mutex.c 24.6 KB
Newer Older
I
Ingo Molnar 已提交
1
/*
2
 * kernel/locking/mutex.c
I
Ingo Molnar 已提交
3 4 5 6 7 8 9 10 11 12
 *
 * Mutexes: blocking mutual exclusion locks
 *
 * Started by Ingo Molnar:
 *
 *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
 * David Howells for suggestions and improvements.
 *
13 14 15 16 17
 *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
 *    from the -rt tree, where it was originally implemented for rtmutexes
 *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
 *    and Sven Dietrich.
 *
I
Ingo Molnar 已提交
18 19 20
 * Also see Documentation/mutex-design.txt.
 */
#include <linux/mutex.h>
21
#include <linux/ww_mutex.h>
I
Ingo Molnar 已提交
22
#include <linux/sched.h>
23
#include <linux/sched/rt.h>
24
#include <linux/export.h>
I
Ingo Molnar 已提交
25 26
#include <linux/spinlock.h>
#include <linux/interrupt.h>
27
#include <linux/debug_locks.h>
I
Ingo Molnar 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40

/*
 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
 * which forces all calls into the slowpath:
 */
#ifdef CONFIG_DEBUG_MUTEXES
# include "mutex-debug.h"
# include <asm-generic/mutex-null.h>
#else
# include "mutex.h"
# include <asm/mutex.h>
#endif

41
/*
42 43
 * A negative mutex count indicates that waiters are sleeping waiting for the
 * mutex.
44 45 46
 */
#define	MUTEX_SHOW_NO_WAITER(mutex)	(atomic_read(&(mutex)->count) >= 0)

47 48
void
__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
I
Ingo Molnar 已提交
49 50 51 52
{
	atomic_set(&lock->count, 1);
	spin_lock_init(&lock->wait_lock);
	INIT_LIST_HEAD(&lock->wait_list);
53
	mutex_clear_owner(lock);
54 55 56
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
	lock->spin_mlock = NULL;
#endif
I
Ingo Molnar 已提交
57

58
	debug_mutex_init(lock, name, key);
I
Ingo Molnar 已提交
59 60 61 62
}

EXPORT_SYMBOL(__mutex_init);

P
Peter Zijlstra 已提交
63
#ifndef CONFIG_DEBUG_LOCK_ALLOC
I
Ingo Molnar 已提交
64 65 66 67 68 69
/*
 * We split the mutex lock/unlock logic into separate fastpath and
 * slowpath functions, to reduce the register pressure on the fastpath.
 * We also put the fastpath first in the kernel image, to make sure the
 * branch is predicted by the CPU as default-untaken.
 */
70
static __used noinline void __sched
71
__mutex_lock_slowpath(atomic_t *lock_count);
I
Ingo Molnar 已提交
72

73
/**
I
Ingo Molnar 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
 * mutex_lock - acquire the mutex
 * @lock: the mutex to be acquired
 *
 * Lock the mutex exclusively for this task. If the mutex is not
 * available right now, it will sleep until it can get it.
 *
 * The mutex must later on be released by the same task that
 * acquired it. Recursive locking is not allowed. The task
 * may not exit without first unlocking the mutex. Also, kernel
 * memory where the mutex resides mutex must not be freed with
 * the mutex still locked. The mutex must first be initialized
 * (or statically defined) before it can be locked. memset()-ing
 * the mutex to 0 is not allowed.
 *
 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
 *   checks that will enforce the restrictions and will also do
 *   deadlock debugging. )
 *
 * This function is similar to (but not equivalent to) down().
 */
94
void __sched mutex_lock(struct mutex *lock)
I
Ingo Molnar 已提交
95
{
96
	might_sleep();
I
Ingo Molnar 已提交
97 98 99 100 101
	/*
	 * The locking fastpath is the 1->0 transition from
	 * 'unlocked' into 'locked' state.
	 */
	__mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
102
	mutex_set_owner(lock);
I
Ingo Molnar 已提交
103 104 105
}

