futex.c 67.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/module.h>
59
#include <linux/magic.h>
60 61 62
#include <linux/pid.h>
#include <linux/nsproxy.h>

63
#include <asm/futex.h>
L
Linus Torvalds 已提交
64

65 66
#include "rtmutex_common.h"

67 68
int __read_mostly futex_cmpxchg_enabled;

L
Linus Torvalds 已提交
69 70
#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

L
Linus Torvalds 已提交
92 93 94 95 96
/*
 * We use this hashed waitqueue instead of a normal wait_queue_t, so
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
97
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
L
Linus Torvalds 已提交
98
 * The order of wakup is always to make the first condition true, then
99
 * wake up q->waiter, then make the second condition true.
L
Linus Torvalds 已提交
100 101
 */
struct futex_q {
P
Pierre Peiffer 已提交
102
	struct plist_node list;
T
Thomas Gleixner 已提交
103 104
	/* Waiter reference */
	struct task_struct *task;
L
Linus Torvalds 已提交
105

106
	/* Which hash list lock to use: */
L
Linus Torvalds 已提交
107 108
	spinlock_t *lock_ptr;

109
	/* Key which the futex is hashed on: */
L
Linus Torvalds 已提交
110 111
	union futex_key key;

112 113
	/* Optional priority inheritance state: */
	struct futex_pi_state *pi_state;
114

115 116 117
	/* rt_waiter storage for requeue_pi: */
	struct rt_mutex_waiter *rt_waiter;

118 119
	/* Bitset for the optional bitmasked wakeup */
	u32 bitset;
L
Linus Torvalds 已提交
120 121 122
};

/*
D
Darren Hart 已提交
123 124 125
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
126 127
 */
struct futex_hash_bucket {
P
Pierre Peiffer 已提交
128 129
	spinlock_t lock;
	struct plist_head chain;
L
Linus Torvalds 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
};

static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];

/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
	return (key1->both.word == key2->both.word
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		atomic_inc(&key->shared.inode->i_count);
		break;
	case FUT_OFF_MMSHARED:
		atomic_inc(&key->private.mm->mm_count);
		break;
	}
}

/*
 * Drop a reference to the resource addressed by a key.
 * The hash bucket spinlock must not be held.
 */
static void drop_futex_key_refs(union futex_key *key)
{
181 182 183
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
184
		return;
185
	}
186 187 188 189 190 191 192 193 194 195 196

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
197 198 199
/**
 * get_futex_key - Get parameters which are the keys for a futex.
 * @uaddr: virtual address of the futex
D
Darren Hart 已提交
200
 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
E
Eric Dumazet 已提交
201
 * @key: address where result is stored.
202
 * @rw: mapping needs to be read/write (values: VERIFY_READ, VERIFY_WRITE)
E
Eric Dumazet 已提交
203 204 205
 *
 * Returns a negative error code or 0
 * The key words are stored in *key on success.
L
Linus Torvalds 已提交
206
 *
207
 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
L
Linus Torvalds 已提交
208 209 210
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
211
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
212
 */
213 214
static int
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
L
Linus Torvalds 已提交
215
{
216
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
217 218 219 220 221 222 223
	struct mm_struct *mm = current->mm;
	struct page *page;
	int err;

	/*
	 * The futex address must be "naturally" aligned.
	 */
224
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
225
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
226
		return -EINVAL;
227
	address -= key->both.offset;
L
Linus Torvalds 已提交
228

E
Eric Dumazet 已提交
229 230 231 232 233 234 235 236
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
237
		if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
E
Eric Dumazet 已提交
238 239 240
			return -EFAULT;
		key->private.mm = mm;
		key->private.address = address;
241
		get_futex_key_refs(key);
E
Eric Dumazet 已提交
242 243
		return 0;
	}
L
Linus Torvalds 已提交
244

245
again:
246
	err = get_user_pages_fast(address, 1, rw == VERIFY_WRITE, &page);
247 248 249 250 251 252 253 254 255
	if (err < 0)
		return err;

	lock_page(page);
	if (!page->mapping) {
		unlock_page(page);
		put_page(page);
		goto again;
	}
L
Linus Torvalds 已提交
256 257 258 259 260 261

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
262
	 * the object not the particular process.
L
Linus Torvalds 已提交
263
	 */
264 265
	if (PageAnon(page)) {
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
266
		key->private.mm = mm;
267
		key->private.address = address;
268 269 270 271
	} else {
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
		key->shared.inode = page->mapping->host;
		key->shared.pgoff = page->index;
L
Linus Torvalds 已提交
272 273
	}

274
	get_futex_key_refs(key);
L
Linus Torvalds 已提交
275

276 277 278
	unlock_page(page);
	put_page(page);
	return 0;
L
Linus Torvalds 已提交
279 280
}

