futex.c 68.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/module.h>
59
#include <linux/magic.h>
60 61 62
#include <linux/pid.h>
#include <linux/nsproxy.h>

63
#include <asm/futex.h>
L
Linus Torvalds 已提交
64

65 66
#include "rtmutex_common.h"

67 68
int __read_mostly futex_cmpxchg_enabled;

L
Linus Torvalds 已提交
69 70
#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

92 93 94 95 96 97 98 99 100 101 102
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
L
Linus Torvalds 已提交
103 104 105
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
106
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
L
Linus Torvalds 已提交
107
 * The order of wakup is always to make the first condition true, then
108 109 110 111
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
112 113
 */
struct futex_q {
P
Pierre Peiffer 已提交
114
	struct plist_node list;
L
Linus Torvalds 已提交
115

116
	struct task_struct *task;
L
Linus Torvalds 已提交
117 118
	spinlock_t *lock_ptr;
	union futex_key key;
119
	struct futex_pi_state *pi_state;
120
	struct rt_mutex_waiter *rt_waiter;
121
	union futex_key *requeue_pi_key;
122
	u32 bitset;
L
Linus Torvalds 已提交
123 124 125
};

/*
D
Darren Hart 已提交
126 127 128
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
129 130
 */
struct futex_hash_bucket {
P
Pierre Peiffer 已提交
131 132
	spinlock_t lock;
	struct plist_head chain;
L
Linus Torvalds 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
};

static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];

/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
153 154
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
155 156 157 158
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		atomic_inc(&key->shared.inode->i_count);
		break;
	case FUT_OFF_MMSHARED:
		atomic_inc(&key->private.mm->mm_count);
		break;
	}
}

/*
 * Drop a reference to the resource addressed by a key.
 * The hash bucket spinlock must not be held.
 */
static void drop_futex_key_refs(union futex_key *key)
{
185 186 187
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
188
		return;
189
	}
190 191 192 193 194 195 196 197 198 199 200

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
201
/**
202 203 204 205 206 207
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 * 		VERIFY_WRITE)
E
Eric Dumazet 已提交
208 209 210
 *
 * Returns a negative error code or 0
 * The key words are stored in *key on success.
L
Linus Torvalds 已提交
211
 *
212
 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
L
Linus Torvalds 已提交
213 214 215
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
216
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
217
 */
218 219
static int
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
L
Linus Torvalds 已提交
220
{
221
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
222 223 224 225 226 227 228
	struct mm_struct *mm = current->mm;
	struct page *page;
	int err;

	/*
	 * The futex address must be "naturally" aligned.
	 */
229
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
230
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
231
		return -EINVAL;
232
	address -= key->both.offset;
L
Linus Torvalds 已提交
233

E
Eric Dumazet 已提交
234 235 236 237 238 239 240 241
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
242
		if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
E
Eric Dumazet 已提交
243 244 245
			return -EFAULT;
		key->private.mm = mm;
		key->private.address = address;
246
		get_futex_key_refs(key);
E
Eric Dumazet 已提交
247 248
		return 0;
	}
L
Linus Torvalds 已提交
249

250
again:
251
	err = get_user_pages_fast(address, 1, rw == VERIFY_WRITE, &page);
252 253 254
	if (err < 0)
		return err;

255
	page = compound_head(page);
256 257 258 259 260 261
	lock_page(page);
	if (!page->mapping) {
		unlock_page(page);
		put_page(page);
		goto again;
	}
L
Linus Torvalds 已提交
262 263 264 265 266 267

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
268
	 * the object not the particular process.
L
Linus Torvalds 已提交
269
	 */
270 271
	if (PageAnon(page)) {
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
272
		key->private.mm = mm;
273
		key->private.address = address;
274 275 276 277
	} else {
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
		key->shared.inode = page->mapping->host;
		key->shared.pgoff = page->index;
L
Linus Torvalds 已提交
278 279
	}

280
	get_futex_key_refs(key);
L
Linus Torvalds 已提交
281

282 283 284
	unlock_page(page);
	put_page(page);
	return 0;
L
Linus Torvalds 已提交
285 286
}

287
static inline
P
Peter Zijlstra 已提交
288
void put_futex_key(int fshared, union futex_key *key)
L
Linus Torvalds 已提交
289
{
290
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
291 292
}

293 294
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
295 296 297 298 299 300 301 302 303 304 305 306
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
 * We have no generic implementation of a non destructive write to the
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
307 308 309 310 311 312 313 314
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
	ret = get_user_pages(current, mm, (unsigned long)uaddr,
			     1, 1, 0, NULL, NULL);
	up_read(&mm->mmap_sem);

315 316 317
	return ret < 0 ? ret : 0;
}

318 319
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
320 321
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

T
Thomas Gleixner 已提交
337 338 339 340 341 342 343 344 345 346 347 348
static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
{
	u32 curval;

	pagefault_disable();
	curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
	pagefault_enable();

	return curval;
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
349 350 351
{
	int ret;

352
	pagefault_disable();
353
	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
354
	pagefault_enable();
L
Linus Torvalds 已提交
355 356 357 358

	return ret ? -EFAULT : 0;
}

359 360 361 362 363 364 365 366 367 368 369

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

370
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
371 372 373 374 375 376 377 378

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
379
	pi_state->key = FUTEX_KEY_INIT;
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state * alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

static void free_pi_state(struct futex_pi_state *pi_state)
{
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
406
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
407
		list_del_init(&pi_state->list);
408
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
static struct task_struct * futex_find_get_task(pid_t pid)
{
	struct task_struct *p;
434
	const struct cred *cred = current_cred(), *pcred;
435

436
	rcu_read_lock();
437
	p = find_task_by_vpid(pid);
438
	if (!p) {
439
		p = ERR_PTR(-ESRCH);
440 441 442 443 444 445 446 447
	} else {
		pcred = __task_cred(p);
		if (cred->euid != pcred->euid &&
		    cred->euid != pcred->uid)
			p = ERR_PTR(-ESRCH);
		else
			get_task_struct(p);
	}
448

449
	rcu_read_unlock();
450 451 452 453 454 455 456 457 458 459 460 461 462

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
463
	struct futex_hash_bucket *hb;
464
	union futex_key key = FUTEX_KEY_INIT;
465

466 467
	if (!futex_cmpxchg_enabled)
		return;
468 469 470
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
471
	 * versus waiters unqueueing themselves:
472
	 */
473
	raw_spin_lock_irq(&curr->pi_lock);
474 475 476 477 478
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
479
		hb = hash_futex(&key);
480
		raw_spin_unlock_irq(&curr->pi_lock);
481 482 483

		spin_lock(&hb->lock);

484
		raw_spin_lock_irq(&curr->pi_lock);
485 486 487 488
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
489 490 491 492 493 494
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
495 496
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
497
		pi_state->owner = NULL;
498
		raw_spin_unlock_irq(&curr->pi_lock);
499 500 501 502 503

		rt_mutex_unlock(&pi_state->pi_mutex);

		spin_unlock(&hb->lock);