EXPORT_SYMBOL(mutex_lock);
P
Peter Zijlstra 已提交
106
#endif
I
Ingo Molnar 已提交
107

108
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
/*
 * In order to avoid a stampede of mutex spinners from acquiring the mutex
 * more or less simultaneously, the spinners need to acquire a MCS lock
 * first before spinning on the owner field.
 *
 * We don't inline mspin_lock() so that perf can correctly account for the
 * time spent in this lock function.
 */
struct mspin_node {
	struct mspin_node *next ;
	int		  locked;	/* 1 if lock acquired */
};
#define	MLOCK(mutex)	((struct mspin_node **)&((mutex)->spin_mlock))

static noinline
void mspin_lock(struct mspin_node **lock, struct mspin_node *node)
{
	struct mspin_node *prev;

	/* Init node */
	node->locked = 0;
	node->next   = NULL;

	prev = xchg(lock, node);
	if (likely(prev == NULL)) {
		/* Lock acquired */
		node->locked = 1;
		return;
	}
	ACCESS_ONCE(prev->next) = node;
	smp_wmb();
	/* Wait until the lock holder passes the lock down */
	while (!ACCESS_ONCE(node->locked))
		arch_mutex_cpu_relax();
}

static void mspin_unlock(struct mspin_node **lock, struct mspin_node *node)
{
	struct mspin_node *next = ACCESS_ONCE(node->next);

	if (likely(!next)) {
		/*
		 * Release the lock by setting it to NULL
		 */
		if (cmpxchg(lock, node, NULL) == node)
			return;
		/* Wait until the next pointer is set */
		while (!(next = ACCESS_ONCE(node->next)))
			arch_mutex_cpu_relax();
	}
	ACCESS_ONCE(next->locked) = 1;
	smp_wmb();
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/*
 * Mutex spinning code migrated from kernel/sched/core.c
 */

static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
		return false;

	/*
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
	 */
	barrier();

	return owner->on_cpu;
}

/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
static noinline
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	rcu_read_lock();
	while (owner_running(lock, owner)) {
		if (need_resched())
			break;

		arch_mutex_cpu_relax();
	}
	rcu_read_unlock();

	/*
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
	 */
	return lock->owner == NULL;
}
206 207 208 209 210 211

/*
 * Initial check for entering the mutex spinning loop
 */
static inline int mutex_can_spin_on_owner(struct mutex *lock)
{
212
	struct task_struct *owner;
213 214 215
	int retval = 1;

	rcu_read_lock();
216 217 218
	owner = ACCESS_ONCE(lock->owner);
	if (owner)
		retval = owner->on_cpu;
219 220 221 222 223 224 225
	rcu_read_unlock();
	/*
	 * if lock->owner is not set, the mutex owner may have just acquired
	 * it and not set the owner yet or the mutex has been released.
	 */
	return retval;
}
226 227
#endif

228
static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
I
Ingo Molnar 已提交
229

230
/**
I
Ingo Molnar 已提交
231 232 233 234 235 236 237 238 239 240
 * mutex_unlock - release the mutex
 * @lock: the mutex to be released
 *
 * Unlock a mutex that has been locked by this task previously.
 *
 * This function must not be used in interrupt context. Unlocking
 * of a not locked mutex is not allowed.
 *
 * This function is similar to (but not equivalent to) up().
 */
241
void __sched mutex_unlock(struct mutex *lock)
I
Ingo Molnar 已提交
242 243 244 245 246
{
	/*
	 * The unlocking fastpath is the 0->1 transition from 'locked'
	 * into 'unlocked' state:
	 */
247 248 249 250 251 252 253 254
#ifndef CONFIG_DEBUG_MUTEXES
	/*
	 * When debugging is enabled we must not clear the owner before time,
	 * the slow path will always be taken, and that clears the owner field
	 * after verifying that it was indeed current.
	 */
	mutex_clear_owner(lock);
#endif
I
Ingo Molnar 已提交
255 256 257 258 259
	__mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
}

