idr.c 17.1 KB
Newer Older
1
#include <linux/bitmap.h>
M
Matthew Wilcox 已提交
2
#include <linux/bug.h>
3
#include <linux/export.h>
L
Linus Torvalds 已提交
4
#include <linux/idr.h>
5
#include <linux/slab.h>
6
#include <linux/spinlock.h>
L
Linus Torvalds 已提交
7

8
DEFINE_PER_CPU(struct ida_bitmap *, ida_bitmap);
9
static DEFINE_SPINLOCK(simple_ida_lock);
L
Linus Torvalds 已提交
10

M
Matthew Wilcox 已提交
11 12 13 14 15 16 17 18 19 20
/**
 * idr_alloc_u32() - Allocate an ID.
 * @idr: IDR handle.
 * @ptr: Pointer to be associated with the new ID.
 * @nextid: Pointer to an ID.
 * @max: The maximum ID to allocate (inclusive).
 * @gfp: Memory allocation flags.
 *
 * Allocates an unused ID in the range specified by @nextid and @max.
 * Note that @max is inclusive whereas the @end parameter to idr_alloc()
M
Matthew Wilcox 已提交
21 22 23
 * is exclusive.  The new ID is assigned to @nextid before the pointer
 * is inserted into the IDR, so if @nextid points into the object pointed
 * to by @ptr, a concurrent lookup will not find an uninitialised ID.
M
Matthew Wilcox 已提交
24 25 26 27 28 29 30 31 32 33 34 35
 *
 * The caller should provide their own locking to ensure that two
 * concurrent modifications to the IDR are not possible.  Read-only
 * accesses to the IDR may be done under the RCU read lock or may
 * exclude simultaneous writers.
 *
 * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
 * or -ENOSPC if no free IDs could be found.  If an error occurred,
 * @nextid is unchanged.
 */
int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
			unsigned long max, gfp_t gfp)
36
{
37
	struct radix_tree_iter iter;
38
	void __rcu **slot;
39

40 41
	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
		return -EINVAL;
M
Matthew Wilcox 已提交
42 43
	if (WARN_ON_ONCE(!(idr->idr_rt.gfp_mask & ROOT_IS_IDR)))
		idr->idr_rt.gfp_mask |= IDR_RT_MARKER;
44

M
Matthew Wilcox 已提交
45 46
	radix_tree_iter_init(&iter, *nextid);
	slot = idr_get_free(&idr->idr_rt, &iter, gfp, max);
47 48
	if (IS_ERR(slot))
		return PTR_ERR(slot);
49

M
Matthew Wilcox 已提交
50 51
	*nextid = iter.index;
	/* there is a memory barrier inside radix_tree_iter_replace() */
52 53
	radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
	radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
54 55

	return 0;
56
}
M
Matthew Wilcox 已提交
57
EXPORT_SYMBOL_GPL(idr_alloc_u32);
58

J
Jeff Layton 已提交
59
/**
M
Matthew Wilcox 已提交
60 61 62 63 64 65
 * idr_alloc() - Allocate an ID.
 * @idr: IDR handle.
 * @ptr: Pointer to be associated with the new ID.
 * @start: The minimum ID (inclusive).
 * @end: The maximum ID (exclusive).
 * @gfp: Memory allocation flags.
66
 *
M
Matthew Wilcox 已提交
67 68 69 70 71 72 73 74 75 76 77
 * Allocates an unused ID in the range specified by @start and @end.  If
 * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
 * callers to use @start + N as @end as long as N is within integer range.
 *
 * The caller should provide their own locking to ensure that two
 * concurrent modifications to the IDR are not possible.  Read-only
 * accesses to the IDR may be done under the RCU read lock or may
 * exclude simultaneous writers.
 *
 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
 * or -ENOSPC if no free IDs could be found.
A
Andrew Morton 已提交
78
 */
M
Matthew Wilcox 已提交
79
int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
L
Linus Torvalds 已提交
80
{
M
Matthew Wilcox 已提交
81 82 83 84 85 86 87 88 89
	u32 id = start;
	int ret;

	if (WARN_ON_ONCE(start < 0))
		return -EINVAL;

	ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
90

M
Matthew Wilcox 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
	return id;
}
EXPORT_SYMBOL_GPL(idr_alloc);

/**
 * idr_alloc_cyclic() - Allocate an ID cyclically.
 * @idr: IDR handle.
 * @ptr: Pointer to be associated with the new ID.
 * @start: The minimum ID (inclusive).
 * @end: The maximum ID (exclusive).
 * @gfp: Memory allocation flags.
 *
 * Allocates an unused ID in the range specified by @nextid and @end.  If
 * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
 * callers to use @start + N as @end as long as N is within integer range.
 * The search for an unused ID will start at the last ID allocated and will
 * wrap around to @start if no free IDs are found before reaching @end.
 *
 * The caller should provide their own locking to ensure that two
 * concurrent modifications to the IDR are not possible.  Read-only
 * accesses to the IDR may be done under the RCU read lock or may
 * exclude simultaneous writers.
 *
 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
 * or -ENOSPC if no free IDs could be found.
 */
int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
{
	u32 id = idr->idr_next;
	int err, max = end > 0 ? end - 1 : INT_MAX;
121

M
Matthew Wilcox 已提交
122 123
	if ((int)id < start)
		id = start;
L
Linus Torvalds 已提交
124

M
Matthew Wilcox 已提交
125 126 127 128 129 130 131
	err = idr_alloc_u32(idr, ptr, &id, max, gfp);
	if ((err == -ENOSPC) && (id > start)) {
		id = start;
		err = idr_alloc_u32(idr, ptr, &id, max, gfp);
	}
	if (err)
		return err;
L
Linus Torvalds 已提交
132

M
Matthew Wilcox 已提交
133
	idr->idr_next = id + 1;
134
	return id;
L
Linus Torvalds 已提交
135
}
136
EXPORT_SYMBOL(idr_alloc_cyclic);
L
Linus Torvalds 已提交
137

K
Kristian Hoegsberg 已提交
138
/**
139 140 141 142
 * idr_for_each() - Iterate through all stored pointers.
 * @idr: IDR handle.
 * @fn: Function to be called for each pointer.
 * @data: Data passed to callback function.
K
Kristian Hoegsberg 已提交
143
 *
144
 * The callback function will be called for each entry in @idr, passing
145
 * the ID, the entry and @data.
K
Kristian Hoegsberg 已提交
146
 *
147 148
 * If @fn returns anything other than %0, the iteration stops and that
 * value is returned from this function.
K
Kristian Hoegsberg 已提交
149
 *
150 151 152 153
 * idr_for_each() can be called concurrently with idr_alloc() and
 * idr_remove() if protected by RCU.  Newly added entries may not be
 * seen and deleted entries may be seen, but adding and removing entries
 * will not cause other entries to be skipped, nor spurious ones to be seen.
K
Kristian Hoegsberg 已提交
154
 */
155 156
int idr_for_each(const struct idr *idr,
		int (*fn)(int id, void *p, void *data), void *data)
K
Kristian Hoegsberg 已提交
157
{
158
	struct radix_tree_iter iter;
159
	void __rcu **slot;
K
Kristian Hoegsberg 已提交
160

161
	radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
162 163 164 165 166
		int ret;

		if (WARN_ON_ONCE(iter.index > INT_MAX))
			break;
		ret = fn(iter.index, rcu_dereference_raw(*slot), data);
167 168
		if (ret)
			return ret;
K
Kristian Hoegsberg 已提交
169 170
	}

171
	return 0;
K
Kristian Hoegsberg 已提交
172 173 174
}
EXPORT_SYMBOL(idr_for_each);