281
static inline
P
Peter Zijlstra 已提交
282
void put_futex_key(int fshared, union futex_key *key)
L
Linus Torvalds 已提交
283
{
284
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
285 286
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
 * @hb:     the hash bucket the futex_q's reside in
 * @key:    the futex key (to distinguish it from other futex futex_q's)
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

T
Thomas Gleixner 已提交
306 307 308 309 310 311 312 313 314 315 316 317
static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
{
	u32 curval;

	pagefault_disable();
	curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
	pagefault_enable();

	return curval;
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
318 319 320
{
	int ret;

321
	pagefault_disable();
322
	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
323
	pagefault_enable();
L
Linus Torvalds 已提交
324 325 326 327

	return ret ? -EFAULT : 0;
}

328 329 330 331 332 333 334 335 336 337 338

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

339
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
340 341 342 343 344 345 346 347

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
348
	pi_state->key = FUTEX_KEY_INIT;
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state * alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

static void free_pi_state(struct futex_pi_state *pi_state)
{
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
		spin_lock_irq(&pi_state->owner->pi_lock);
		list_del_init(&pi_state->list);
		spin_unlock_irq(&pi_state->owner->pi_lock);

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
static struct task_struct * futex_find_get_task(pid_t pid)
{
	struct task_struct *p;
403
	const struct cred *cred = current_cred(), *pcred;
404

405
	rcu_read_lock();
406
	p = find_task_by_vpid(pid);
407
	if (!p) {
408
		p = ERR_PTR(-ESRCH);
409 410 411 412 413 414 415 416
	} else {
		pcred = __task_cred(p);
		if (cred->euid != pcred->euid &&
		    cred->euid != pcred->uid)
			p = ERR_PTR(-ESRCH);
		else
			get_task_struct(p);
	}
417

418
	rcu_read_unlock();
419 420 421 422 423 424 425 426 427 428 429 430 431

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
432
	struct futex_hash_bucket *hb;
433
	union futex_key key = FUTEX_KEY_INIT;
434

435 436
	if (!futex_cmpxchg_enabled)
		return;
437 438 439
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
440
	 * versus waiters unqueueing themselves:
441 442 443 444 445 446 447
	 */
	spin_lock_irq(&curr->pi_lock);
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
448
		hb = hash_futex(&key);
449 450 451 452 453
		spin_unlock_irq(&curr->pi_lock);

		spin_lock(&hb->lock);

		spin_lock_irq(&curr->pi_lock);
454 455 456 457
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
458 459 460 461 462 463
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
464 465
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
466 467 468 469 470 471 472 473 474 475 476 477 478
		pi_state->owner = NULL;
		spin_unlock_irq(&curr->pi_lock);

		rt_mutex_unlock(&pi_state->pi_mutex);

		spin_unlock(&hb->lock);

		spin_lock_irq(&curr->pi_lock);
	}
	spin_unlock_irq(&curr->pi_lock);
}

static int
P
Pierre Peiffer 已提交
479 480
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
		union futex_key *key, struct futex_pi_state **ps)
481 482 483
{
	struct futex_pi_state *pi_state = NULL;
	struct futex_q *this, *next;
P
Pierre Peiffer 已提交
484
	struct plist_head *head;
485
	struct task_struct *p;
486
	pid_t pid = uval & FUTEX_TID_MASK;
487 488 489

	head = &hb->chain;

P
Pierre Peiffer 已提交
490
	plist_for_each_entry_safe(this, next, head, list) {
P
Pierre Peiffer 已提交
491
		if (match_futex(&this->key, key)) {
492 493 494 495 496
			/*
			 * Another waiter already exists - bump up
			 * the refcount and return its pi_state:
			 */
			pi_state = this->pi_state;
497 498 499 500 501 502
			/*
			 * Userspace might have messed up non PI and PI futexes
			 */
			if (unlikely(!pi_state))
				return -EINVAL;

503
			WARN_ON(!atomic_read(&pi_state->refcount));
504 505
			WARN_ON(pid && pi_state->owner &&
				pi_state->owner->pid != pid);
506

507
			atomic_inc(&pi_state->refcount);
P
Pierre Peiffer 已提交
508
			*ps = pi_state;
509 510 511 512 513 514

			return 0;
		}
	}

	/*
515
	 * We are the first waiter - try to look up the real owner and attach
516
	 * the new pi_state to it, but bail out when TID = 0
517
	 */
518
	if (!pid)
519
		return -ESRCH;
520
	p = futex_find_get_task(pid);
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	if (IS_ERR(p))
		return PTR_ERR(p);

	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
	spin_lock_irq(&p->pi_lock);
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

		spin_unlock_irq(&p->pi_lock);
		put_task_struct(p);
		return ret;
	}
543 544 545 546 547 548 549 550 551 552

	pi_state = alloc_pi_state();

