lock);

	*scanned = scan;
	return nr_taken;
}

378 379 380 381 382 383
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
384 385
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype)
386 387
{
	struct mem_cgroup *mem;
388
	struct page_cgroup *pc;
389 390
	unsigned long flags;
	unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
391 392 393 394 395 396 397 398

	/*
	 * Should page_cgroup's go to their own slab?
	 * One could optimize the performance of the charging routine
	 * by saving a bit in the page_flags and using it as a lock
	 * to see if the cgroup page already has a page_cgroup associated
	 * with it
	 */
399
retry:
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
	if (page) {
		lock_page_cgroup(page);
		pc = page_get_page_cgroup(page);
		/*
		 * The page_cgroup exists and
		 * the page has already been accounted.
		 */
		if (pc) {
			if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
				/* this page is under being uncharged ? */
				unlock_page_cgroup(page);
				cpu_relax();
				goto retry;
			} else {
				unlock_page_cgroup(page);
				goto done;
			}
417
		}
418
		unlock_page_cgroup(page);
419 420
	}

421
	pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
422 423 424 425
	if (pc == NULL)
		goto err;

	/*
426 427
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
428 429 430 431 432 433
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
	if (!mm)
		mm = &init_mm;

434
	rcu_read_lock();
435 436 437 438 439 440 441 442 443 444 445 446
	mem = rcu_dereference(mm->mem_cgroup);
	/*
	 * For every charge from the cgroup, increment reference
	 * count
	 */
	css_get(&mem->css);
	rcu_read_unlock();

	/*
	 * If we created the page_cgroup, we should free it on exceeding
	 * the cgroup limit.
	 */
447
	while (res_counter_charge(&mem->res, PAGE_SIZE)) {
448 449
		if (!(gfp_mask & __GFP_WAIT))
			goto out;
450 451

		if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
452 453 454 455 456 457 458 459 460 461 462
			continue;

		/*
 		 * try_to_free_mem_cgroup_pages() might not give us a full
 		 * picture of reclaim. Some pages are reclaimed and might be
 		 * moved to swap cache or just unmapped from the cgroup.
 		 * Check the limit again to see if the reclaim reduced the
 		 * current usage of the cgroup before giving up
 		 */
		if (res_counter_check_under_limit(&mem->res))
			continue;
463 464 465 466

		if (!nr_retries--) {
			mem_cgroup_out_of_memory(mem, gfp_mask);
			goto out;
467
		}
468
		congestion_wait(WRITE, HZ/10);
469 470 471 472 473
	}

	atomic_set(&pc->ref_cnt, 1);
	pc->mem_cgroup = mem;
	pc->page = page;
474
	pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
475 476
	if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
		pc->flags |= PAGE_CGROUP_FLAG_CACHE;
477

478
	if (!page || page_cgroup_assign_new_page_cgroup(page, pc)) {
479
		/*
480 481
		 * Another charge has been added to this page already.
		 * We take lock_page_cgroup(page) again and read
482 483 484 485 486
		 * page->cgroup, increment refcnt.... just retry is OK.
		 */
		res_counter_uncharge(&mem->res, PAGE_SIZE);
		css_put(&mem->css);
		kfree(pc);
487 488
		if (!page)
			goto done;
489 490
		goto retry;
	}
491

492
	spin_lock_irqsave(&mem->lru_lock, flags);
493 494
	/* Update statistics vector */
	mem_cgroup_charge_statistics(mem, pc->flags, true);
495 496 497
	list_add(&pc->lru, &mem->active_list);
	spin_unlock_irqrestore(&mem->lru_lock, flags);

498 499
done:
	return 0;
500 501
out:
	css_put(&mem->css);
502 503 504 505 506
	kfree(pc);
err:
	return -ENOMEM;
}

507 508 509 510 511 512 513
int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
			gfp_t gfp_mask)
{
	return mem_cgroup_charge_common(page, mm, gfp_mask,
			MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