K
KAMEZAWA Hiroyuki 已提交
175
/**
176 177 178
 * idr_get_next() - Find next populated entry.
 * @idr: IDR handle.
 * @nextid: Pointer to an ID.
179 180 181 182 183
 *
 * Returns the next populated entry in the tree with an ID greater than
 * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
 * to the ID of the found value.  To use in a loop, the value pointed to by
 * nextid must be incremented by the user.
K
KAMEZAWA Hiroyuki 已提交
184
 */
185
void *idr_get_next(struct idr *idr, int *nextid)
K
KAMEZAWA Hiroyuki 已提交
186
{
187
	struct radix_tree_iter iter;
188
	void __rcu **slot;
K
KAMEZAWA Hiroyuki 已提交
189

190 191
	slot = radix_tree_iter_find(&idr->idr_rt, &iter, *nextid);
	if (!slot)
K
KAMEZAWA Hiroyuki 已提交
192 193
		return NULL;

194 195 196
	if (WARN_ON_ONCE(iter.index > INT_MAX))
		return NULL;

197 198
	*nextid = iter.index;
	return rcu_dereference_raw(*slot);
K
KAMEZAWA Hiroyuki 已提交
199
}
B
Ben Hutchings 已提交
200
EXPORT_SYMBOL(idr_get_next);
K
KAMEZAWA Hiroyuki 已提交
201

202 203 204 205 206 207 208 209 210 211 212
/**
 * idr_get_next_ul() - Find next populated entry.
 * @idr: IDR handle.
 * @nextid: Pointer to an ID.
 *
 * Returns the next populated entry in the tree with an ID greater than
 * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
 * to the ID of the found value.  To use in a loop, the value pointed to by
 * nextid must be incremented by the user.
 */
void *idr_get_next_ul(struct idr *idr, unsigned long *nextid)
213 214 215 216 217 218 219 220 221 222 223
{
	struct radix_tree_iter iter;
	void __rcu **slot;

	slot = radix_tree_iter_find(&idr->idr_rt, &iter, *nextid);
	if (!slot)
		return NULL;

	*nextid = iter.index;
	return rcu_dereference_raw(*slot);
}
224
EXPORT_SYMBOL(idr_get_next_ul);
225

J
Jeff Mahoney 已提交
226
/**
M
Matthew Wilcox 已提交
227 228 229 230
 * idr_replace() - replace pointer for given ID.
 * @idr: IDR handle.
 * @ptr: New pointer to associate with the ID.
 * @id: ID to change.
J
Jeff Mahoney 已提交
231
 *
232 233 234 235
 * Replace the pointer registered with an ID and return the old value.
 * This function can be called under the RCU read lock concurrently with
 * idr_alloc() and idr_remove() (as long as the ID being removed is not
 * the one being replaced!).
J
Jeff Mahoney 已提交
236
 *
237
 * Returns: the old value on success.  %-ENOENT indicates that @id was not
238
 * found.  %-EINVAL indicates that @ptr was not valid.
J
Jeff Mahoney 已提交
239
 */
240
void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
J
Jeff Mahoney 已提交
241
{
242
	struct radix_tree_node *node;
243
	void __rcu **slot = NULL;
244
	void *entry;
J
Jeff Mahoney 已提交
245

246
	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
247 248
		return ERR_PTR(-EINVAL);

249 250
	entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
	if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
J
Jeff Mahoney 已提交
251 252
		return ERR_PTR(-ENOENT);

253
	__radix_tree_replace(&idr->idr_rt, node, slot, ptr, NULL);
J
Jeff Mahoney 已提交
254

255
	return entry;
J
Jeff Mahoney 已提交
256
}
257
EXPORT_SYMBOL(idr_replace);
J
Jeff Mahoney 已提交
258