	/*
	 * Initialize the pi_mutex in locked state and make 'p'
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
553
	pi_state->key = *key;
554

555
	WARN_ON(!list_empty(&pi_state->list));
556 557 558 559 560 561
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
	spin_unlock_irq(&p->pi_lock);

	put_task_struct(p);

P
Pierre Peiffer 已提交
562
	*ps = pi_state;
563 564 565 566

	return 0;
}

567 568
/**
 * futex_lock_pi_atomic() - atomic work required to acquire a pi aware futex
569 570 571 572 573 574 575 576
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
577 578 579 580 581 582 583 584 585 586 587
 *
 * Returns:
 *  0 - ready to wait
 *  1 - acquired the lock
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
588
				struct task_struct *task, int set_waiters)
589 590 591 592 593 594 595 596 597 598 599 600 601
{
	int lock_taken, ret, ownerdied = 0;
	u32 uval, newval, curval;

retry:
	ret = lock_taken = 0;

	/*
	 * To avoid races, we attempt to take the lock here again
	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
	 * the locks. It will most likely not succeed.
	 */
	newval = task_pid_vnr(task);
602 603
	if (set_waiters)
		newval |= FUTEX_WAITERS;
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691

	curval = cmpxchg_futex_value_locked(uaddr, 0, newval);

	if (unlikely(curval == -EFAULT))
		return -EFAULT;

	/*
	 * Detect deadlocks.
	 */
	if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
		return -EDEADLK;

	/*
	 * Surprise - we got the lock. Just return to userspace:
	 */
	if (unlikely(!curval))
		return 1;

	uval = curval;

	/*
	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
	 * to wake at the next unlock.
	 */
	newval = curval | FUTEX_WAITERS;

	/*
	 * There are two cases, where a futex might have no owner (the
	 * owner TID is 0): OWNER_DIED. We take over the futex in this
	 * case. We also do an unconditional take over, when the owner
	 * of the futex died.
	 *
	 * This is safe as we are protected by the hash bucket lock !
	 */
	if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
		/* Keep the OWNER_DIED bit */
		newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
		ownerdied = 0;
		lock_taken = 1;
	}

	curval = cmpxchg_futex_value_locked(uaddr, uval, newval);

	if (unlikely(curval == -EFAULT))
		return -EFAULT;
	if (unlikely(curval != uval))
		goto retry;

	/*
	 * We took the lock due to owner died take over.
	 */
	if (unlikely(lock_taken))
		return 1;

	/*
	 * We dont have the lock. Look up the PI state (or create it if
	 * we are the first waiter):
	 */
	ret = lookup_pi_state(uval, hb, key, ps);

	if (unlikely(ret)) {
		switch (ret) {
		case -ESRCH:
			/*
			 * No owner found for this futex. Check if the
			 * OWNER_DIED bit is set to figure out whether
			 * this is a robust futex or not.
			 */
			if (get_futex_value_locked(&curval, uaddr))
				return -EFAULT;

			/*
			 * We simply start over in case of a robust
			 * futex. The code above will take the futex
			 * and return happy.
			 */
			if (curval & FUTEX_OWNER_DIED) {
				ownerdied = 1;
				goto retry;
			}
		default:
			break;
		}
	}

	return ret;
}

L
Linus Torvalds 已提交
692 693 694 695 696 697
/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed.
 */
static void wake_futex(struct futex_q *q)
{
T
Thomas Gleixner 已提交
698 699
	struct task_struct *p = q->task;

L
Linus Torvalds 已提交
700
	/*
T
Thomas Gleixner 已提交
701 702 703 704 705
	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
	 * a non futex wake up happens on another CPU then the task
	 * might exit and p would dereference a non existing task
	 * struct. Prevent this by holding a reference on p across the
	 * wake up.
L
Linus Torvalds 已提交
706
	 */
T
Thomas Gleixner 已提交
707 708 709
	get_task_struct(p);

	plist_del(&q->list, &q->list.plist);
L
Linus Torvalds 已提交
710
	/*
T
Thomas Gleixner 已提交
711 712 713 714
	 * The waiting task can free the futex_q as soon as
	 * q->lock_ptr = NULL is written, without taking any locks. A
	 * memory barrier is required here to prevent the following
	 * store to lock_ptr from getting ahead of the plist_del.
L
Linus Torvalds 已提交
715
	 */
716
	smp_wmb();
L
Linus Torvalds 已提交
717
	q->lock_ptr = NULL;
T
Thomas Gleixner 已提交
718 719 720

	wake_up_state(p, TASK_NORMAL);
	put_task_struct(p);
L
Linus Torvalds 已提交
721 722
}