504
		raw_spin_lock_irq(&curr->pi_lock);
505
	}
506
	raw_spin_unlock_irq(&curr->pi_lock);
507 508 509
}

static int
P
Pierre Peiffer 已提交
510 511
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
		union futex_key *key, struct futex_pi_state **ps)
512 513 514
{
	struct futex_pi_state *pi_state = NULL;
	struct futex_q *this, *next;
P
Pierre Peiffer 已提交
515
	struct plist_head *head;
516
	struct task_struct *p;
517
	pid_t pid = uval & FUTEX_TID_MASK;
518 519 520

	head = &hb->chain;

P
Pierre Peiffer 已提交
521
	plist_for_each_entry_safe(this, next, head, list) {
P
Pierre Peiffer 已提交
522
		if (match_futex(&this->key, key)) {
523 524 525 526 527
			/*
			 * Another waiter already exists - bump up
			 * the refcount and return its pi_state:
			 */
			pi_state = this->pi_state;
528 529 530 531 532 533
			/*
			 * Userspace might have messed up non PI and PI futexes
			 */
			if (unlikely(!pi_state))
				return -EINVAL;

534
			WARN_ON(!atomic_read(&pi_state->refcount));
535 536
			WARN_ON(pid && pi_state->owner &&
				pi_state->owner->pid != pid);
537

538
			atomic_inc(&pi_state->refcount);
P
Pierre Peiffer 已提交
539
			*ps = pi_state;
540 541 542 543 544 545

			return 0;
		}
	}

	/*
546
	 * We are the first waiter - try to look up the real owner and attach
547
	 * the new pi_state to it, but bail out when TID = 0
548
	 */
549
	if (!pid)
550
		return -ESRCH;
551
	p = futex_find_get_task(pid);
552 553 554 555 556 557 558 559 560
	if (IS_ERR(p))
		return PTR_ERR(p);

	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
561
	raw_spin_lock_irq(&p->pi_lock);
562 563 564 565 566 567 568 569
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

570
		raw_spin_unlock_irq(&p->pi_lock);
571 572 573
		put_task_struct(p);
		return ret;
	}
574 575 576 577 578 579 580 581 582 583

	pi_state = alloc_pi_state();

	/*
	 * Initialize the pi_mutex in locked state and make 'p'
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
584
	pi_state->key = *key;
585

586
	WARN_ON(!list_empty(&pi_state->list));
587 588
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
589
	raw_spin_unlock_irq(&p->pi_lock);
590 591 592

	put_task_struct(p);

P
Pierre Peiffer 已提交
593
	*ps = pi_state;
594 595 596 597

	return 0;
}

598
/**
599
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
600 601 602 603 604 605 606 607
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
608 609 610 611 612 613 614 615 616 617 618
 *
 * Returns:
 *  0 - ready to wait
 *  1 - acquired the lock
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
619
				struct task_struct *task, int set_waiters)
620 621 622 623 624 625 626 627 628 629 630 631 632
{
	int lock_taken, ret, ownerdied = 0;
	u32 uval, newval, curval;

retry:
	ret = lock_taken = 0;

	/*
	 * To avoid races, we attempt to take the lock here again
	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
	 * the locks. It will most likely not succeed.
	 */
	newval = task_pid_vnr(task);
633 634
	if (set_waiters)
		newval |= FUTEX_WAITERS;
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722

	curval = cmpxchg_futex_value_locked(uaddr, 0, newval);

	if (unlikely(curval == -EFAULT))
		return -EFAULT;

	/*
	 * Detect deadlocks.
	 */
	if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
		return -EDEADLK;

	/*
	 * Surprise - we got the lock. Just return to userspace:
	 */
	if (unlikely(!curval))
		return 1;

	uval = curval;

	/*
	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
	 * to wake at the next unlock.
	 */
	newval = curval | FUTEX_WAITERS;

	/*
	 * There are two cases, where a futex might have no owner (the
	 * owner TID is 0): OWNER_DIED. We take over the futex in this
	 * case. We also do an unconditional take over, when the owner
	 * of the futex died.
	 *
	 * This is safe as we are protected by the hash bucket lock !
	 */
	if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
		/* Keep the OWNER_DIED bit */
		newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
		ownerdied = 0;
		lock_taken = 1;
	}

	curval = cmpxchg_futex_value_locked(uaddr, uval, newval);

	if (unlikely(curval == -EFAULT))
		return -EFAULT;
	if (unlikely(curval != uval))
		goto retry;

	/*
	 * We took the lock due to owner died take over.
	 */
	if (unlikely(lock_taken))
		return 1;

	/*
	 * We dont have the lock. Look up the PI state (or create it if
	 * we are the first waiter):
	 */
	ret = lookup_pi_state(uval, hb, key, ps);

	if (unlikely(ret)) {
		switch (ret) {
		case -ESRCH:
			/*
			 * No owner found for this futex. Check if the
			 * OWNER_DIED bit is set to figure out whether
			 * this is a robust futex or not.
			 */
			if (get_futex_value_locked(&curval, uaddr))
				return -EFAULT;

			/*
			 * We simply start over in case of a robust
			 * futex. The code above will take the futex
			 * and return happy.
			 */
			if (curval & FUTEX_OWNER_DIED) {
				ownerdied = 1;
				goto retry;
			}
		default:
			break;
		}
	}

	return ret;
}

L
Linus Torvalds 已提交
723 724 725 726 727 728
/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed.
 */
static void wake_futex(struct futex_q *q)
{
T
Thomas Gleixner 已提交
729 730
	struct task_struct *p = q->task;

L
Linus Torvalds 已提交
731
	/*
T
Thomas Gleixner 已提交
732 733 734 735 736
	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
	 * a non futex wake up happens on another CPU then the task
	 * might exit and p would dereference a non existing task
	 * struct. Prevent this by holding a reference on p across the
	 * wake up.
L
Linus Torvalds 已提交
737
	 */
T
Thomas Gleixner 已提交
738 739 740
	get_task_struct(p);

	plist_del(&q->list, &q->list.plist);
L
Linus Torvalds 已提交
741
	/*
T
Thomas Gleixner 已提交
742 743 744 745
	 * The waiting task can free the futex_q as soon as
	 * q->lock_ptr = NULL is written, without taking any locks. A
	 * memory barrier is required here to prevent the following
	 * store to lock_ptr from getting ahead of the plist_del.
L
Linus Torvalds 已提交
746
	 */
747
	smp_wmb();
L
Linus Torvalds 已提交
748
	q->lock_ptr = NULL;
T
Thomas Gleixner 已提交
749 750 751

	wake_up_state(p, TASK_NORMAL);
	put_task_struct(p);
L
Linus Torvalds 已提交
752 753
}

