idr.c 14.2 KB
Newer Older
1
#include <linux/bitmap.h>
2
#include <linux/export.h>
L
Linus Torvalds 已提交
3
#include <linux/idr.h>
4
#include <linux/slab.h>
5
#include <linux/spinlock.h>
L
Linus Torvalds 已提交
6

7
DEFINE_PER_CPU(struct ida_bitmap *, ida_bitmap);
8
static DEFINE_SPINLOCK(simple_ida_lock);
L
Linus Torvalds 已提交
9

10 11 12
int idr_alloc_cmn(struct idr *idr, void *ptr, unsigned long *index,
		  unsigned long start, unsigned long end, gfp_t gfp,
		  bool ext)
13
{
14
	struct radix_tree_iter iter;
15
	void __rcu **slot;
16

17 18
	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
		return -EINVAL;
19

20
	radix_tree_iter_init(&iter, start);
21 22 23 24
	if (ext)
		slot = idr_get_free_ext(&idr->idr_rt, &iter, gfp, end);
	else
		slot = idr_get_free(&idr->idr_rt, &iter, gfp, end);
25 26
	if (IS_ERR(slot))
		return PTR_ERR(slot);
27

28 29
	radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
	radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
30 31 32 33

	if (index)
		*index = iter.index;
	return 0;
34
}
35
EXPORT_SYMBOL_GPL(idr_alloc_cmn);
36

J
Jeff Layton 已提交
37 38
/**
 * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion
39
 * @idr: idr handle
J
Jeff Layton 已提交
40 41
 * @ptr: pointer to be associated with the new id
 * @start: the minimum id (inclusive)
42 43
 * @end: the maximum id (exclusive)
 * @gfp: memory allocation flags
44
 *
45 46 47
 * Allocates an ID larger than the last ID allocated if one is available.
 * If not, it will attempt to allocate the smallest ID that is larger or
 * equal to @start.
A
Andrew Morton 已提交
48
 */
49
int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
L
Linus Torvalds 已提交
50
{
51
	int id, curr = idr->idr_next;
L
Linus Torvalds 已提交
52

53 54
	if (curr < start)
		curr = start;
55

56 57 58
	id = idr_alloc(idr, ptr, curr, end, gfp);
	if ((id == -ENOSPC) && (curr > start))
		id = idr_alloc(idr, ptr, start, curr, gfp);
L
Linus Torvalds 已提交
59

60 61
	if (id >= 0)
		idr->idr_next = id + 1U;
L
Linus Torvalds 已提交
62

63
	return id;
L
Linus Torvalds 已提交
64
}
65
EXPORT_SYMBOL(idr_alloc_cyclic);
L
Linus Torvalds 已提交
66

K
Kristian Hoegsberg 已提交
67 68
/**
 * idr_for_each - iterate through all stored pointers
69
 * @idr: idr handle
K
Kristian Hoegsberg 已提交
70
 * @fn: function to be called for each pointer
71
 * @data: data passed to callback function
K
Kristian Hoegsberg 已提交
72
 *
73 74
 * The callback function will be called for each entry in @idr, passing
 * the id, the pointer and the data pointer passed to this function.
K
Kristian Hoegsberg 已提交
75
 *
76 77
 * If @fn returns anything other than %0, the iteration stops and that
 * value is returned from this function.
K
Kristian Hoegsberg 已提交
78
 *
79 80 81 82
 * idr_for_each() can be called concurrently with idr_alloc() and
 * idr_remove() if protected by RCU.  Newly added entries may not be
 * seen and deleted entries may be seen, but adding and removing entries
 * will not cause other entries to be skipped, nor spurious ones to be seen.
K
Kristian Hoegsberg 已提交
83
 */
84 85
int idr_for_each(const struct idr *idr,
		int (*fn)(int id, void *p, void *data), void *data)
K
Kristian Hoegsberg 已提交
86
{
87
	struct radix_tree_iter iter;
88
	void __rcu **slot;
K
Kristian Hoegsberg 已提交
89