723 724 725 726 727 728 729 730 731
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
{
	struct task_struct *new_owner;
	struct futex_pi_state *pi_state = this->pi_state;
	u32 curval, newval;

	if (!pi_state)
		return -EINVAL;

732
	spin_lock(&pi_state->pi_mutex.wait_lock);
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
	 * This happens when we have stolen the lock and the original
	 * pending owner did not enqueue itself back on the rt_mutex.
	 * Thats not a tragedy. We know that way, that a lock waiter
	 * is on the fly. We make the futex_q waiter the pending owner.
	 */
	if (!new_owner)
		new_owner = this->task;

	/*
	 * We pass it to the next owner. (The WAITERS bit is always
	 * kept enabled while there is PI state around. We must also
	 * preserve the owner died bit.)
	 */
749
	if (!(uval & FUTEX_OWNER_DIED)) {
750 751
		int ret = 0;

752
		newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
753

T
Thomas Gleixner 已提交
754
		curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
755

756
		if (curval == -EFAULT)
757
			ret = -EFAULT;
758
		else if (curval != uval)
759 760 761 762 763
			ret = -EINVAL;
		if (ret) {
			spin_unlock(&pi_state->pi_mutex.wait_lock);
			return ret;
		}
764
	}
765

766 767 768 769 770 771 772
	spin_lock_irq(&pi_state->owner->pi_lock);
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
	spin_unlock_irq(&pi_state->owner->pi_lock);

	spin_lock_irq(&new_owner->pi_lock);
	WARN_ON(!list_empty(&pi_state->list));
773 774
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
775 776
	spin_unlock_irq(&new_owner->pi_lock);

777
	spin_unlock(&pi_state->pi_mutex.wait_lock);
778 779 780 781 782 783 784 785 786 787 788 789 790
	rt_mutex_unlock(&pi_state->pi_mutex);

	return 0;
}

static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
{
	u32 oldval;

	/*
	 * There is no waiter, so we unlock the futex. The owner died
	 * bit has not to be preserved here. We are the owner:
	 */
T
Thomas Gleixner 已提交
791
	oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
792 793 794 795 796 797 798 799 800

	if (oldval == -EFAULT)
		return oldval;
	if (oldval != uval)
		return -EAGAIN;

	return 0;
}

I
Ingo Molnar 已提交
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
817 818 819
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
820
	spin_unlock(&hb1->lock);
821 822
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
823 824
}

L
Linus Torvalds 已提交
825
/*
D
Darren Hart 已提交
826
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
827
 */
P
Peter Zijlstra 已提交
828
static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
829
{
830
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
831
	struct futex_q *this, *next;
P
Pierre Peiffer 已提交
832
	struct plist_head *head;
833
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
834 835
	int ret;

836 837 838
	if (!bitset)
		return -EINVAL;

839
	ret = get_futex_key(uaddr, fshared, &key, VERIFY_READ);
L
Linus Torvalds 已提交
840 841 842
	if (unlikely(ret != 0))
		goto out;

843 844 845
	hb = hash_futex(&key);
	spin_lock(&hb->lock);
	head = &hb->chain;
L
Linus Torvalds 已提交
846

P
Pierre Peiffer 已提交
847
	plist_for_each_entry_safe(this, next, head, list) {
L
Linus Torvalds 已提交
848
		if (match_futex (&this->key, &key)) {
849
			if (this->pi_state || this->rt_waiter) {
850 851 852
				ret = -EINVAL;
				break;
			}
853 854 855 856 857

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

L
Linus Torvalds 已提交
858 859 860 861 862 863
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

864
	spin_unlock(&hb->lock);
865
	put_futex_key(fshared, &key);
866
out:
L
Linus Torvalds 已提交
867 868 869
	return ret;
}

870 871 872 873
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
874
static int
P
Peter Zijlstra 已提交
875
futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
876
	      int nr_wake, int nr_wake2, int op)
877
{
878
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
879
	struct futex_hash_bucket *hb1, *hb2;
P
Pierre Peiffer 已提交
880
	struct plist_head *head;
881
	struct futex_q *this, *next;
D
Darren Hart 已提交
882
	int ret, op_ret;
883

D
Darren Hart 已提交
884
retry:
885
	ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
886 887
	if (unlikely(ret != 0))
		goto out;
888
	ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
889
	if (unlikely(ret != 0))
890
		goto out_put_key1;
891

892 893
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
894

I
Ingo Molnar 已提交
895
	double_lock_hb(hb1, hb2);
D
Darren Hart 已提交
896
retry_private:
897
	op_ret = futex_atomic_op_inuser(op, uaddr2);
898
	if (unlikely(op_ret < 0)) {
899
		u32 dummy;
900