EXPORT_SYMBOL(mutex_unlock);

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
/**
 * ww_mutex_unlock - release the w/w mutex
 * @lock: the mutex to be released
 *
 * Unlock a mutex that has been locked by this task previously with any of the
 * ww_mutex_lock* functions (with or without an acquire context). It is
 * forbidden to release the locks after releasing the acquire context.
 *
 * This function must not be used in interrupt context. Unlocking
 * of a unlocked mutex is not allowed.
 */
void __sched ww_mutex_unlock(struct ww_mutex *lock)
{
	/*
	 * The unlocking fastpath is the 0->1 transition from 'locked'
	 * into 'unlocked' state:
	 */
	if (lock->ctx) {
#ifdef CONFIG_DEBUG_MUTEXES
		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
#endif
		if (lock->ctx->acquired > 0)
			lock->ctx->acquired--;
		lock->ctx = NULL;
	}

#ifndef CONFIG_DEBUG_MUTEXES
	/*
	 * When debugging is enabled we must not clear the owner before time,
	 * the slow path will always be taken, and that clears the owner field
	 * after verifying that it was indeed current.
	 */
	mutex_clear_owner(&lock->base);
#endif
	__mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
}
EXPORT_SYMBOL(ww_mutex_unlock);

static inline int __sched
__mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
{
	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
	struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);

	if (!hold_ctx)
		return 0;

	if (unlikely(ctx == hold_ctx))
		return -EALREADY;

	if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
	    (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
#ifdef CONFIG_DEBUG_MUTEXES
		DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
		ctx->contending_lock = ww;
#endif
		return -EDEADLK;
	}

	return 0;
}

static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
						   struct ww_acquire_ctx *ww_ctx)
{
#ifdef CONFIG_DEBUG_MUTEXES
	/*
	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
	 * but released with a normal mutex_unlock in this call.
	 *
	 * This should never happen, always use ww_mutex_unlock.
	 */
	DEBUG_LOCKS_WARN_ON(ww->ctx);

	/*
	 * Not quite done after calling ww_acquire_done() ?
	 */
	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);

	if (ww_ctx->contending_lock) {
		/*
		 * After -EDEADLK you tried to
		 * acquire a different ww_mutex? Bad!
		 */
		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);

		/*
		 * You called ww_mutex_lock after receiving -EDEADLK,
		 * but 'forgot' to unlock everything else first?
		 */
		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
		ww_ctx->contending_lock = NULL;
	}

	/*
	 * Naughty, using a different class will lead to undefined behavior!
	 */
	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
#endif
	ww_ctx->acquired++;
}

/*
 * after acquiring lock with fastpath or when we lost out in contested
 * slowpath, set ctx and wake up any waiters so they can recheck.
 *
 * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
 * as the fastpath and opportunistic spinning are disabled in that case.
 */
static __always_inline void
ww_mutex_set_context_fastpath(struct ww_mutex *lock,
			       struct ww_acquire_ctx *ctx)
{
	unsigned long flags;
	struct mutex_waiter *cur;

	ww_mutex_lock_acquired(lock, ctx);

	lock->ctx = ctx;

	/*
	 * The lock->ctx update should be visible on all cores before
	 * the atomic read is done, otherwise contended waiters might be
	 * missed. The contended waiters will either see ww_ctx == NULL
	 * and keep spinning, or it will acquire wait_lock, add itself
	 * to waiter list and sleep.
	 */
	smp_mb(); /* ^^^ */

	/*
	 * Check if lock is contended, if not there is nobody to wake up
	 */
	if (likely(atomic_read(&lock->base.count) == 0))
		return;