754 755 756 757 758 759 760 761 762
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
{
	struct task_struct *new_owner;
	struct futex_pi_state *pi_state = this->pi_state;
	u32 curval, newval;

	if (!pi_state)
		return -EINVAL;

763
	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
	 * This happens when we have stolen the lock and the original
	 * pending owner did not enqueue itself back on the rt_mutex.
	 * Thats not a tragedy. We know that way, that a lock waiter
	 * is on the fly. We make the futex_q waiter the pending owner.
	 */
	if (!new_owner)
		new_owner = this->task;

	/*
	 * We pass it to the next owner. (The WAITERS bit is always
	 * kept enabled while there is PI state around. We must also
	 * preserve the owner died bit.)
	 */
780
	if (!(uval & FUTEX_OWNER_DIED)) {
781 782
		int ret = 0;

783
		newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
784

T
Thomas Gleixner 已提交
785
		curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
786

787
		if (curval == -EFAULT)
788
			ret = -EFAULT;
789
		else if (curval != uval)
790 791
			ret = -EINVAL;
		if (ret) {
792
			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
793 794
			return ret;
		}
795
	}
796

797
	raw_spin_lock_irq(&pi_state->owner->pi_lock);
798 799
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
800
	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
801

802
	raw_spin_lock_irq(&new_owner->pi_lock);
803
	WARN_ON(!list_empty(&pi_state->list));
804 805
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
806
	raw_spin_unlock_irq(&new_owner->pi_lock);
807

808
	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
809 810 811 812 813 814 815 816 817 818 819 820 821
	rt_mutex_unlock(&pi_state->pi_mutex);

	return 0;
}

static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
{
	u32 oldval;

	/*
	 * There is no waiter, so we unlock the futex. The owner died
	 * bit has not to be preserved here. We are the owner:
	 */
T
Thomas Gleixner 已提交
822
	oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
823 824 825 826 827 828 829 830 831

	if (oldval == -EFAULT)
		return oldval;
	if (oldval != uval)
		return -EAGAIN;

	return 0;
}

I
Ingo Molnar 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
848 849 850
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
851
	spin_unlock(&hb1->lock);
852 853
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
854 855
}

L
Linus Torvalds 已提交
856
/*
D
Darren Hart 已提交
857
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
858
 */
P
Peter Zijlstra 已提交
859
static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
860
{
861
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
862
	struct futex_q *this, *next;
P
Pierre Peiffer 已提交
863
	struct plist_head *head;
864
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
865 866
	int ret;

867 868 869
	if (!bitset)
		return -EINVAL;

870
	ret = get_futex_key(uaddr, fshared, &key, VERIFY_READ);
L
Linus Torvalds 已提交
871 872 873
	if (unlikely(ret != 0))
		goto out;

874 875 876
	hb = hash_futex(&key);
	spin_lock(&hb->lock);
	head = &hb->chain;
L
Linus Torvalds 已提交
877

P
Pierre Peiffer 已提交
878
	plist_for_each_entry_safe(this, next, head, list) {
L
Linus Torvalds 已提交
879
		if (match_futex (&this->key, &key)) {
880
			if (this->pi_state || this->rt_waiter) {
881 882 883
				ret = -EINVAL;
				break;
			}
884 885 886 887 888

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

L
Linus Torvalds 已提交
889 890 891 892 893 894
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

895
	spin_unlock(&hb->lock);
896
	put_futex_key(fshared, &key);
897
out:
L
Linus Torvalds 已提交
898 899 900
	return ret;
}

901 902 903 904
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
905
static int
P
Peter Zijlstra 已提交
906
futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
907
	      int nr_wake, int nr_wake2, int op)
908
{
909
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
910
	struct futex_hash_bucket *hb1, *hb2;
P
Pierre Peiffer 已提交
911
	struct plist_head *head;
912
	struct futex_q *this, *next;
D
Darren Hart 已提交
913
	int ret, op_ret;
914

D
Darren Hart 已提交
915
retry:
916
	ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
917 918
	if (unlikely(ret != 0))
		goto out;
919
	ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
920
	if (unlikely(ret != 0))
921
		goto out_put_key1;
922

923 924
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
925

D
Darren Hart 已提交
926
retry_private:
T
Thomas Gleixner 已提交
927
	double_lock_hb(hb1, hb2);
928
	op_ret = futex_atomic_op_inuser(op, uaddr2);
929 930
	if (unlikely(op_ret < 0)) {

D
Darren Hart 已提交
931
		double_unlock_hb(hb1, hb2);
932

933
#ifndef CONFIG_MMU
934 935 936 937
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
938
		ret = op_ret;
939
		goto out_put_keys;
940 941
#endif

942 943
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
944
			goto out_put_keys;
945 946
		}

947
		ret = fault_in_user_writeable(uaddr2);
948
		if (ret)
949
			goto out_put_keys;
950

D
Darren Hart 已提交
951 952 953
		if (!fshared)
			goto retry_private;

954 955
		put_futex_key(fshared, &key2);
		put_futex_key(fshared, &key1);
D
Darren Hart 已提交
956
		goto retry;
957 958
	}

959
	head = &hb1->chain;
960

P
Pierre Peiffer 已提交
961
	plist_for_each_entry_safe(this, next, head, list) {
962 963 964 965 966 967 968 969
		if (match_futex (&this->key, &key1)) {
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
970
		head = &hb2->chain;
971 972

		op_ret = 0;
P
Pierre Peiffer 已提交
973
		plist_for_each_entry_safe(this, next, head, list) {
974 975 976 977 978 979 980 981 982
			if (match_futex (&this->key, &key2)) {
				wake_futex(this);
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

D
Darren Hart 已提交
983
	double_unlock_hb(hb1, hb2);
984
out_put_keys:
985
	put_futex_key(fshared, &key2);
986
out_put_key1:
987
	put_futex_key(fshared, &key1);
988
out:
989 990 991
	return ret;
}

D
Darren Hart 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
		plist_add(&q->list, &hb2->chain);
		q->lock_ptr = &hb2->lock;
#ifdef CONFIG_DEBUG_PI_LIST
1013
		q->list.plist.spinlock = &hb2->lock;
D
Darren Hart 已提交
1014 1015 1016 1017 1018 1019
#endif
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1020 1021
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1022 1023 1024
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1025 1026 1027 1028 1029
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1030 1031 1032
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1033 1034
 */
static inline
1035 1036
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
{
	get_futex_key_refs(key);
	q->key = *key;

	WARN_ON(plist_node_empty(&q->list));
	plist_del(&q->list, &q->list.plist);

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1047 1048
	q->lock_ptr = &hb->lock;
#ifdef CONFIG_DEBUG_PI_LIST
1049
	q->list.plist.spinlock = &hb->lock;
1050 1051
#endif