D
Darren Hart 已提交
901
		double_unlock_hb(hb1, hb2);
902

903
#ifndef CONFIG_MMU
904 905 906 907
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
908
		ret = op_ret;
909
		goto out_put_keys;
910 911
#endif

912 913
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
914
			goto out_put_keys;
915 916
		}

917
		ret = get_user(dummy, uaddr2);
918
		if (ret)
919
			goto out_put_keys;
920

D
Darren Hart 已提交
921 922 923
		if (!fshared)
			goto retry_private;

924 925
		put_futex_key(fshared, &key2);
		put_futex_key(fshared, &key1);
D
Darren Hart 已提交
926
		goto retry;
927 928
	}

929
	head = &hb1->chain;
930

P
Pierre Peiffer 已提交
931
	plist_for_each_entry_safe(this, next, head, list) {
932 933 934 935 936 937 938 939
		if (match_futex (&this->key, &key1)) {
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
940
		head = &hb2->chain;
941 942

		op_ret = 0;
P
Pierre Peiffer 已提交
943
		plist_for_each_entry_safe(this, next, head, list) {
944 945 946 947 948 949 950 951 952
			if (match_futex (&this->key, &key2)) {
				wake_futex(this);
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

D
Darren Hart 已提交
953
	double_unlock_hb(hb1, hb2);
954
out_put_keys:
955
	put_futex_key(fshared, &key2);
956
out_put_key1:
957
	put_futex_key(fshared, &key1);
958
out:
959 960 961
	return ret;
}

D
Darren Hart 已提交
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
		plist_add(&q->list, &hb2->chain);
		q->lock_ptr = &hb2->lock;
#ifdef CONFIG_DEBUG_PI_LIST
		q->list.plist.lock = &hb2->lock;
#endif
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
 * q:	the futex_q
 * key:	the key of the requeue target futex
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
 * atomic lock acquisition.  Must be called with the q->lock_ptr held.
 */
static inline
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key)
{
	drop_futex_key_refs(&q->key);
	get_futex_key_refs(key);
	q->key = *key;

	WARN_ON(plist_node_empty(&q->list));
	plist_del(&q->list, &q->list.plist);

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

T
Thomas Gleixner 已提交
1014
	wake_up_state(q->task, TASK_NORMAL);
1015 1016 1017 1018
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1019 1020 1021 1022 1023 1024 1025
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1026 1027
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1028 1029 1030
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
 *
 * Returns:
 *  0 - failed to acquire the lock atomicly
 *  1 - acquired the lock
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1041
				 struct futex_pi_state **ps, int set_waiters)
1042
{
1043
	struct futex_q *top_waiter = NULL;
1044 1045 1046 1047 1048 1049
	u32 curval;
	int ret;

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1050 1051 1052 1053 1054 1055 1056 1057
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1058 1059 1060 1061 1062 1063 1064
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

	/*
1065 1066 1067
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1068
	 */
1069 1070
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	if (ret == 1)
		requeue_pi_wake_futex(top_waiter, key2);

	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
 * uaddr1:	source futex user address
 * uaddr2:	target futex user address
 * nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * requeue_pi:	if we are attempting to requeue from a non-pi futex to a
 * 		pi futex (pi to pi requeue is not supported)
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
 * Returns:
 * >=0 - on success, the number of tasks requeued or woken
 *  <0 - on error
L
Linus Torvalds 已提交
1092
 */
P
Peter Zijlstra 已提交
1093
static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1094 1095
			 int nr_wake, int nr_requeue, u32 *cmpval,
			 int requeue_pi)
L
Linus Torvalds 已提交
1096
{
1097
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1098 1099
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1100
	struct futex_hash_bucket *hb1, *hb2;
P
Pierre Peiffer 已提交
1101
	struct plist_head *head1;
L
Linus Torvalds 已提交
1102
	struct futex_q *this, *next;
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	u32 curval2;

	if (requeue_pi) {
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1125

1126
retry:
1127 1128 1129 1130 1131 1132 1133 1134 1135
	if (pi_state != NULL) {
		/*
		 * We will have to lookup the pi_state again, so free this one
		 * to keep the accounting correct.
		 */
		free_pi_state(pi_state);
		pi_state = NULL;
	}

1136
	ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
L
Linus Torvalds 已提交
1137 1138
	if (unlikely(ret != 0))
		goto out;
1139 1140
	ret = get_futex_key(uaddr2, fshared, &key2,
			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
L
Linus Torvalds 已提交
1141
	if (unlikely(ret != 0))
1142
		goto out_put_key1;
L
Linus Torvalds 已提交
1143

1144 1145
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1146

D
Darren Hart 已提交
1147
retry_private:
I
Ingo Molnar 已提交
1148
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1149

1150 1151
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1152

1153
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1154 1155

		if (unlikely(ret)) {
D
Darren Hart 已提交
1156
			double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1157