514 515 516
/*
 * See if the cached pages should be charged at all?
 */
517 518
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
519
{
520
	int ret = 0;
521 522 523 524
	struct mem_cgroup *mem;
	if (!mm)
		mm = &init_mm;

525
	rcu_read_lock();
526
	mem = rcu_dereference(mm->mem_cgroup);
527 528
	css_get(&mem->css);
	rcu_read_unlock();
529
	if (mem->control_type == MEM_CGROUP_TYPE_ALL)
530
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
531
				MEM_CGROUP_CHARGE_TYPE_CACHE);
532 533
	css_put(&mem->css);
	return ret;
534 535
}

536 537 538 539 540 541 542 543
/*
 * Uncharging is always a welcome operation, we never complain, simply
 * uncharge.
 */
void mem_cgroup_uncharge(struct page_cgroup *pc)
{
	struct mem_cgroup *mem;
	struct page *page;
544
	unsigned long flags;
545

546 547 548 549
	/*
	 * This can handle cases when a page is not charged at all and we
	 * are switching between handling the control_type.
	 */
550 551 552 553 554
	if (!pc)
		return;

	if (atomic_dec_and_test(&pc->ref_cnt)) {
		page = pc->page;
555 556
		/*
		 * get page->cgroup and clear it under lock.
557
		 * force_empty can drop page->cgroup without checking refcnt.
558 559 560 561 562 563 564
		 */
		if (clear_page_cgroup(page, pc) == pc) {
			mem = pc->mem_cgroup;
			css_put(&mem->css);
			res_counter_uncharge(&mem->res, PAGE_SIZE);
			spin_lock_irqsave(&mem->lru_lock, flags);
			list_del_init(&pc->lru);
565
			mem_cgroup_charge_statistics(mem, pc->flags, false);
566 567 568
			spin_unlock_irqrestore(&mem->lru_lock, flags);
			kfree(pc);
		}
569
	}
570
}
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
/*
 * Returns non-zero if a page (under migration) has valid page_cgroup member.
 * Refcnt of page_cgroup is incremented.
 */

int mem_cgroup_prepare_migration(struct page *page)
{
	struct page_cgroup *pc;
	int ret = 0;
	lock_page_cgroup(page);
	pc = page_get_page_cgroup(page);
	if (pc && atomic_inc_not_zero(&pc->ref_cnt))
		ret = 1;
	unlock_page_cgroup(page);
	return ret;
}

void mem_cgroup_end_migration(struct page *page)
{
	struct page_cgroup *pc = page_get_page_cgroup(page);
	mem_cgroup_uncharge(pc);
}
/*
 * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
 * And no race with uncharge() routines because page_cgroup for *page*
 * has extra one reference by mem_cgroup_prepare_migration.
 */

void mem_cgroup_page_migration(struct page *page, struct page *newpage)
{
	struct page_cgroup *pc;
retry:
	pc = page_get_page_cgroup(page);
	if (!pc)
		return;
	if (clear_page_cgroup(page, pc) != pc)
		goto retry;
	pc->page = newpage;
	lock_page_cgroup(newpage);
	page_assign_page_cgroup(newpage, pc);
	unlock_page_cgroup(newpage);
	return;
}
614

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * This routine ignores page_cgroup->ref_cnt.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
#define FORCE_UNCHARGE_BATCH	(128)
static void
mem_cgroup_force_empty_list(struct mem_cgroup *mem, struct list_head *list)
{
	struct page_cgroup *pc;
	struct page *page;
	int count;
	unsigned long flags;

retry:
	count = FORCE_UNCHARGE_BATCH;
	spin_lock_irqsave(&mem->lru_lock, flags);