	/*
	 * Uh oh, we raced in fastpath, wake up everyone in this case,
	 * so they can see the new lock->ctx.
	 */
	spin_lock_mutex(&lock->base.wait_lock, flags);
	list_for_each_entry(cur, &lock->base.wait_list, list) {
		debug_mutex_wake_waiter(&lock->base, cur);
		wake_up_process(cur->task);
	}
	spin_unlock_mutex(&lock->base.wait_lock, flags);
}

I
Ingo Molnar 已提交
407 408 409
/*
 * Lock a mutex (possibly interruptible), slowpath:
 */
410
static __always_inline int __sched
P
Peter Zijlstra 已提交
411
__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
412
		    struct lockdep_map *nest_lock, unsigned long ip,
413
		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
I
Ingo Molnar 已提交
414 415 416
{
	struct task_struct *task = current;
	struct mutex_waiter waiter;
417
	unsigned long flags;
418
	int ret;
I
Ingo Molnar 已提交
419

P
Peter Zijlstra 已提交
420
	preempt_disable();
421
	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
422 423

#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
	/*
	 * Optimistic spinning.
	 *
	 * We try to spin for acquisition when we find that there are no
	 * pending waiters and the lock owner is currently running on a
	 * (different) CPU.
	 *
	 * The rationale is that if the lock owner is running, it is likely to
	 * release the lock soon.
	 *
	 * Since this needs the lock owner, and this mutex implementation
	 * doesn't track the owner atomically in the lock field, we need to
	 * track it non-atomically.
	 *
	 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
	 * to serialize everything.
440 441 442 443 444
	 *
	 * The mutex spinners are queued up using MCS lock so that only one
	 * spinner can compete for the mutex. However, if mutex spinning isn't
	 * going to happen, there is no point in going through the lock/unlock
	 * overhead.
445
	 */
446 447
	if (!mutex_can_spin_on_owner(lock))
		goto slowpath;
448 449

	for (;;) {
450
		struct task_struct *owner;
451
		struct mspin_node  node;
452

453
		if (use_ww_ctx && ww_ctx->acquired > 0) {
454 455 456 457 458 459 460 461 462 463 464 465
			struct ww_mutex *ww;

			ww = container_of(lock, struct ww_mutex, base);
			/*
			 * If ww->ctx is set the contents are undefined, only
			 * by acquiring wait_lock there is a guarantee that
			 * they are not invalid when reading.
			 *
			 * As such, when deadlock detection needs to be
			 * performed the optimistic spinning cannot be done.
			 */
			if (ACCESS_ONCE(ww->ctx))
466
				goto slowpath;
467 468
		}

469 470 471 472
		/*
		 * If there's an owner, wait for it to either
		 * release the lock or go to sleep.
		 */
473
		mspin_lock(MLOCK(lock), &node);
474
		owner = ACCESS_ONCE(lock->owner);
475 476
		if (owner && !mutex_spin_on_owner(lock, owner)) {
			mspin_unlock(MLOCK(lock), &node);
477
			goto slowpath;
478
		}
479

480 481
		if ((atomic_read(&lock->count) == 1) &&
		    (atomic_cmpxchg(&lock->count, 1, 0) == 1)) {
482
			lock_acquired(&lock->dep_map, ip);
483
			if (use_ww_ctx) {
484 485 486 487 488 489
				struct ww_mutex *ww;
				ww = container_of(lock, struct ww_mutex, base);

				ww_mutex_set_context_fastpath(ww, ww_ctx);
			}

490
			mutex_set_owner(lock);
491
			mspin_unlock(MLOCK(lock), &node);
492 493 494
			preempt_enable();
			return 0;
		}
495
		mspin_unlock(MLOCK(lock), &node);
496

497 498 499 500 501 502 503
		/*
		 * When there's no owner, we might have preempted between the
		 * owner acquiring the lock and setting the owner field. If
		 * we're an RT task that will live-lock because we won't let
		 * the owner complete.
		 */
		if (!owner && (need_resched() || rt_task(task)))
504
			goto slowpath;
505 506 507 508 509 510 511