T
Thomas Gleixner 已提交
1052
	wake_up_state(q->task, TASK_NORMAL);
1053 1054 1055 1056
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1057 1058 1059 1060 1061 1062 1063
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1064 1065
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1066 1067 1068
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
 *
 * Returns:
 *  0 - failed to acquire the lock atomicly
 *  1 - acquired the lock
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1079
				 struct futex_pi_state **ps, int set_waiters)
1080
{
1081
	struct futex_q *top_waiter = NULL;
1082 1083 1084 1085 1086 1087
	u32 curval;
	int ret;

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1088 1089 1090 1091 1092 1093 1094 1095
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1096 1097 1098 1099 1100 1101
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1102 1103 1104 1105
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1106
	/*
1107 1108 1109
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1110
	 */
1111 1112
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1113
	if (ret == 1)
1114
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
 * uaddr1:	source futex user address
 * uaddr2:	target futex user address
 * nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * requeue_pi:	if we are attempting to requeue from a non-pi futex to a
 * 		pi futex (pi to pi requeue is not supported)
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
 * Returns:
 * >=0 - on success, the number of tasks requeued or woken
 *  <0 - on error
L
Linus Torvalds 已提交
1134
 */
P
Peter Zijlstra 已提交
1135
static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1136 1137
			 int nr_wake, int nr_requeue, u32 *cmpval,
			 int requeue_pi)
L
Linus Torvalds 已提交
1138
{
1139
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1140 1141
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1142
	struct futex_hash_bucket *hb1, *hb2;
P
Pierre Peiffer 已提交
1143
	struct plist_head *head1;
L
Linus Torvalds 已提交
1144
	struct futex_q *this, *next;
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
	u32 curval2;

	if (requeue_pi) {
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1167

1168
retry:
1169 1170 1171 1172 1173 1174 1175 1176 1177
	if (pi_state != NULL) {
		/*
		 * We will have to lookup the pi_state again, so free this one
		 * to keep the accounting correct.
		 */
		free_pi_state(pi_state);
		pi_state = NULL;
	}

1178
	ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
L
Linus Torvalds 已提交
1179 1180
	if (unlikely(ret != 0))
		goto out;
1181 1182
	ret = get_futex_key(uaddr2, fshared, &key2,
			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
L
Linus Torvalds 已提交
1183
	if (unlikely(ret != 0))
1184
		goto out_put_key1;
L
Linus Torvalds 已提交
1185

1186 1187
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1188

D
Darren Hart 已提交
1189
retry_private:
I
Ingo Molnar 已提交
1190
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1191

1192 1193
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1194

1195
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1196 1197

		if (unlikely(ret)) {
D
Darren Hart 已提交
1198
			double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1199

1200
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1201 1202
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1203

D
Darren Hart 已提交
1204 1205
			if (!fshared)
				goto retry_private;
L
Linus Torvalds 已提交
1206

D
Darren Hart 已提交
1207 1208 1209
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
			goto retry;
L
Linus Torvalds 已提交
1210
		}
1211
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1212 1213 1214 1215 1216
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1217
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1218 1219 1220 1221 1222 1223
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1224
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1225
						 &key2, &pi_state, nr_requeue);
1226 1227 1228 1229 1230 1231 1232 1233 1234

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
		 * reference to it.
		 */
		if (ret == 1) {
			WARN_ON(pi_state);
1235
			drop_count++;
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
			task_count++;
			ret = get_futex_value_locked(&curval2, uaddr2);
			if (!ret)
				ret = lookup_pi_state(curval2, hb2, &key2,
						      &pi_state);
		}

		switch (ret) {
		case 0:
			break;
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
1250
			ret = fault_in_user_writeable(uaddr2);
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
			/* The owner was exiting, try again. */
			double_unlock_hb(hb1, hb2);
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

1266
	head1 = &hb1->chain;
P
Pierre Peiffer 已提交
1267
	plist_for_each_entry_safe(this, next, head1, list) {
1268 1269 1270 1271
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
1272
			continue;
1273

1274 1275 1276 1277 1278 1279 1280 1281 1282
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
		 */
		if ((requeue_pi && !this->rt_waiter) ||
		    (!requeue_pi && this->rt_waiter)) {
			ret = -EINVAL;
			break;
		}
1283 1284 1285 1286 1287 1288 1289

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
L
Linus Torvalds 已提交
1290
			wake_futex(this);
1291 1292
			continue;
		}
L
Linus Torvalds 已提交
1293

1294 1295 1296 1297 1298 1299
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
			/* Prepare the waiter to take the rt_mutex. */
			atomic_inc(&pi_state->refcount);
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
							this->task, 1);
			if (ret == 1) {
				/* We got the lock. */
1313
				requeue_pi_wake_futex(this, &key2, hb2);
1314
				drop_count++;
1315 1316 1317 1318 1319 1320 1321
				continue;
			} else if (ret) {
				/* -EDEADLK */
				this->pi_state = NULL;
				free_pi_state(pi_state);
				goto out_unlock;
			}
L
Linus Torvalds 已提交
1322
		}
1323 1324
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
1325 1326 1327
	}

out_unlock:
D
Darren Hart 已提交
1328
	double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1329

1330 1331 1332 1333 1334 1335
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
1336
	while (--drop_count >= 0)
1337
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
1338

1339
out_put_keys:
1340
	put_futex_key(fshared, &key2);
1341
out_put_key1:
1342
	put_futex_key(fshared, &key1);
1343
out:
1344 1345 1346
	if (pi_state != NULL)
		free_pi_state(pi_state);
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
1347 1348 1349
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
1350
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
L
Linus Torvalds 已提交
1351
{
1352
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1353

1354
	get_futex_key_refs(&q->key);
1355 1356
	hb = hash_futex(&q->key);
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
1357

1358 1359
	spin_lock(&hb->lock);
	return hb;
L
Linus Torvalds 已提交
1360 1361
}

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
static inline void
queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
{
	spin_unlock(&hb->lock);
	drop_futex_key_refs(&q->key);
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
E
Eric Sesterhenn 已提交
1381
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
L
Linus Torvalds 已提交
1382
{
P
Pierre Peiffer 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
#ifdef CONFIG_DEBUG_PI_LIST
1397
	q->list.plist.spinlock = &hb->lock;
P
Pierre Peiffer 已提交
1398 1399
#endif
	plist_add(&q->list, &hb->chain);
1400
	q->task = current;
1401
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
1402 1403
}

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
 * Returns:
 *   1 - if the futex_q was still queued (and we removed unqueued it)
 *   0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
1414 1415 1416 1417
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
1418
	int ret = 0;
L
Linus Torvalds 已提交
1419 1420

	/* In the common case we don't take the spinlock, which is nice. */
1421
retry:
L
Linus Torvalds 已提交
1422
	lock_ptr = q->lock_ptr;
1423
	barrier();
1424
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
P
Pierre Peiffer 已提交
1443 1444
		WARN_ON(plist_node_empty(&q->list));
		plist_del(&q->list, &q->list.plist);
1445 1446 1447