1158
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1159 1160
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1161

D
Darren Hart 已提交
1162 1163
			if (!fshared)
				goto retry_private;
L
Linus Torvalds 已提交
1164

D
Darren Hart 已提交
1165 1166 1167
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
			goto retry;
L
Linus Torvalds 已提交
1168
		}
1169
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1170 1171 1172 1173 1174
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1175
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1176 1177 1178 1179 1180 1181
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1182
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1183
						 &key2, &pi_state, nr_requeue);
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
		 * reference to it.
		 */
		if (ret == 1) {
			WARN_ON(pi_state);
			task_count++;
			ret = get_futex_value_locked(&curval2, uaddr2);
			if (!ret)
				ret = lookup_pi_state(curval2, hb2, &key2,
						      &pi_state);
		}

		switch (ret) {
		case 0:
			break;
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
			ret = get_user(curval2, uaddr2);
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
			/* The owner was exiting, try again. */
			double_unlock_hb(hb1, hb2);
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

1223
	head1 = &hb1->chain;
P
Pierre Peiffer 已提交
1224
	plist_for_each_entry_safe(this, next, head1, list) {
1225 1226 1227 1228
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
1229
			continue;
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239

		WARN_ON(!requeue_pi && this->rt_waiter);
		WARN_ON(requeue_pi && !this->rt_waiter);

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
L
Linus Torvalds 已提交
1240
			wake_futex(this);
1241 1242
			continue;
		}
L
Linus Torvalds 已提交
1243

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
			/* Prepare the waiter to take the rt_mutex. */
			atomic_inc(&pi_state->refcount);
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
							this->task, 1);
			if (ret == 1) {
				/* We got the lock. */
				requeue_pi_wake_futex(this, &key2);
				continue;
			} else if (ret) {
				/* -EDEADLK */
				this->pi_state = NULL;
				free_pi_state(pi_state);
				goto out_unlock;
			}
L
Linus Torvalds 已提交
1265
		}
1266 1267
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
1268 1269 1270
	}

out_unlock:
D
Darren Hart 已提交
1271
	double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1272

1273 1274 1275 1276 1277 1278
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
1279
	while (--drop_count >= 0)
1280
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
1281

1282
out_put_keys:
1283
	put_futex_key(fshared, &key2);
1284
out_put_key1:
1285
	put_futex_key(fshared, &key1);
1286
out:
1287 1288 1289
	if (pi_state != NULL)
		free_pi_state(pi_state);
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
1290 1291 1292
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
1293
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
L
Linus Torvalds 已提交
1294
{
1295
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1296

1297
	get_futex_key_refs(&q->key);
1298 1299
	hb = hash_futex(&q->key);
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
1300

1301 1302
	spin_lock(&hb->lock);
	return hb;
L
Linus Torvalds 已提交
1303 1304
}

E
Eric Sesterhenn 已提交
1305
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
L
Linus Torvalds 已提交
1306
{
P
Pierre Peiffer 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
#ifdef CONFIG_DEBUG_PI_LIST
	q->list.plist.lock = &hb->lock;
#endif
	plist_add(&q->list, &hb->chain);
1324
	q->task = current;
1325
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
1326 1327 1328
}

static inline void
1329
queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
L
Linus Torvalds 已提交
1330
{
1331
	spin_unlock(&hb->lock);
1332
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
}

/*
 * queue_me and unqueue_me must be called as a pair, each
 * exactly once.  They are called with the hashed spinlock held.
 */

/* Return 1 if we were still queued (ie. 0 means we were woken) */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
1344
	int ret = 0;
L
Linus Torvalds 已提交
1345 1346

	/* In the common case we don't take the spinlock, which is nice. */
1347
retry:
L
Linus Torvalds 已提交
1348
	lock_ptr = q->lock_ptr;
1349
	barrier();
1350
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
P
Pierre Peiffer 已提交
1369 1370
		WARN_ON(plist_node_empty(&q->list));
		plist_del(&q->list, &q->list.plist);
1371 1372 1373

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
1374 1375 1376 1377
		spin_unlock(lock_ptr);
		ret = 1;
	}

1378
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
1379 1380 1381
	return ret;
}

1382 1383
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
1384 1385
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
1386
 */
P
Pierre Peiffer 已提交
1387
static void unqueue_me_pi(struct futex_q *q)
1388
{
P
Pierre Peiffer 已提交
1389 1390
	WARN_ON(plist_node_empty(&q->list));
	plist_del(&q->list, &q->list.plist);
1391 1392 1393 1394 1395

	BUG_ON(!q->pi_state);
	free_pi_state(q->pi_state);
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
1396
	spin_unlock(q->lock_ptr);
1397