		/*
		 * The cpu_relax() call is a compiler barrier which forces
		 * everything in this loop to be re-loaded. We don't need
		 * memory barriers as we'll eventually observe the right
		 * values at the cost of a few extra spins.
		 */
512
		arch_mutex_cpu_relax();
513
	}
514
slowpath:
515
#endif
516
	spin_lock_mutex(&lock->wait_lock, flags);
I
Ingo Molnar 已提交
517

518 519 520 521
	/* once more, can we acquire the lock? */
	if (MUTEX_SHOW_NO_WAITER(lock) && (atomic_xchg(&lock->count, 0) == 1))
		goto skip_wait;

522
	debug_mutex_lock_common(lock, &waiter);
R
Roman Zippel 已提交
523
	debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
I
Ingo Molnar 已提交
524 525 526 527 528

	/* add waiting tasks to the end of the waitqueue (FIFO): */
	list_add_tail(&waiter.list, &lock->wait_list);
	waiter.task = task;

P
Peter Zijlstra 已提交
529
	lock_contended(&lock->dep_map, ip);
530

I
Ingo Molnar 已提交
531 532 533 534 535 536 537 538 539 540
	for (;;) {
		/*
		 * Lets try to take the lock again - this is needed even if
		 * we get here for the first time (shortly after failing to
		 * acquire the lock), to make sure that we get a wakeup once
		 * it's unlocked. Later on, if we sleep, this is the
		 * operation that gives us the lock. We xchg it to -1, so
		 * that when we release the lock, we properly wake up the
		 * other waiters:
		 */
541
		if (MUTEX_SHOW_NO_WAITER(lock) &&
542
		    (atomic_xchg(&lock->count, -1) == 1))
I
Ingo Molnar 已提交
543 544 545 546 547 548
			break;

		/*
		 * got a signal? (This code gets eliminated in the
		 * TASK_UNINTERRUPTIBLE case.)
		 */
549
		if (unlikely(signal_pending_state(state, task))) {
550 551 552
			ret = -EINTR;
			goto err;
		}
I
Ingo Molnar 已提交
553

554
		if (use_ww_ctx && ww_ctx->acquired > 0) {
555 556 557
			ret = __mutex_lock_check_stamp(lock, ww_ctx);
			if (ret)
				goto err;
I
Ingo Molnar 已提交
558
		}
559

I
Ingo Molnar 已提交
560 561
		__set_task_state(task, state);

L
Lucas De Marchi 已提交
562
		/* didn't get the lock, go to sleep: */
563
		spin_unlock_mutex(&lock->wait_lock, flags);
564
		schedule_preempt_disabled();
565
		spin_lock_mutex(&lock->wait_lock, flags);
I
Ingo Molnar 已提交
566
	}
567 568 569 570 571
	mutex_remove_waiter(lock, &waiter, current_thread_info());
	/* set it to 0 if there are no waiters left: */
	if (likely(list_empty(&lock->wait_list)))
		atomic_set(&lock->count, 0);
	debug_mutex_free_waiter(&waiter);
I
Ingo Molnar 已提交
572

573 574
skip_wait:
	/* got the lock - cleanup and rejoice! */
P
Peter Zijlstra 已提交
575
	lock_acquired(&lock->dep_map, ip);
576
	mutex_set_owner(lock);
I
Ingo Molnar 已提交
577

578
	if (use_ww_ctx) {
579
		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
		struct mutex_waiter *cur;

		/*
		 * This branch gets optimized out for the common case,
		 * and is only important for ww_mutex_lock.
		 */
		ww_mutex_lock_acquired(ww, ww_ctx);
		ww->ctx = ww_ctx;

		/*
		 * Give any possible sleeping processes the chance to wake up,
		 * so they can recheck if they have to back off.
		 */
		list_for_each_entry(cur, &lock->wait_list, list) {
			debug_mutex_wake_waiter(lock, cur);
			wake_up_process(cur->task);
		}
	}