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
1448 1449 1450 1451
		spin_unlock(lock_ptr);
		ret = 1;
	}

1452
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
1453 1454 1455
	return ret;
}

1456 1457
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
1458 1459
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
1460
 */
P
Pierre Peiffer 已提交
1461
static void unqueue_me_pi(struct futex_q *q)
1462
{
P
Pierre Peiffer 已提交
1463 1464
	WARN_ON(plist_node_empty(&q->list));
	plist_del(&q->list, &q->list.plist);
1465 1466 1467 1468 1469

	BUG_ON(!q->pi_state);
	free_pi_state(q->pi_state);
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
1470
	spin_unlock(q->lock_ptr);
1471

1472
	drop_futex_key_refs(&q->key);
1473 1474
}

P
Pierre Peiffer 已提交
1475
/*
1476
 * Fixup the pi_state owner with the new owner.
P
Pierre Peiffer 已提交
1477
 *
1478 1479
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
P
Pierre Peiffer 已提交
1480
 */
1481
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
P
Peter Zijlstra 已提交
1482
				struct task_struct *newowner, int fshared)
P
Pierre Peiffer 已提交
1483
{
1484
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Pierre Peiffer 已提交
1485
	struct futex_pi_state *pi_state = q->pi_state;
1486
	struct task_struct *oldowner = pi_state->owner;
P
Pierre Peiffer 已提交
1487
	u32 uval, curval, newval;
D
Darren Hart 已提交
1488
	int ret;
P
Pierre Peiffer 已提交
1489 1490

	/* Owner died? */
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
	 * pending owner or we are the pending owner which failed to
	 * get the rtmutex. We have to replace the pending owner TID
	 * in the user space variable. This must be atomic as we have
	 * to preserve the owner died bit here.
	 *
D
Darren Hart 已提交
1501 1502 1503
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
	 *
	 * Modifying pi_state _before_ the user space value would
	 * leave the pi_state in an inconsistent state when we fault
	 * here, because we need to drop the hash bucket lock to
	 * handle the fault. This might be observed in the PID check
	 * in lookup_pi_state.
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

	while (1) {
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

		curval = cmpxchg_futex_value_locked(uaddr, uval, newval);

		if (curval == -EFAULT)
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
1531
	if (pi_state->owner != NULL) {
1532
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
1533 1534
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
1535
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1536
	}
P
Pierre Peiffer 已提交
1537

1538
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
1539

1540
	raw_spin_lock_irq(&newowner->pi_lock);
P
Pierre Peiffer 已提交
1541
	WARN_ON(!list_empty(&pi_state->list));
1542
	list_add(&pi_state->list, &newowner->pi_state_list);
1543
	raw_spin_unlock_irq(&newowner->pi_lock);
1544
	return 0;
P
Pierre Peiffer 已提交
1545 1546

	/*
1547 1548 1549 1550 1551 1552 1553 1554
	 * To handle the page fault we need to drop the hash bucket
	 * lock here. That gives the other task (either the pending
	 * owner itself or the task which stole the rtmutex) the
	 * chance to try the fixup of the pi_state. So once we are
	 * back from handling the fault we need to check the pi_state
	 * after reacquiring the hash bucket lock and before trying to
	 * do another fixup. When the fixup has been done already we
	 * simply return.
P
Pierre Peiffer 已提交
1555
	 */
1556 1557
handle_fault:
	spin_unlock(q->lock_ptr);
1558

1559
	ret = fault_in_user_writeable(uaddr);
1560

1561
	spin_lock(q->lock_ptr);
1562

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
	/*
	 * Check if someone else fixed it for us:
	 */
	if (pi_state->owner != oldowner)
		return 0;

	if (ret)
		return ret;

	goto retry;
P
Pierre Peiffer 已提交
1573 1574
}

E
Eric Dumazet 已提交
1575 1576
/*
 * In case we must use restart_block to restart a futex_wait,
1577
 * we encode in the 'flags' shared capability
E
Eric Dumazet 已提交
1578
 */
1579 1580
#define FLAGS_SHARED		0x01
#define FLAGS_CLOCKRT		0x02
1581
#define FLAGS_HAS_TIMEOUT	0x04
E
Eric Dumazet 已提交
1582

N
Nick Piggin 已提交
1583
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
1584

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @fshared:	whether the futex is shared (1) or not (0)
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
 * Returns:
 *  1 - success, lock taken
 *  0 - success, lock not taken
 * <0 - on error (-EFAULT)
 */
static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
		       int locked)
{
	struct task_struct *owner;
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
		 */
		if (q->pi_state->owner != current)
			ret = fixup_pi_state_owner(uaddr, q, current, fshared);
		goto out;
	}

	/*
	 * Catch the rare case, where the lock was released when we were on the
	 * way back before we locked the hash bucket.
	 */
	if (q->pi_state->owner == current) {
		/*
		 * Try to get the rt_mutex now. This might fail as some other
		 * task acquired the rt_mutex after we removed ourself from the
		 * rt_mutex waiters list.
		 */
		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
			locked = 1;
			goto out;
		}

		/*
		 * pi_state is incorrect, some other task did a lock steal and
		 * we returned due to timeout or signal without taking the
		 * rt_mutex. Too late. We can access the rt_mutex_owner without
		 * locking, as the other task is now blocked on the hash bucket
		 * lock. Fix the state up.
		 */
		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
		ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
	 * the owner, nor the pending owner, of the rt_mutex.
	 */
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);

out:
	return ret ? ret : locked;
}

1658 1659 1660 1661 1662 1663 1664
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
1665
				struct hrtimer_sleeper *timeout)
1666
{
1667 1668 1669 1670 1671 1672
	/*
	 * The task state is guaranteed to be set before another task can
	 * wake it. set_current_state() is implemented using set_mb() and
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
1673
	set_current_state(TASK_INTERRUPTIBLE);
1674
	queue_me(q, hb);
1675 1676 1677 1678 1679 1680 1681 1682 1683

	/* Arm the timer */
	if (timeout) {
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
		if (!hrtimer_active(&timeout->timer))
			timeout->task = NULL;
	}

	/*
1684 1685
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
			schedule();
	}
	__set_current_state(TASK_RUNNING);
}

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
 * @fshared:	whether the futex is shared (1) or not (0)
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
 * Returns:
 *  0 - uaddr contains val and hb has been locked
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
 */
static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
1718
{
1719 1720
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
1721 1722

	/*
D
Darren Hart 已提交
1723
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
	 * any cond.  If we queued after testing *uaddr, that would open
	 * a race condition where we could block indefinitely with
	 * cond(var) false, which would violate the guarantee.
	 *
	 * A consequence is that futex_wait() can return zero and absorb
	 * a wakeup when *uaddr != val on entry to the syscall.  This is
	 * rare, but normal.
	 */
1739 1740
retry:
	q->key = FUTEX_KEY_INIT;
1741
	ret = get_futex_key(uaddr, fshared, &q->key, VERIFY_READ);
1742
	if (unlikely(ret != 0))
1743
		return ret;
1744 1745 1746 1747

retry_private:
	*hb = queue_lock(q);