	while (--count && !list_empty(list)) {
		pc = list_entry(list->prev, struct page_cgroup, lru);
		page = pc->page;
		/* Avoid race with charge */
		atomic_set(&pc->ref_cnt, 0);
		if (clear_page_cgroup(page, pc) == pc) {
			css_put(&mem->css);
			res_counter_uncharge(&mem->res, PAGE_SIZE);
			list_del_init(&pc->lru);
642
			mem_cgroup_charge_statistics(mem, pc->flags, false);
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
			kfree(pc);
		} else 	/* being uncharged ? ...do relax */
			break;
	}
	spin_unlock_irqrestore(&mem->lru_lock, flags);
	if (!list_empty(list)) {
		cond_resched();
		goto retry;
	}
	return;
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */

int mem_cgroup_force_empty(struct mem_cgroup *mem)
{
	int ret = -EBUSY;
	css_get(&mem->css);
	/*
	 * page reclaim code (kswapd etc..) will move pages between
`	 * active_list <-> inactive_list while we don't take a lock.
	 * So, we have to do loop here until all lists are empty.
	 */
	while (!(list_empty(&mem->active_list) &&
		 list_empty(&mem->inactive_list))) {
		if (atomic_read(&mem->css.cgroup->count) > 0)
			goto out;
		/* drop all page_cgroup in active_list */
		mem_cgroup_force_empty_list(mem, &mem->active_list);
		/* drop all page_cgroup in inactive_list */
		mem_cgroup_force_empty_list(mem, &mem->inactive_list);
	}
	ret = 0;
out:
	css_put(&mem->css);
	return ret;
}



686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
{
	*tmp = memparse(buf, &buf);
	if (*buf != '\0')
		return -EINVAL;

	/*
	 * Round up the value to the closest page size
	 */
	*tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
	return 0;
}

static ssize_t mem_cgroup_read(struct cgroup *cont,
			struct cftype *cft, struct file *file,
			char __user *userbuf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
702 703
{
	return res_counter_read(&mem_cgroup_from_cont(cont)->res,
704 705
				cft->private, userbuf, nbytes, ppos,
				NULL);
B
Balbir Singh 已提交
706 707 708 709 710 711 712
}

static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
				struct file *file, const char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	return res_counter_write(&mem_cgroup_from_cont(cont)->res,
713 714
				cft->private, userbuf, nbytes, ppos,
				mem_cgroup_write_strategy);
B
Balbir Singh 已提交
715 716
}

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
static ssize_t mem_control_type_write(struct cgroup *cont,
			struct cftype *cft, struct file *file,
			const char __user *userbuf,
			size_t nbytes, loff_t *pos)
{
	int ret;
	char *buf, *end;
	unsigned long tmp;
	struct mem_cgroup *mem;

	mem = mem_cgroup_from_cont(cont);
	buf = kmalloc(nbytes + 1, GFP_KERNEL);
	ret = -ENOMEM;
	if (buf == NULL)
		goto out;

	buf[nbytes] = 0;
	ret = -EFAULT;
	if (copy_from_user(buf, userbuf, nbytes))
		goto out_free;

	ret = -EINVAL;
	tmp = simple_strtoul(buf, &end, 10);
	if (*end != '\0')
		goto out_free;

	if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX)
		goto out_free;

	mem->control_type = tmp;
	ret = nbytes;
out_free:
	kfree(buf);
out:
	return ret;
}

static ssize_t mem_control_type_read(struct cgroup *cont,
				struct cftype *cft,
				struct file *file, char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	unsigned long val;
	char buf[64], *s;
	struct mem_cgroup *mem;

	mem = mem_cgroup_from_cont(cont);
	s = buf;
	val = mem->control_type;
	s += sprintf(s, "%lu\n", val);
	return simple_read_from_buffer((void __user *)userbuf, nbytes,
			ppos, buf, s - buf);
}

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

static ssize_t mem_force_empty_write(struct cgroup *cont,
				struct cftype *cft, struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	int ret;
	ret = mem_cgroup_force_empty(mem);
	if (!ret)
		ret = nbytes;
	return ret;
}

/*
 * Note: This should be removed if cgroup supports write-only file.
 */

static ssize_t mem_force_empty_read(struct cgroup *cont,
				struct cftype *cft,
				struct file *file, char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	return -EINVAL;
}