599
	spin_unlock_mutex(&lock->wait_lock, flags);
P
Peter Zijlstra 已提交
600
	preempt_enable();
I
Ingo Molnar 已提交
601
	return 0;
602 603 604 605 606 607 608 609

err:
	mutex_remove_waiter(lock, &waiter, task_thread_info(task));
	spin_unlock_mutex(&lock->wait_lock, flags);
	debug_mutex_free_waiter(&waiter);
	mutex_release(&lock->dep_map, 1, ip);
	preempt_enable();
	return ret;
I
Ingo Molnar 已提交
610 611
}

612 613 614 615 616
#ifdef CONFIG_DEBUG_LOCK_ALLOC
void __sched
mutex_lock_nested(struct mutex *lock, unsigned int subclass)
{
	might_sleep();
617
	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
618
			    subclass, NULL, _RET_IP_, NULL, 0);
619 620 621
}

EXPORT_SYMBOL_GPL(mutex_lock_nested);
622

623 624 625 626
void __sched
_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
{
	might_sleep();
627
	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
628
			    0, nest, _RET_IP_, NULL, 0);
629 630 631 632
}

EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);

L
Liam R. Howlett 已提交
633 634 635 636
int __sched
mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
{
	might_sleep();
637
	return __mutex_lock_common(lock, TASK_KILLABLE,
638
				   subclass, NULL, _RET_IP_, NULL, 0);
L
Liam R. Howlett 已提交
639 640 641
}
EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);

642 643 644 645
int __sched
mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
{
	might_sleep();
646
	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
647
				   subclass, NULL, _RET_IP_, NULL, 0);
648 649 650
}

EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
651

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
static inline int
ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
	unsigned tmp;

	if (ctx->deadlock_inject_countdown-- == 0) {
		tmp = ctx->deadlock_inject_interval;
		if (tmp > UINT_MAX/4)
			tmp = UINT_MAX;
		else
			tmp = tmp*2 + tmp + tmp/2;

		ctx->deadlock_inject_interval = tmp;
		ctx->deadlock_inject_countdown = tmp;
		ctx->contending_lock = lock;

		ww_mutex_unlock(lock);

		return -EDEADLK;
	}
#endif

	return 0;
}
677 678 679 680

int __sched
__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
681 682
	int ret;

683
	might_sleep();
684
	ret =  __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
685
				   0, &ctx->dep_map, _RET_IP_, ctx, 1);
686
	if (!ret && ctx->acquired > 1)
687 688 689
		return ww_mutex_deadlock_injection(lock, ctx);

	return ret;
690 691 692 693 694 695
}
EXPORT_SYMBOL_GPL(__ww_mutex_lock);

int __sched
__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
696 697
	int ret;

698
	might_sleep();
699
	ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
700
				  0, &ctx->dep_map, _RET_IP_, ctx, 1);
701

702
	if (!ret && ctx->acquired > 1)
703 704 705
		return ww_mutex_deadlock_injection(lock, ctx);

	return ret;
706 707 708
}
EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);

709 710
#endif

I
Ingo Molnar 已提交
711 712 713
/*
 * Release the lock, slowpath:
 */
714
static inline void
715
__mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
I
Ingo Molnar 已提交
716
{
717
	struct mutex *lock = container_of(lock_count, struct mutex, count);
718
	unsigned long flags;
I
Ingo Molnar 已提交
719

720
	spin_lock_mutex(&lock->wait_lock, flags);
721
	mutex_release(&lock->dep_map, nested, _RET_IP_);
722
	debug_mutex_unlock(lock);
I
Ingo Molnar 已提交
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742