259 260
/**
 * DOC: IDA description
261
 *
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
 * The IDA is an ID allocator which does not provide the ability to
 * associate an ID with a pointer.  As such, it only needs to store one
 * bit per ID, and so is more space efficient than an IDR.  To use an IDA,
 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
 * then initialise it using ida_init()).  To allocate a new ID, call
 * ida_simple_get().  To free an ID, call ida_simple_remove().
 *
 * If you have more complex locking requirements, use a loop around
 * ida_pre_get() and ida_get_new() to allocate a new ID.  Then use
 * ida_remove() to free an ID.  You must make sure that ida_get_new() and
 * ida_remove() cannot be called at the same time as each other for the
 * same IDA.
 *
 * You can also use ida_get_new_above() if you need an ID to be allocated
 * above a particular number.  ida_destroy() can be used to dispose of an
 * IDA without needing to free the individual IDs in it.  You can use
 * ida_is_empty() to find out whether the IDA has any IDs currently allocated.
 *
 * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward
 * limitation, it should be quite straightforward to raise the maximum.
282 283
 */

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
/*
 * Developer's notes:
 *
 * The IDA uses the functionality provided by the IDR & radix tree to store
 * bitmaps in each entry.  The IDR_FREE tag means there is at least one bit
 * free, unlike the IDR where it means at least one entry is free.
 *
 * I considered telling the radix tree that each slot is an order-10 node
 * and storing the bit numbers in the radix tree, but the radix tree can't
 * allow a single multiorder entry at index 0, which would significantly
 * increase memory consumption for the IDA.  So instead we divide the index
 * by the number of bits in the leaf bitmap before doing a radix tree lookup.
 *
 * As an optimisation, if there are only a few low bits set in any given
 * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional
 * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits
 * directly in the entry.  By being really tricksy, we could store
 * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising
 * for 0-3 allocated IDs.
 *
 * We allow the radix tree 'exceptional' count to get out of date.  Nothing
 * in the IDA nor the radix tree code checks it.  If it becomes important
 * to maintain an accurate exceptional count, switch the rcu_assign_pointer()
 * calls to radix_tree_iter_replace() which will correct the exceptional
 * count.
 *
 * The IDA always requires a lock to alloc/free.  If we add a 'test_bit'
 * equivalent, it will still need locking.  Going to RCU lookup would require
 * using RCU to free bitmaps, and that's not trivial without embedding an
 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
 * bitmap, which is excessive.
 */

M
Matthew Wilcox 已提交
317
#define IDA_MAX (0x80000000U / IDA_BITMAP_BITS - 1)
318

319 320
/**
 * ida_get_new_above - allocate new ID above or equal to a start id
321 322 323
 * @ida: ida handle
 * @start: id to start search at
 * @id: pointer to the allocated handle
324
 *
325 326 327 328 329
 * Allocate new ID above or equal to @start.  It should be called
 * with any required locks to ensure that concurrent calls to
 * ida_get_new_above() / ida_get_new() / ida_remove() are not allowed.
 * Consider using ida_simple_get() if you do not have complex locking
 * requirements.
330
 *
331
 * If memory is required, it will return %-EAGAIN, you should unlock
332
 * and go back to the ida_pre_get() call.  If the ida is full, it will
333
 * return %-ENOSPC.  On success, it will return 0.
334
 *
335
 * @id returns a value in the range @start ... %0x7fffffff.
336
 */
337
int ida_get_new_above(struct ida *ida, int start, int *id)
338
{
339
	struct radix_tree_root *root = &ida->ida_rt;
340
	void __rcu **slot;
341
	struct radix_tree_iter iter;
342
	struct ida_bitmap *bitmap;
343
	unsigned long index;
344
	unsigned bit, ebit;
345 346 347 348
	int new;

	index = start / IDA_BITMAP_BITS;
	bit = start % IDA_BITMAP_BITS;
349
	ebit = bit + RADIX_TREE_EXCEPTIONAL_SHIFT;
350 351 352 353 354 355 356 357 358 359 360 361 362 363