1748
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
1749

1750 1751
	if (ret) {
		queue_unlock(q, *hb);
L
Linus Torvalds 已提交
1752

1753
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
1754
		if (ret)
1755
			goto out;
L
Linus Torvalds 已提交
1756

D
Darren Hart 已提交
1757 1758 1759
		if (!fshared)
			goto retry_private;

1760
		put_futex_key(fshared, &q->key);
D
Darren Hart 已提交
1761
		goto retry;
L
Linus Torvalds 已提交
1762
	}
1763

1764 1765 1766
	if (uval != val) {
		queue_unlock(q, *hb);
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
1767
	}
L
Linus Torvalds 已提交
1768

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
out:
	if (ret)
		put_futex_key(fshared, &q->key);
	return ret;
}

static int futex_wait(u32 __user *uaddr, int fshared,
		      u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
	struct futex_q q;
	int ret;

	if (!bitset)
		return -EINVAL;

	q.pi_state = NULL;
	q.bitset = bitset;
1789
	q.rt_waiter = NULL;
1790
	q.requeue_pi_key = NULL;
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801

	if (abs_time) {
		to = &timeout;

		hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
				      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

T
Thomas Gleixner 已提交
1802
retry:
1803 1804 1805 1806 1807
	/* Prepare to wait on uaddr. */
	ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
	if (ret)
		goto out;

1808
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
1809
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
1810 1811

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
1812
	ret = 0;
L
Linus Torvalds 已提交
1813
	if (!unqueue_me(&q))
P
Peter Zijlstra 已提交
1814 1815
		goto out_put_key;
	ret = -ETIMEDOUT;
1816
	if (to && !to->task)
P
Peter Zijlstra 已提交
1817
		goto out_put_key;
N
Nick Piggin 已提交
1818

1819
	/*
T
Thomas Gleixner 已提交
1820 1821
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
1822
	 */
T
Thomas Gleixner 已提交
1823 1824 1825 1826 1827
	if (!signal_pending(current)) {
		put_futex_key(fshared, &q.key);
		goto retry;
	}

P
Peter Zijlstra 已提交
1828
	ret = -ERESTARTSYS;
1829
	if (!abs_time)
P
Peter Zijlstra 已提交
1830
		goto out_put_key;
L
Linus Torvalds 已提交
1831

P
Peter Zijlstra 已提交
1832 1833 1834 1835 1836 1837
	restart = &current_thread_info()->restart_block;
	restart->fn = futex_wait_restart;
	restart->futex.uaddr = (u32 *)uaddr;
	restart->futex.val = val;
	restart->futex.time = abs_time->tv64;
	restart->futex.bitset = bitset;
1838
	restart->futex.flags = FLAGS_HAS_TIMEOUT;
P
Peter Zijlstra 已提交
1839 1840 1841 1842 1843

	if (fshared)
		restart->futex.flags |= FLAGS_SHARED;
	if (clockrt)
		restart->futex.flags |= FLAGS_CLOCKRT;
1844

P
Peter Zijlstra 已提交
1845 1846 1847 1848
	ret = -ERESTART_RESTARTBLOCK;

out_put_key:
	put_futex_key(fshared, &q.key);
1849
out:
1850 1851 1852 1853
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
1854 1855 1856
	return ret;
}

N
Nick Piggin 已提交
1857 1858 1859

static long futex_wait_restart(struct restart_block *restart)
{
1860
	u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
P
Peter Zijlstra 已提交
1861
	int fshared = 0;
1862
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
1863

1864 1865 1866 1867
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
		t.tv64 = restart->futex.time;
		tp = &t;
	}
N
Nick Piggin 已提交
1868
	restart->fn = do_no_restart_syscall;
1869
	if (restart->futex.flags & FLAGS_SHARED)
P
Peter Zijlstra 已提交
1870
		fshared = 1;
1871
	return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1872 1873
				restart->futex.bitset,
				restart->futex.flags & FLAGS_CLOCKRT);
N
Nick Piggin 已提交
1874 1875 1876
}


1877 1878 1879 1880 1881 1882
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
 * if there are waiters then it will block, it does PI, etc. (Due to
 * races the kernel might see a 0 value of the futex too.)
 */
P
Peter Zijlstra 已提交
1883
static int futex_lock_pi(u32 __user *uaddr, int fshared,
E
Eric Dumazet 已提交
1884
			 int detect, ktime_t *time, int trylock)
1885
{
1886
	struct hrtimer_sleeper timeout, *to = NULL;
1887 1888
	struct futex_hash_bucket *hb;
	struct futex_q q;
1889
	int res, ret;
1890 1891 1892 1893

	if (refill_pi_state_cache())
		return -ENOMEM;

1894
	if (time) {
1895
		to = &timeout;
1896 1897
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
1898
		hrtimer_init_sleeper(to, current);
1899
		hrtimer_set_expires(&to->timer, *time);
1900 1901
	}

1902
	q.pi_state = NULL;
1903
	q.rt_waiter = NULL;
1904
	q.requeue_pi_key = NULL;
1905
retry:
1906
	q.key = FUTEX_KEY_INIT;
1907
	ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
1908
	if (unlikely(ret != 0))
1909
		goto out;
1910

D
Darren Hart 已提交
1911
retry_private:
E
Eric Sesterhenn 已提交
1912
	hb = queue_lock(&q);
1913

1914
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1915
	if (unlikely(ret)) {
1916
		switch (ret) {
1917 1918 1919 1920 1921 1922
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
1923 1924 1925 1926 1927 1928
		case -EAGAIN:
			/*
			 * Task is exiting and we just wait for the
			 * exit to complete.
			 */
			queue_unlock(&q, hb);
1929
			put_futex_key(fshared, &q.key);
1930 1931 1932
			cond_resched();
			goto retry;
		default:
1933
			goto out_unlock_put_key;
1934 1935 1936 1937 1938 1939
		}
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
E
Eric Sesterhenn 已提交
1940
	queue_me(&q, hb);
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
	if (!trylock)
		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
	else {
		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

1954
	spin_lock(q.lock_ptr);
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
	res = fixup_owner(uaddr, fshared, &q, !ret);
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
1966

1967
	/*
1968 1969
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
1970 1971 1972 1973
	 */
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
		rt_mutex_unlock(&q.pi_state->pi_mutex);

1974 1975
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
1976

1977
	goto out;
1978

1979
out_unlock_put_key:
1980 1981
	queue_unlock(&q, hb);