	/*
	 * some architectures leave the lock unlocked in the fastpath failure
	 * case, others need to leave it locked. In the later case we have to
	 * unlock it here
	 */
	if (__mutex_slowpath_needs_to_unlock())
		atomic_set(&lock->count, 1);

	if (!list_empty(&lock->wait_list)) {
		/* get the first entry from the wait-list: */
		struct mutex_waiter *waiter =
				list_entry(lock->wait_list.next,
					   struct mutex_waiter, list);

		debug_mutex_wake_waiter(lock, waiter);

		wake_up_process(waiter->task);
	}

743
	spin_unlock_mutex(&lock->wait_lock, flags);
I
Ingo Molnar 已提交
744 745
}

746 747 748
/*
 * Release the lock, slowpath:
 */
749
static __used noinline void
750 751
__mutex_unlock_slowpath(atomic_t *lock_count)
{
752
	__mutex_unlock_common_slowpath(lock_count, 1);
753 754
}

P
Peter Zijlstra 已提交
755
#ifndef CONFIG_DEBUG_LOCK_ALLOC
I
Ingo Molnar 已提交
756 757 758 759
/*
 * Here come the less common (and hence less performance-critical) APIs:
 * mutex_lock_interruptible() and mutex_trylock().
 */
760
static noinline int __sched
761
__mutex_lock_killable_slowpath(struct mutex *lock);
L
Liam R. Howlett 已提交
762

763
static noinline int __sched
764
__mutex_lock_interruptible_slowpath(struct mutex *lock);
I
Ingo Molnar 已提交
765

766 767
/**
 * mutex_lock_interruptible - acquire the mutex, interruptible
I
Ingo Molnar 已提交
768 769 770 771 772 773 774 775 776
 * @lock: the mutex to be acquired
 *
 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
 * been acquired or sleep until the mutex becomes available. If a
 * signal arrives while waiting for the lock then this function
 * returns -EINTR.
 *
 * This function is similar to (but not equivalent to) down_interruptible().
 */
777
int __sched mutex_lock_interruptible(struct mutex *lock)
I
Ingo Molnar 已提交
778
{
779 780
	int ret;

781
	might_sleep();
782 783
	ret =  __mutex_fastpath_lock_retval(&lock->count);
	if (likely(!ret)) {
784
		mutex_set_owner(lock);
785 786 787
		return 0;
	} else
		return __mutex_lock_interruptible_slowpath(lock);
I
Ingo Molnar 已提交
788 789 790 791
}

EXPORT_SYMBOL(mutex_lock_interruptible);

792
int __sched mutex_lock_killable(struct mutex *lock)
L
Liam R. Howlett 已提交
793
{
794 795
	int ret;

L
Liam R. Howlett 已提交
796
	might_sleep();
797 798
	ret = __mutex_fastpath_lock_retval(&lock->count);
	if (likely(!ret)) {
799
		mutex_set_owner(lock);
800 801 802
		return 0;
	} else
		return __mutex_lock_killable_slowpath(lock);
L
Liam R. Howlett 已提交
803 804 805
}
EXPORT_SYMBOL(mutex_lock_killable);

806
static __used noinline void __sched
P
Peter Zijlstra 已提交
807 808 809 810
__mutex_lock_slowpath(atomic_t *lock_count)
{
	struct mutex *lock = container_of(lock_count, struct mutex, count);

811
	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
812
			    NULL, _RET_IP_, NULL, 0);
P
Peter Zijlstra 已提交
813 814
}

815
static noinline int __sched
816
__mutex_lock_killable_slowpath(struct mutex *lock)
L
Liam R. Howlett 已提交
817
{
818
	return __mutex_lock_common(lock, TASK_KILLABLE, 0,
819
				   NULL, _RET_IP_, NULL, 0);
L
Liam R. Howlett 已提交
820 821
}

822
static noinline int __sched
823
__mutex_lock_interruptible_slowpath(struct mutex *lock)
I
Ingo Molnar 已提交
824
{
825
	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
826
				   NULL, _RET_IP_, NULL, 0);
827 828 829 830 831 832
}

static noinline int __sched
__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
	return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
833
				   NULL, _RET_IP_, ctx, 1);
I
Ingo Molnar 已提交
834
}
835 836 837 838 839 840

static noinline int __sched
__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
					    struct ww_acquire_ctx *ctx)
{
	return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
841
				   NULL, _RET_IP_, ctx, 1);
842 843
}