90 91 92 93
	radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
		int ret = fn(iter.index, rcu_dereference_raw(*slot), data);
		if (ret)
			return ret;
K
Kristian Hoegsberg 已提交
94 95
	}

96
	return 0;
K
Kristian Hoegsberg 已提交
97 98 99
}
EXPORT_SYMBOL(idr_for_each);

K
KAMEZAWA Hiroyuki 已提交
100
/**
101 102 103 104 105 106 107 108
 * idr_get_next - Find next populated entry
 * @idr: idr handle
 * @nextid: Pointer to lowest possible ID to return
 *
 * Returns the next populated entry in the tree with an ID greater than
 * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
 * to the ID of the found value.  To use in a loop, the value pointed to by
 * nextid must be incremented by the user.
K
KAMEZAWA Hiroyuki 已提交
109
 */
110
void *idr_get_next(struct idr *idr, int *nextid)
K
KAMEZAWA Hiroyuki 已提交
111
{
112
	struct radix_tree_iter iter;
113
	void __rcu **slot;
K
KAMEZAWA Hiroyuki 已提交
114

115 116
	slot = radix_tree_iter_find(&idr->idr_rt, &iter, *nextid);
	if (!slot)
K
KAMEZAWA Hiroyuki 已提交
117 118
		return NULL;

119 120
	*nextid = iter.index;
	return rcu_dereference_raw(*slot);
K
KAMEZAWA Hiroyuki 已提交
121
}
B
Ben Hutchings 已提交
122
EXPORT_SYMBOL(idr_get_next);
K
KAMEZAWA Hiroyuki 已提交
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137
void *idr_get_next_ext(struct idr *idr, unsigned long *nextid)
{
	struct radix_tree_iter iter;
	void __rcu **slot;

	slot = radix_tree_iter_find(&idr->idr_rt, &iter, *nextid);
	if (!slot)
		return NULL;

	*nextid = iter.index;
	return rcu_dereference_raw(*slot);
}
EXPORT_SYMBOL(idr_get_next_ext);

J
Jeff Mahoney 已提交
138 139
/**
 * idr_replace - replace pointer for given id
140 141 142
 * @idr: idr handle
 * @ptr: New pointer to associate with the ID
 * @id: Lookup key
J
Jeff Mahoney 已提交
143
 *
144 145 146 147
 * Replace the pointer registered with an ID and return the old value.
 * This function can be called under the RCU read lock concurrently with
 * idr_alloc() and idr_remove() (as long as the ID being removed is not
 * the one being replaced!).
J
Jeff Mahoney 已提交
148
 *
149 150
 * Returns: the old value on success.  %-ENOENT indicates that @id was not
 * found.  %-EINVAL indicates that @id or @ptr were not valid.
J
Jeff Mahoney 已提交
151
 */
152
void *idr_replace(struct idr *idr, void *ptr, int id)
153
{
154
	if (id < 0)
155 156 157 158 159 160 161
		return ERR_PTR(-EINVAL);

	return idr_replace_ext(idr, ptr, id);
}
EXPORT_SYMBOL(idr_replace);

void *idr_replace_ext(struct idr *idr, void *ptr, unsigned long id)
J
Jeff Mahoney 已提交
162
{
163
	struct radix_tree_node *node;
164
	void __rcu **slot = NULL;
165
	void *entry;
J
Jeff Mahoney 已提交
166

167
	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
168 169
		return ERR_PTR(-EINVAL);

170 171
	entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
	if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
J
Jeff Mahoney 已提交
172 173
		return ERR_PTR(-ENOENT);

174
	__radix_tree_replace(&idr->idr_rt, node, slot, ptr, NULL, NULL);
J
Jeff Mahoney 已提交
175

176
	return entry;
J
Jeff Mahoney 已提交
177
}
178
EXPORT_SYMBOL(idr_replace_ext);
J
Jeff Mahoney 已提交
179