1982
out_put_key:
1983
	put_futex_key(fshared, &q.key);
1984
out:
1985 1986
	if (to)
		destroy_hrtimer_on_stack(&to->timer);
1987
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
1988

1989
uaddr_faulted:
1990 1991
	queue_unlock(&q, hb);

1992
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
1993 1994
	if (ret)
		goto out_put_key;
1995

D
Darren Hart 已提交
1996 1997 1998 1999 2000
	if (!fshared)
		goto retry_private;

	put_futex_key(fshared, &q.key);
	goto retry;
2001 2002 2003 2004 2005 2006 2007
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
P
Peter Zijlstra 已提交
2008
static int futex_unlock_pi(u32 __user *uaddr, int fshared)
2009 2010 2011 2012
{
	struct futex_hash_bucket *hb;
	struct futex_q *this, *next;
	u32 uval;
P
Pierre Peiffer 已提交
2013
	struct plist_head *head;
2014
	union futex_key key = FUTEX_KEY_INIT;
D
Darren Hart 已提交
2015
	int ret;
2016 2017 2018 2019 2020 2021 2022

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2023
	if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
2024 2025
		return -EPERM;

2026
	ret = get_futex_key(uaddr, fshared, &key, VERIFY_WRITE);
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
	if (unlikely(ret != 0))
		goto out;

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
	 * To avoid races, try to do the TID -> 0 atomic transition
	 * again. If it succeeds then we can return without waking
	 * anyone else up:
	 */
T
Thomas Gleixner 已提交
2038
	if (!(uval & FUTEX_OWNER_DIED))
2039
		uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
T
Thomas Gleixner 已提交
2040

2041 2042 2043 2044 2045 2046 2047

	if (unlikely(uval == -EFAULT))
		goto pi_faulted;
	/*
	 * Rare case: we managed to release the lock atomically,
	 * no need to wake anyone else up:
	 */
2048
	if (unlikely(uval == task_pid_vnr(current)))
2049 2050 2051 2052 2053 2054 2055 2056
		goto out_unlock;

	/*
	 * Ok, other tasks may need to be woken up - check waiters
	 * and do the wakeup if necessary:
	 */
	head = &hb->chain;

P
Pierre Peiffer 已提交
2057
	plist_for_each_entry_safe(this, next, head, list) {
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
		if (!match_futex (&this->key, &key))
			continue;
		ret = wake_futex_pi(uaddr, uval, this);
		/*
		 * The atomic access to the futex value
		 * generated a pagefault, so retry the
		 * user-access and the wakeup:
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
		goto out_unlock;
	}
	/*
	 * No waiters - kernel unlocks the futex:
	 */
2073 2074 2075 2076 2077
	if (!(uval & FUTEX_OWNER_DIED)) {
		ret = unlock_futex_pi(uaddr, uval);
		if (ret == -EFAULT)
			goto pi_faulted;
	}
2078 2079 2080

out_unlock:
	spin_unlock(&hb->lock);
2081
	put_futex_key(fshared, &key);
2082

2083
out:
2084 2085 2086
	return ret;

pi_faulted:
2087
	spin_unlock(&hb->lock);
D
Darren Hart 已提交
2088
	put_futex_key(fshared, &key);
2089

2090
	ret = fault_in_user_writeable(uaddr);
2091
	if (!ret)
2092 2093
		goto retry;

L
Linus Torvalds 已提交
2094 2095 2096
	return ret;
}

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
 * Returns
 *  0 - no early wakeup detected
2111
 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
		plist_del(&q->list, &q->list.plist);

T
Thomas Gleixner 已提交
2135
		/* Handle spurious wakeups gracefully */
2136
		ret = -EWOULDBLOCK;
2137 2138
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
2139
		else if (signal_pending(current))
2140
			ret = -ERESTARTNOINTR;
2141 2142 2143 2144 2145 2146
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2147
 * @uaddr:	the futex we initially wait on (non-pi)
2148 2149 2150 2151
 * @fshared:	whether the futexes are shared (1) or not (0).  They must be
 * 		the same type, no requeueing from private to shared, etc.
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
2152
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
 * @clockrt:	whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
 * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
 * complete the acquisition of the rt_mutex prior to returning to userspace.
 * This ensures the rt_mutex maintains an owner when it has waiters; without
 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
 * need to.
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
 * via the following:
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2166 2167 2168
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
2169
 *
2170
 * If 3, cleanup and return -ERESTARTNOINTR.
2171 2172 2173 2174 2175 2176 2177
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
2178
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
 * Returns:
 *  0 - On success
 * <0 - On error
 */
static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
				 u32 val, ktime_t *abs_time, u32 bitset,
				 int clockrt, u32 __user *uaddr2)
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct rt_mutex_waiter rt_waiter;
	struct rt_mutex *pi_mutex = NULL;
	struct futex_hash_bucket *hb;
	union futex_key key2;
	struct futex_q q;
	int res, ret;

	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
		hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
				      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
	debug_rt_mutex_init_waiter(&rt_waiter);
	rt_waiter.task = NULL;

	key2 = FUTEX_KEY_INIT;
2218
	ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
2219 2220 2221
	if (unlikely(ret != 0))
		goto out;

2222 2223 2224 2225 2226
	q.pi_state = NULL;
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

2227 2228
	/* Prepare to wait on uaddr. */
	ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
T
Thomas Gleixner 已提交
2229 2230
	if (ret)
		goto out_key2;
2231 2232

	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
2233
	futex_wait_queue_me(hb, &q, to);
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
	 * race with the atomic proxy lock acquition by the requeue code.
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
			ret = fixup_pi_state_owner(uaddr2, &q, current,
						   fshared);
			spin_unlock(q.lock_ptr);
		}
	} else {
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
		WARN_ON(!&q.pi_state);
		pi_mutex = &q.pi_state->pi_mutex;
		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
		debug_rt_mutex_free_waiter(&rt_waiter);

		spin_lock(q.lock_ptr);
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
		res = fixup_owner(uaddr2, fshared, &q, !ret);
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
2279
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
		 */
		if (res)
			ret = (res < 0) ? res : 0;

		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

	/*
	 * If fixup_pi_state_owner() faulted and was unable to handle the
	 * fault, unlock the rt_mutex and return the fault to userspace.
	 */
	if (ret == -EFAULT) {
		if (rt_mutex_owner(pi_mutex) == current)
			rt_mutex_unlock(pi_mutex);
	} else if (ret == -EINTR) {
		/*
2297 2298 2299 2300 2301
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
2302
		 */
2303
		ret = -EWOULDBLOCK;
2304 2305 2306 2307
	}

out_put_keys:
	put_futex_key(fshared, &q.key);
T
Thomas Gleixner 已提交
2308
out_key2:
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
	put_futex_key(fshared, &key2);