	slot = radix_tree_iter_init(&iter, index);
	for (;;) {
		if (slot)
			slot = radix_tree_next_slot(slot, &iter,
						RADIX_TREE_ITER_TAGGED);
		if (!slot) {
			slot = idr_get_free(root, &iter, GFP_NOWAIT, IDA_MAX);
			if (IS_ERR(slot)) {
				if (slot == ERR_PTR(-ENOMEM))
					return -EAGAIN;
				return PTR_ERR(slot);
			}
		}
364
		if (iter.index > index) {
365
			bit = 0;
366 367
			ebit = RADIX_TREE_EXCEPTIONAL_SHIFT;
		}
368 369
		new = iter.index * IDA_BITMAP_BITS;
		bitmap = rcu_dereference_raw(*slot);
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
		if (radix_tree_exception(bitmap)) {
			unsigned long tmp = (unsigned long)bitmap;
			ebit = find_next_zero_bit(&tmp, BITS_PER_LONG, ebit);
			if (ebit < BITS_PER_LONG) {
				tmp |= 1UL << ebit;
				rcu_assign_pointer(*slot, (void *)tmp);
				*id = new + ebit - RADIX_TREE_EXCEPTIONAL_SHIFT;
				return 0;
			}
			bitmap = this_cpu_xchg(ida_bitmap, NULL);
			if (!bitmap)
				return -EAGAIN;
			memset(bitmap, 0, sizeof(*bitmap));
			bitmap->bitmap[0] = tmp >> RADIX_TREE_EXCEPTIONAL_SHIFT;
			rcu_assign_pointer(*slot, bitmap);
		}

387 388 389 390 391 392 393 394
		if (bitmap) {
			bit = find_next_zero_bit(bitmap->bitmap,
							IDA_BITMAP_BITS, bit);
			new += bit;
			if (new < 0)
				return -ENOSPC;
			if (bit == IDA_BITMAP_BITS)
				continue;
395

396 397 398 399 400 401 402 403
			__set_bit(bit, bitmap->bitmap);
			if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
				radix_tree_iter_tag_clear(root, &iter,
								IDR_FREE);
		} else {
			new += bit;
			if (new < 0)
				return -ENOSPC;
404 405 406 407 408 409 410 411
			if (ebit < BITS_PER_LONG) {
				bitmap = (void *)((1UL << ebit) |
						RADIX_TREE_EXCEPTIONAL_ENTRY);
				radix_tree_iter_replace(root, &iter, slot,
						bitmap);
				*id = new;
				return 0;
			}
412
			bitmap = this_cpu_xchg(ida_bitmap, NULL);
413 414 415 416 417 418
			if (!bitmap)
				return -EAGAIN;
			memset(bitmap, 0, sizeof(*bitmap));
			__set_bit(bit, bitmap->bitmap);
			radix_tree_iter_replace(root, &iter, slot, bitmap);
		}
419

420 421
		*id = new;
		return 0;
422 423 424 425 426
	}
}
EXPORT_SYMBOL(ida_get_new_above);

/**
427 428 429 430 431
 * ida_remove - Free the given ID
 * @ida: ida handle
 * @id: ID to free
 *
 * This function should not be called at the same time as ida_get_new_above().
432 433 434
 */
void ida_remove(struct ida *ida, int id)
{
435 436
	unsigned long index = id / IDA_BITMAP_BITS;
	unsigned offset = id % IDA_BITMAP_BITS;
437
	struct ida_bitmap *bitmap;
438
	unsigned long *btmp;
439
	struct radix_tree_iter iter;
440
	void __rcu **slot;
441

442 443
	slot = radix_tree_iter_lookup(&ida->ida_rt, &iter, index);
	if (!slot)
444 445
		goto err;

446
	bitmap = rcu_dereference_raw(*slot);
447 448 449 450 451 452 453 454 455
	if (radix_tree_exception(bitmap)) {
		btmp = (unsigned long *)slot;
		offset += RADIX_TREE_EXCEPTIONAL_SHIFT;
		if (offset >= BITS_PER_LONG)
			goto err;
	} else {
		btmp = bitmap->bitmap;
	}
	if (!test_bit(offset, btmp))
456 457
		goto err;