180 181
/**
 * DOC: IDA description
182
 *
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
 * The IDA is an ID allocator which does not provide the ability to
 * associate an ID with a pointer.  As such, it only needs to store one
 * bit per ID, and so is more space efficient than an IDR.  To use an IDA,
 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
 * then initialise it using ida_init()).  To allocate a new ID, call
 * ida_simple_get().  To free an ID, call ida_simple_remove().
 *
 * If you have more complex locking requirements, use a loop around
 * ida_pre_get() and ida_get_new() to allocate a new ID.  Then use
 * ida_remove() to free an ID.  You must make sure that ida_get_new() and
 * ida_remove() cannot be called at the same time as each other for the
 * same IDA.
 *
 * You can also use ida_get_new_above() if you need an ID to be allocated
 * above a particular number.  ida_destroy() can be used to dispose of an
 * IDA without needing to free the individual IDs in it.  You can use
 * ida_is_empty() to find out whether the IDA has any IDs currently allocated.
 *
 * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward
 * limitation, it should be quite straightforward to raise the maximum.
203 204
 */

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * Developer's notes:
 *
 * The IDA uses the functionality provided by the IDR & radix tree to store
 * bitmaps in each entry.  The IDR_FREE tag means there is at least one bit
 * free, unlike the IDR where it means at least one entry is free.
 *
 * I considered telling the radix tree that each slot is an order-10 node
 * and storing the bit numbers in the radix tree, but the radix tree can't
 * allow a single multiorder entry at index 0, which would significantly
 * increase memory consumption for the IDA.  So instead we divide the index
 * by the number of bits in the leaf bitmap before doing a radix tree lookup.
 *
 * As an optimisation, if there are only a few low bits set in any given
 * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional
 * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits
 * directly in the entry.  By being really tricksy, we could store
 * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising
 * for 0-3 allocated IDs.
 *
 * We allow the radix tree 'exceptional' count to get out of date.  Nothing
 * in the IDA nor the radix tree code checks it.  If it becomes important
 * to maintain an accurate exceptional count, switch the rcu_assign_pointer()
 * calls to radix_tree_iter_replace() which will correct the exceptional
 * count.
 *
 * The IDA always requires a lock to alloc/free.  If we add a 'test_bit'
 * equivalent, it will still need locking.  Going to RCU lookup would require
 * using RCU to free bitmaps, and that's not trivial without embedding an
 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
 * bitmap, which is excessive.
 */

238 239
#define IDA_MAX (0x80000000U / IDA_BITMAP_BITS)

240 241
/**
 * ida_get_new_above - allocate new ID above or equal to a start id
242 243 244
 * @ida: ida handle
 * @start: id to start search at
 * @id: pointer to the allocated handle
245
 *
246 247 248 249 250
 * Allocate new ID above or equal to @start.  It should be called
 * with any required locks to ensure that concurrent calls to
 * ida_get_new_above() / ida_get_new() / ida_remove() are not allowed.
 * Consider using ida_simple_get() if you do not have complex locking
 * requirements.
251
 *
252
 * If memory is required, it will return %-EAGAIN, you should unlock
253
 * and go back to the ida_pre_get() call.  If the ida is full, it will
254
 * return %-ENOSPC.  On success, it will return 0.
255
 *
256
 * @id returns a value in the range @start ... %0x7fffffff.
257
 */
258
int ida_get_new_above(struct ida *ida, int start, int *id)
259
{
260
	struct radix_tree_root *root = &ida->ida_rt;
261
	void __rcu **slot;
262
	struct radix_tree_iter iter;
263
	struct ida_bitmap *bitmap;
264
	unsigned long index;
265
	unsigned bit, ebit;
266 267 268 269
	int new;

	index = start / IDA_BITMAP_BITS;
	bit = start % IDA_BITMAP_BITS;
270
	ebit = bit + RADIX_TREE_EXCEPTIONAL_SHIFT;
271 272 273 274 275 276 277 278 279 280 281 282 283 284