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

2319 2320 2321 2322 2323 2324 2325
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
2326
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2327 2328 2329 2330 2331 2332 2333 2334
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
2335 2336 2337
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
2338
 */
2339 2340
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
2341
{
2342 2343
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
2356 2357 2358 2359
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2360
 */
2361 2362 2363
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
2364
{
A
Al Viro 已提交
2365
	struct robust_list_head __user *head;
2366
	unsigned long ret;
2367
	const struct cred *cred = current_cred(), *pcred;
2368

2369 2370 2371
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

2372 2373 2374 2375 2376 2377
	if (!pid)
		head = current->robust_list;
	else {
		struct task_struct *p;

		ret = -ESRCH;
2378
		rcu_read_lock();
2379
		p = find_task_by_vpid(pid);
2380 2381 2382
		if (!p)
			goto err_unlock;
		ret = -EPERM;
2383 2384 2385
		pcred = __task_cred(p);
		if (cred->euid != pcred->euid &&
		    cred->euid != pcred->uid &&
2386
		    !capable(CAP_SYS_PTRACE))
2387 2388
			goto err_unlock;
		head = p->robust_list;
2389
		rcu_read_unlock();
2390 2391 2392 2393 2394 2395 2396
	}

	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
2397
	rcu_read_unlock();
2398 2399 2400 2401 2402 2403 2404 2405

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
2406
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2407
{
2408
	u32 uval, nval, mval;
2409

2410 2411
retry:
	if (get_user(uval, uaddr))
2412 2413
		return -1;

2414
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
2425 2426 2427
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
		nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);

2428 2429 2430 2431
		if (nval == -EFAULT)
			return -1;

		if (nval != uval)
2432
			goto retry;
2433

2434 2435 2436 2437
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
2438
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
2439
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2440 2441 2442 2443
	}
	return 0;
}

2444 2445 2446 2447
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
2448 2449
				     struct robust_list __user * __user *head,
				     int *pi)
2450 2451 2452
{
	unsigned long uentry;

A
Al Viro 已提交
2453
	if (get_user(uentry, (unsigned long __user *)head))
2454 2455
		return -EFAULT;

A
Al Viro 已提交
2456
	*entry = (void __user *)(uentry & ~1UL);
2457 2458 2459 2460 2461
	*pi = uentry & 1;

	return 0;
}

2462 2463 2464 2465 2466 2467 2468 2469 2470
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
2471 2472
	struct robust_list __user *entry, *next_entry, *pending;
	unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2473
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
2474
	int rc;
2475

2476 2477 2478
	if (!futex_cmpxchg_enabled)
		return;

2479 2480 2481 2482
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
2483
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
2494
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2495
		return;
2496

M
Martin Schwidefsky 已提交
2497
	next_entry = NULL;	/* avoid warning with gcc */
2498
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
2499 2500 2501 2502 2503
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2504 2505
		/*
		 * A pending lock might already be on the list, so
2506
		 * don't process it twice:
2507 2508
		 */
		if (entry != pending)
A
Al Viro 已提交
2509
			if (handle_futex_death((void __user *)entry + futex_offset,
2510
						curr, pi))
2511
				return;
M
Martin Schwidefsky 已提交
2512
		if (rc)
2513
			return;
M
Martin Schwidefsky 已提交
2514 2515
		entry = next_entry;
		pi = next_pi;
2516 2517 2518 2519 2520 2521 2522 2523
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
2524 2525 2526 2527

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
2528 2529
}

2530
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2531
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
2532
{
2533
	int clockrt, ret = -ENOSYS;
E
Eric Dumazet 已提交
2534
	int cmd = op & FUTEX_CMD_MASK;
P
Peter Zijlstra 已提交
2535
	int fshared = 0;
E
Eric Dumazet 已提交
2536 2537

	if (!(op & FUTEX_PRIVATE_FLAG))
P
Peter Zijlstra 已提交
2538
		fshared = 1;
L
Linus Torvalds 已提交
2539

2540
	clockrt = op & FUTEX_CLOCK_REALTIME;
2541
	if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2542
		return -ENOSYS;
L
Linus Torvalds 已提交
2543

E
Eric Dumazet 已提交
2544
	switch (cmd) {
L
Linus Torvalds 已提交
2545
	case FUTEX_WAIT:
2546 2547
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
2548
		ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
L
Linus Torvalds 已提交
2549 2550
		break;
	case FUTEX_WAKE:
2551 2552 2553
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
		ret = futex_wake(uaddr, fshared, val, val3);
L
Linus Torvalds 已提交
2554 2555
		break;
	case FUTEX_REQUEUE:
2556
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
2557 2558
		break;
	case FUTEX_CMP_REQUEUE:
2559 2560
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
				    0);
L
Linus Torvalds 已提交
2561
		break;
2562
	case FUTEX_WAKE_OP:
E
Eric Dumazet 已提交
2563
		ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2564
		break;
2565
	case FUTEX_LOCK_PI:
2566 2567
		if (futex_cmpxchg_enabled)
			ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2568 2569
		break;
	case FUTEX_UNLOCK_PI:
2570 2571
		if (futex_cmpxchg_enabled)
			ret = futex_unlock_pi(uaddr, fshared);
2572 2573
		break;
	case FUTEX_TRYLOCK_PI:
2574 2575
		if (futex_cmpxchg_enabled)
			ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2576
		break;
2577 2578 2579 2580 2581 2582 2583 2584 2585
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
		ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
					    clockrt, uaddr2);
		break;
	case FUTEX_CMP_REQUEUE_PI:
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
				    1);
		break;
L
Linus Torvalds 已提交
2586 2587 2588 2589 2590 2591 2592
	default:
		ret = -ENOSYS;
	}
	return ret;
}


2593 2594 2595
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
2596
{
2597 2598
	struct timespec ts;
	ktime_t t, *tp = NULL;
2599
	u32 val2 = 0;
E
Eric Dumazet 已提交
2600
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
2601

2602
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2603 2604
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2605
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
2606
			return -EFAULT;
2607
		if (!timespec_valid(&ts))
2608
			return -EINVAL;
2609 2610

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
2611
		if (cmd == FUTEX_WAIT)
2612
			t = ktime_add_safe(ktime_get(), t);
2613
		tp = &t;
L
Linus Torvalds 已提交
2614 2615
	}
	/*
2616
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2617
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
2618
	 */
2619
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2620
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2621
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
2622

2623
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
2624 2625
}

2626
static int __init futex_init(void)
L
Linus Torvalds 已提交
2627
{
2628
	u32 curval;
T
Thomas Gleixner 已提交
2629
	int i;
A
Akinobu Mita 已提交
2630

2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non functional ones will return
	 * -ENOSYS.
	 */
	curval = cmpxchg_futex_value_locked(NULL, 0, 0);
	if (curval == -EFAULT)
		futex_cmpxchg_enabled = 1;

T
Thomas Gleixner 已提交
2645 2646 2647 2648 2649
	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
		plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
2650 2651
	return 0;
}
2652
__initcall(futex_init);