458
	__clear_bit(offset, btmp);
459
	radix_tree_iter_tag_set(&ida->ida_rt, &iter, IDR_FREE);
460 461 462 463 464
	if (radix_tree_exception(bitmap)) {
		if (rcu_dereference_raw(*slot) ==
					(void *)RADIX_TREE_EXCEPTIONAL_ENTRY)
			radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
	} else if (bitmap_empty(btmp, IDA_BITMAP_BITS)) {
465 466
		kfree(bitmap);
		radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
467 468 469
	}
	return;
 err:
470
	WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
471 472 473 474
}
EXPORT_SYMBOL(ida_remove);

/**
475 476 477 478 479 480 481
 * ida_destroy - Free the contents of an ida
 * @ida: ida handle
 *
 * Calling this function releases all resources associated with an IDA.  When
 * this call returns, the IDA is empty and can be reused or freed.  The caller
 * should not allow ida_remove() or ida_get_new_above() to be called at the
 * same time.
482 483 484
 */
void ida_destroy(struct ida *ida)
{
485
	struct radix_tree_iter iter;
486
	void __rcu **slot;
487 488 489

	radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) {
		struct ida_bitmap *bitmap = rcu_dereference_raw(*slot);
490 491
		if (!radix_tree_exception(bitmap))
			kfree(bitmap);
492 493
		radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
	}
494 495 496
}
EXPORT_SYMBOL(ida_destroy);

497 498 499 500 501 502 503 504 505 506
/**
 * ida_simple_get - get a new id.
 * @ida: the (initialized) ida.
 * @start: the minimum id (inclusive, < 0x8000000)
 * @end: the maximum id (exclusive, < 0x8000000 or 0)
 * @gfp_mask: memory allocation flags
 *
 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
 * On memory allocation failure, returns -ENOMEM.
 *
507 508 509
 * Compared to ida_get_new_above() this function does its own locking, and
 * should be used unless there are special requirements.
 *
510 511 512 513 514 515 516
 * Use ida_simple_remove() to get rid of an id.
 */
int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
		   gfp_t gfp_mask)
{
	int ret, id;
	unsigned int max;
517
	unsigned long flags;
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532

	BUG_ON((int)start < 0);
	BUG_ON((int)end < 0);

	if (end == 0)
		max = 0x80000000;
	else {
		BUG_ON(end < start);
		max = end - 1;
	}

again:
	if (!ida_pre_get(ida, gfp_mask))
		return -ENOMEM;

533
	spin_lock_irqsave(&simple_ida_lock, flags);
534 535 536 537 538 539 540 541 542
	ret = ida_get_new_above(ida, start, &id);
	if (!ret) {
		if (id > max) {
			ida_remove(ida, id);
			ret = -ENOSPC;
		} else {
			ret = id;
		}
	}
543
	spin_unlock_irqrestore(&simple_ida_lock, flags);
544 545 546 547 548 549 550 551 552 553 554 555

	if (unlikely(ret == -EAGAIN))
		goto again;

	return ret;
}
EXPORT_SYMBOL(ida_simple_get);

/**
 * ida_simple_remove - remove an allocated id.
 * @ida: the (initialized) ida.
 * @id: the id returned by ida_simple_get.
556 557 558 559 560
 *
 * Use to release an id allocated with ida_simple_get().
 *
 * Compared to ida_remove() this function does its own locking, and should be
 * used unless there are special requirements.
561 562 563
 */
void ida_simple_remove(struct ida *ida, unsigned int id)
{
564 565
	unsigned long flags;

566
	BUG_ON((int)id < 0);
567
	spin_lock_irqsave(&simple_ida_lock, flags);
568
	ida_remove(ida, id);
569
	spin_unlock_irqrestore(&simple_ida_lock, flags);
570 571
}
EXPORT_SYMBOL(ida_simple_remove);