	slot = radix_tree_iter_init(&iter, index);
	for (;;) {
		if (slot)
			slot = radix_tree_next_slot(slot, &iter,
						RADIX_TREE_ITER_TAGGED);
		if (!slot) {
			slot = idr_get_free(root, &iter, GFP_NOWAIT, IDA_MAX);
			if (IS_ERR(slot)) {
				if (slot == ERR_PTR(-ENOMEM))
					return -EAGAIN;
				return PTR_ERR(slot);
			}
		}
285
		if (iter.index > index) {
286
			bit = 0;
287 288
			ebit = RADIX_TREE_EXCEPTIONAL_SHIFT;
		}
289 290
		new = iter.index * IDA_BITMAP_BITS;
		bitmap = rcu_dereference_raw(*slot);
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
		if (radix_tree_exception(bitmap)) {
			unsigned long tmp = (unsigned long)bitmap;
			ebit = find_next_zero_bit(&tmp, BITS_PER_LONG, ebit);
			if (ebit < BITS_PER_LONG) {
				tmp |= 1UL << ebit;
				rcu_assign_pointer(*slot, (void *)tmp);
				*id = new + ebit - RADIX_TREE_EXCEPTIONAL_SHIFT;
				return 0;
			}
			bitmap = this_cpu_xchg(ida_bitmap, NULL);
			if (!bitmap)
				return -EAGAIN;
			memset(bitmap, 0, sizeof(*bitmap));
			bitmap->bitmap[0] = tmp >> RADIX_TREE_EXCEPTIONAL_SHIFT;
			rcu_assign_pointer(*slot, bitmap);
		}

308 309 310 311 312 313 314 315
		if (bitmap) {
			bit = find_next_zero_bit(bitmap->bitmap,
							IDA_BITMAP_BITS, bit);
			new += bit;
			if (new < 0)
				return -ENOSPC;
			if (bit == IDA_BITMAP_BITS)
				continue;
316

317 318 319 320 321 322 323 324
			__set_bit(bit, bitmap->bitmap);
			if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
				radix_tree_iter_tag_clear(root, &iter,
								IDR_FREE);
		} else {
			new += bit;
			if (new < 0)
				return -ENOSPC;
325 326 327 328 329 330 331 332
			if (ebit < BITS_PER_LONG) {
				bitmap = (void *)((1UL << ebit) |
						RADIX_TREE_EXCEPTIONAL_ENTRY);
				radix_tree_iter_replace(root, &iter, slot,
						bitmap);
				*id = new;
				return 0;
			}
333
			bitmap = this_cpu_xchg(ida_bitmap, NULL);
334 335 336 337 338 339
			if (!bitmap)
				return -EAGAIN;
			memset(bitmap, 0, sizeof(*bitmap));
			__set_bit(bit, bitmap->bitmap);
			radix_tree_iter_replace(root, &iter, slot, bitmap);
		}
340

341 342
		*id = new;
		return 0;
343 344 345 346 347
	}
}
EXPORT_SYMBOL(ida_get_new_above);

/**
348 349 350 351 352
 * ida_remove - Free the given ID
 * @ida: ida handle
 * @id: ID to free
 *
 * This function should not be called at the same time as ida_get_new_above().
353 354 355
 */
void ida_remove(struct ida *ida, int id)
{
356 357
	unsigned long index = id / IDA_BITMAP_BITS;
	unsigned offset = id % IDA_BITMAP_BITS;
358
	struct ida_bitmap *bitmap;
359
	unsigned long *btmp;
360
	struct radix_tree_iter iter;
361
	void __rcu **slot;
362

363 364
	slot = radix_tree_iter_lookup(&ida->ida_rt, &iter, index);
	if (!slot)
365 366
		goto err;

367
	bitmap = rcu_dereference_raw(*slot);
368 369 370 371 372 373 374 375 376
	if (radix_tree_exception(bitmap)) {
		btmp = (unsigned long *)slot;
		offset += RADIX_TREE_EXCEPTIONAL_SHIFT;
		if (offset >= BITS_PER_LONG)
			goto err;
	} else {
		btmp = bitmap->bitmap;
	}
	if (!test_bit(offset, btmp))
377 378
		goto err;