1398
	drop_futex_key_refs(&q->key);
1399 1400
}

P
Pierre Peiffer 已提交
1401
/*
1402
 * Fixup the pi_state owner with the new owner.
P
Pierre Peiffer 已提交
1403
 *
1404 1405
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
P
Pierre Peiffer 已提交
1406
 */
1407
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
P
Peter Zijlstra 已提交
1408
				struct task_struct *newowner, int fshared)
P
Pierre Peiffer 已提交
1409
{
1410
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Pierre Peiffer 已提交
1411
	struct futex_pi_state *pi_state = q->pi_state;
1412
	struct task_struct *oldowner = pi_state->owner;
P
Pierre Peiffer 已提交
1413
	u32 uval, curval, newval;
D
Darren Hart 已提交
1414
	int ret;
P
Pierre Peiffer 已提交
1415 1416

	/* Owner died? */
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
	 * pending owner or we are the pending owner which failed to
	 * get the rtmutex. We have to replace the pending owner TID
	 * in the user space variable. This must be atomic as we have
	 * to preserve the owner died bit here.
	 *
D
Darren Hart 已提交
1427 1428 1429
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	 *
	 * Modifying pi_state _before_ the user space value would
	 * leave the pi_state in an inconsistent state when we fault
	 * here, because we need to drop the hash bucket lock to
	 * handle the fault. This might be observed in the PID check
	 * in lookup_pi_state.
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

	while (1) {
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

		curval = cmpxchg_futex_value_locked(uaddr, uval, newval);

		if (curval == -EFAULT)
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
1457 1458 1459 1460 1461
	if (pi_state->owner != NULL) {
		spin_lock_irq(&pi_state->owner->pi_lock);
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
		spin_unlock_irq(&pi_state->owner->pi_lock);
1462
	}
P
Pierre Peiffer 已提交
1463

1464
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
1465

1466
	spin_lock_irq(&newowner->pi_lock);
P
Pierre Peiffer 已提交
1467
	WARN_ON(!list_empty(&pi_state->list));
1468 1469
	list_add(&pi_state->list, &newowner->pi_state_list);
	spin_unlock_irq(&newowner->pi_lock);
1470
	return 0;
P
Pierre Peiffer 已提交
1471 1472

	/*
1473 1474 1475 1476 1477 1478 1479 1480
	 * To handle the page fault we need to drop the hash bucket
	 * lock here. That gives the other task (either the pending
	 * owner itself or the task which stole the rtmutex) the
	 * chance to try the fixup of the pi_state. So once we are
	 * back from handling the fault we need to check the pi_state
	 * after reacquiring the hash bucket lock and before trying to
	 * do another fixup. When the fixup has been done already we
	 * simply return.
P
Pierre Peiffer 已提交
1481
	 */
1482 1483
handle_fault:
	spin_unlock(q->lock_ptr);
1484

D
Darren Hart 已提交
1485
	ret = get_user(uval, uaddr);
1486

1487
	spin_lock(q->lock_ptr);
1488

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	/*
	 * Check if someone else fixed it for us:
	 */
	if (pi_state->owner != oldowner)
		return 0;

	if (ret)
		return ret;

	goto retry;
P
Pierre Peiffer 已提交
1499 1500
}

E
Eric Dumazet 已提交
1501 1502
/*
 * In case we must use restart_block to restart a futex_wait,
1503
 * we encode in the 'flags' shared capability
E
Eric Dumazet 已提交
1504
 */
1505 1506
#define FLAGS_SHARED		0x01
#define FLAGS_CLOCKRT		0x02
1507
#define FLAGS_HAS_TIMEOUT	0x04
E
Eric Dumazet 已提交
1508

N
Nick Piggin 已提交
1509
static long futex_wait_restart(struct restart_block *restart);
1510
static long futex_lock_pi_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
1511

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @fshared:	whether the futex is shared (1) or not (0)
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
 * Returns:
 *  1 - success, lock taken
 *  0 - success, lock not taken
 * <0 - on error (-EFAULT)
 */
static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
		       int locked)
{
	struct task_struct *owner;
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
		 */
		if (q->pi_state->owner != current)
			ret = fixup_pi_state_owner(uaddr, q, current, fshared);
		goto out;
	}

	/*
	 * Catch the rare case, where the lock was released when we were on the
	 * way back before we locked the hash bucket.
	 */
	if (q->pi_state->owner == current) {
		/*
		 * Try to get the rt_mutex now. This might fail as some other
		 * task acquired the rt_mutex after we removed ourself from the
		 * rt_mutex waiters list.
		 */
		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
			locked = 1;
			goto out;
		}