P
Peter Zijlstra 已提交
844
#endif
I
Ingo Molnar 已提交
845 846 847 848 849 850 851 852

/*
 * Spinlock based trylock, we take the spinlock and check whether we
 * can get the lock:
 */
static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
{
	struct mutex *lock = container_of(lock_count, struct mutex, count);
853
	unsigned long flags;
I
Ingo Molnar 已提交
854 855
	int prev;

856
	spin_lock_mutex(&lock->wait_lock, flags);
I
Ingo Molnar 已提交
857 858

	prev = atomic_xchg(&lock->count, -1);
859
	if (likely(prev == 1)) {
860
		mutex_set_owner(lock);
861 862
		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
	}
863

I
Ingo Molnar 已提交
864 865 866 867
	/* Set it back to 0 if there are no waiters: */
	if (likely(list_empty(&lock->wait_list)))
		atomic_set(&lock->count, 0);

868
	spin_unlock_mutex(&lock->wait_lock, flags);
I
Ingo Molnar 已提交
869 870 871 872

	return prev == 1;
}

873 874
/**
 * mutex_trylock - try to acquire the mutex, without waiting
I
Ingo Molnar 已提交
875 876 877 878 879 880
 * @lock: the mutex to be acquired
 *
 * Try to acquire the mutex atomically. Returns 1 if the mutex
 * has been acquired successfully, and 0 on contention.
 *
 * NOTE: this function follows the spin_trylock() convention, so
881
 * it is negated from the down_trylock() return values! Be careful
I
Ingo Molnar 已提交
882 883 884 885 886
 * about this when converting semaphore users to mutexes.
 *
 * This function must not be used in interrupt context. The
 * mutex must be released by the same task that acquired it.
 */
887
int __sched mutex_trylock(struct mutex *lock)
I
Ingo Molnar 已提交
888
{
889 890 891 892 893 894 895
	int ret;

	ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
	if (ret)
		mutex_set_owner(lock);

	return ret;
I
Ingo Molnar 已提交
896 897
}
EXPORT_SYMBOL(mutex_trylock);
898

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
#ifndef CONFIG_DEBUG_LOCK_ALLOC
int __sched
__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
	int ret;

	might_sleep();

	ret = __mutex_fastpath_lock_retval(&lock->base.count);

	if (likely(!ret)) {
		ww_mutex_set_context_fastpath(lock, ctx);
		mutex_set_owner(&lock->base);
	} else
		ret = __ww_mutex_lock_slowpath(lock, ctx);
	return ret;
}
EXPORT_SYMBOL(__ww_mutex_lock);

int __sched
__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
	int ret;

	might_sleep();

	ret = __mutex_fastpath_lock_retval(&lock->base.count);

	if (likely(!ret)) {
		ww_mutex_set_context_fastpath(lock, ctx);
		mutex_set_owner(&lock->base);
	} else
		ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
	return ret;
}
EXPORT_SYMBOL(__ww_mutex_lock_interruptible);

#endif

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
/**
 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
 * @cnt: the atomic which we are to dec
 * @lock: the mutex to return holding if we dec to 0
 *
 * return true and hold lock if we dec to 0, return false otherwise
 */
int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
{
	/* dec if we can't possibly hit 0 */
	if (atomic_add_unless(cnt, -1, 1))
		return 0;
	/* we might hit 0, so take the lock */
	mutex_lock(lock);
	if (!atomic_dec_and_test(cnt)) {
		/* when we actually did the dec, we didn't hit 0 */
		mutex_unlock(lock);
		return 0;
	}
	/* we hit 0, and we hold the lock */
	return 1;
}
EXPORT_SYMBOL(atomic_dec_and_mutex_lock);