379
	__clear_bit(offset, btmp);
380
	radix_tree_iter_tag_set(&ida->ida_rt, &iter, IDR_FREE);
381 382 383 384 385
	if (radix_tree_exception(bitmap)) {
		if (rcu_dereference_raw(*slot) ==
					(void *)RADIX_TREE_EXCEPTIONAL_ENTRY)
			radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
	} else if (bitmap_empty(btmp, IDA_BITMAP_BITS)) {
386 387
		kfree(bitmap);
		radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
388 389 390
	}
	return;
 err:
391
	WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
392 393 394 395
}
EXPORT_SYMBOL(ida_remove);

/**
396 397 398 399 400 401 402
 * ida_destroy - Free the contents of an ida
 * @ida: ida handle
 *
 * Calling this function releases all resources associated with an IDA.  When
 * this call returns, the IDA is empty and can be reused or freed.  The caller
 * should not allow ida_remove() or ida_get_new_above() to be called at the
 * same time.
403 404 405
 */
void ida_destroy(struct ida *ida)
{
406
	struct radix_tree_iter iter;
407
	void __rcu **slot;
408 409 410

	radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) {
		struct ida_bitmap *bitmap = rcu_dereference_raw(*slot);
411 412
		if (!radix_tree_exception(bitmap))
			kfree(bitmap);
413 414
		radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
	}
415 416 417
}
EXPORT_SYMBOL(ida_destroy);

418 419 420 421 422 423 424 425 426 427
/**
 * ida_simple_get - get a new id.
 * @ida: the (initialized) ida.
 * @start: the minimum id (inclusive, < 0x8000000)
 * @end: the maximum id (exclusive, < 0x8000000 or 0)
 * @gfp_mask: memory allocation flags
 *
 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
 * On memory allocation failure, returns -ENOMEM.
 *
428 429 430
 * Compared to ida_get_new_above() this function does its own locking, and
 * should be used unless there are special requirements.
 *
431 432 433 434 435 436 437
 * Use ida_simple_remove() to get rid of an id.
 */
int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
		   gfp_t gfp_mask)
{
	int ret, id;
	unsigned int max;
438
	unsigned long flags;
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453

	BUG_ON((int)start < 0);
	BUG_ON((int)end < 0);

	if (end == 0)
		max = 0x80000000;
	else {
		BUG_ON(end < start);
		max = end - 1;
	}

again:
	if (!ida_pre_get(ida, gfp_mask))
		return -ENOMEM;

454
	spin_lock_irqsave(&simple_ida_lock, flags);
455 456 457 458 459 460 461 462 463
	ret = ida_get_new_above(ida, start, &id);
	if (!ret) {
		if (id > max) {
			ida_remove(ida, id);
			ret = -ENOSPC;
		} else {
			ret = id;
		}
	}
464
	spin_unlock_irqrestore(&simple_ida_lock, flags);
465 466 467 468 469 470 471 472 473 474 475 476

	if (unlikely(ret == -EAGAIN))
		goto again;

	return ret;
}
EXPORT_SYMBOL(ida_simple_get);

/**
 * ida_simple_remove - remove an allocated id.
 * @ida: the (initialized) ida.
 * @id: the id returned by ida_simple_get.
477 478 479 480 481
 *
 * Use to release an id allocated with ida_simple_get().
 *
 * Compared to ida_remove() this function does its own locking, and should be
 * used unless there are special requirements.
482 483 484
 */
void ida_simple_remove(struct ida *ida, unsigned int id)
{
485 486
	unsigned long flags;

487
	BUG_ON((int)id < 0);
488
	spin_lock_irqsave(&simple_ida_lock, flags);
489
	ida_remove(ida, id);
490
	spin_unlock_irqrestore(&simple_ida_lock, flags);
491 492
}
EXPORT_SYMBOL(ida_simple_remove);