798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
static const struct mem_cgroup_stat_desc {
	const char *msg;
	u64 unit;
} mem_cgroup_stat_desc[] = {
	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
};

static int mem_control_stat_show(struct seq_file *m, void *arg)
{
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
	struct mem_cgroup_stat *stat = &mem_cont->stat;
	int i;

	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
		s64 val;

		val = mem_cgroup_read_stat(stat, i);
		val *= mem_cgroup_stat_desc[i].unit;
		seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg,
				(long long)val);
	}
	return 0;
}

static const struct file_operations mem_control_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_stat_open(struct inode *unused, struct file *file)
{
	/* XXX __d_cont */
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_stat_file_operations;
	return single_open(file, mem_control_stat_show, cont);
}



B
Balbir Singh 已提交
841 842
static struct cftype mem_cgroup_files[] = {
	{
843
		.name = "usage_in_bytes",
B
Balbir Singh 已提交
844 845 846 847
		.private = RES_USAGE,
		.read = mem_cgroup_read,
	},
	{
848
		.name = "limit_in_bytes",
B
Balbir Singh 已提交
849 850 851 852 853 854 855 856 857
		.private = RES_LIMIT,
		.write = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "failcnt",
		.private = RES_FAILCNT,
		.read = mem_cgroup_read,
	},
858 859 860 861 862
	{
		.name = "control_type",
		.write = mem_control_type_write,
		.read = mem_control_type_read,
	},
863 864 865 866 867
	{
		.name = "force_empty",
		.write = mem_force_empty_write,
		.read = mem_force_empty_read,
	},
868 869 870 871
	{
		.name = "stat",
		.open = mem_control_stat_open,
	},
B
Balbir Singh 已提交
872 873
};

874 875
static struct mem_cgroup init_mem_cgroup;

B
Balbir Singh 已提交
876 877 878 879 880
static struct cgroup_subsys_state *
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct mem_cgroup *mem;

881 882 883 884 885 886 887 888
	if (unlikely((cont->parent) == NULL)) {
		mem = &init_mem_cgroup;
		init_mm.mem_cgroup = mem;
	} else
		mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);

	if (mem == NULL)
		return NULL;
B
Balbir Singh 已提交
889 890

	res_counter_init(&mem->res);
891 892
	INIT_LIST_HEAD(&mem->active_list);
	INIT_LIST_HEAD(&mem->inactive_list);
893
	spin_lock_init(&mem->lru_lock);
894
	mem->control_type = MEM_CGROUP_TYPE_ALL;
B
Balbir Singh 已提交
895 896 897
	return &mem->css;
}

898 899 900 901 902 903 904
static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	mem_cgroup_force_empty(mem);
}

B
Balbir Singh 已提交
905 906 907 908 909 910 911 912 913 914 915 916 917
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	kfree(mem_cgroup_from_cont(cont));
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, mem_cgroup_files,
					ARRAY_SIZE(mem_cgroup_files));
}

B
Balbir Singh 已提交
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p)
{
	struct mm_struct *mm;
	struct mem_cgroup *mem, *old_mem;

	mm = get_task_mm(p);
	if (mm == NULL)
		return;

	mem = mem_cgroup_from_cont(cont);
	old_mem = mem_cgroup_from_cont(old_cont);

	if (mem == old_mem)
		goto out;

	/*
	 * Only thread group leaders are allowed to migrate, the mm_struct is
	 * in effect owned by the leader
	 */
	if (p->tgid != p->pid)
		goto out;

	css_get(&mem->css);
	rcu_assign_pointer(mm->mem_cgroup, mem);
	css_put(&old_mem->css);

out:
	mmput(mm);
	return;
}

B
Balbir Singh 已提交
952 953 954 955
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
956
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
957 958
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
B
Balbir Singh 已提交
959
	.attach = mem_cgroup_move_task,
960
	.early_init = 1,
B
Balbir Singh 已提交
961
};