		/*
		 * pi_state is incorrect, some other task did a lock steal and
		 * we returned due to timeout or signal without taking the
		 * rt_mutex. Too late. We can access the rt_mutex_owner without
		 * locking, as the other task is now blocked on the hash bucket
		 * lock. Fix the state up.
		 */
		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
		ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
	 * the owner, nor the pending owner, of the rt_mutex.
	 */
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);

out:
	return ret ? ret : locked;
}

1585 1586 1587 1588 1589 1590 1591
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
1592
				struct hrtimer_sleeper *timeout)
1593 1594 1595 1596 1597 1598 1599
{
	queue_me(q, hb);

	/*
	 * There might have been scheduling since the queue_me(), as we
	 * cannot hold a spinlock across the get_user() in case it
	 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
T
Thomas Gleixner 已提交
1600
	 * queueing ourselves into the futex hash. This code thus has to
1601 1602 1603
	 * rely on the futex_wake() code removing us from hash when it
	 * wakes us up.
	 */
T
Thomas Gleixner 已提交
1604
	set_current_state(TASK_INTERRUPTIBLE);
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628

	/* Arm the timer */
	if (timeout) {
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
		if (!hrtimer_active(&timeout->timer))
			timeout->task = NULL;
	}

	/*
	 * !plist_node_empty() is safe here without any lock.
	 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
			schedule();
	}
	__set_current_state(TASK_RUNNING);
}

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
 * @fshared:	whether the futex is shared (1) or not (0)
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
 * Returns:
 *  0 - uaddr contains val and hb has been locked
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
 */
static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
1648
{
1649 1650
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
1651 1652

	/*
D
Darren Hart 已提交
1653
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
	 * any cond.  If we queued after testing *uaddr, that would open
	 * a race condition where we could block indefinitely with
	 * cond(var) false, which would violate the guarantee.
	 *
	 * A consequence is that futex_wait() can return zero and absorb
	 * a wakeup when *uaddr != val on entry to the syscall.  This is
	 * rare, but normal.
	 */
1669 1670
retry:
	q->key = FUTEX_KEY_INIT;
1671
	ret = get_futex_key(uaddr, fshared, &q->key, VERIFY_READ);
1672
	if (unlikely(ret != 0))
1673
		return ret;
1674 1675 1676 1677

retry_private:
	*hb = queue_lock(q);

1678
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
1679

1680 1681
	if (ret) {
		queue_unlock(q, *hb);
L
Linus Torvalds 已提交
1682

1683
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
1684
		if (ret)
1685
			goto out;
L
Linus Torvalds 已提交
1686

D
Darren Hart 已提交
1687 1688 1689
		if (!fshared)
			goto retry_private;

1690
		put_futex_key(fshared, &q->key);
D
Darren Hart 已提交
1691
		goto retry;
L
Linus Torvalds 已提交
1692
	}
1693

1694 1695 1696
	if (uval != val) {
		queue_unlock(q, *hb);
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
1697
	}
L
Linus Torvalds 已提交
1698

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
out:
	if (ret)
		put_futex_key(fshared, &q->key);
	return ret;
}

static int futex_wait(u32 __user *uaddr, int fshared,
		      u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
	struct futex_q q;
	int ret;

	if (!bitset)
		return -EINVAL;

	q.pi_state = NULL;
	q.bitset = bitset;
1719
	q.rt_waiter = NULL;
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735

	if (abs_time) {
		to = &timeout;

		hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
				      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/* Prepare to wait on uaddr. */
	ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
	if (ret)
		goto out;

1736
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
1737
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
1738 1739

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
1740
	ret = 0;
L
Linus Torvalds 已提交
1741
	if (!unqueue_me(&q))
P
Peter Zijlstra 已提交
1742 1743
		goto out_put_key;
	ret = -ETIMEDOUT;
1744
	if (to && !to->task)
P
Peter Zijlstra 已提交
1745
		goto out_put_key;
N
Nick Piggin 已提交
1746

1747 1748 1749 1750
	/*
	 * We expect signal_pending(current), but another thread may
	 * have handled it for us already.
	 */
P
Peter Zijlstra 已提交
1751
	ret = -ERESTARTSYS;
1752
	if (!abs_time)
P
Peter Zijlstra 已提交
1753
		goto out_put_key;
L
Linus Torvalds 已提交
1754

P
Peter Zijlstra 已提交
1755 1756 1757 1758 1759 1760
	restart = &current_thread_info()->restart_block;
	restart->fn = futex_wait_restart;
	restart->futex.uaddr = (u32 *)uaddr;
	restart->futex.val = val;
	restart->futex.time = abs_time->tv64;
	restart->futex.bitset = bitset;
1761
	restart->futex.flags = FLAGS_HAS_TIMEOUT;
P
Peter Zijlstra 已提交
1762 1763 1764 1765 1766

	if (fshared)
		restart->futex.flags |= FLAGS_SHARED;
	if (clockrt)
		restart->futex.flags |= FLAGS_CLOCKRT;
1767

P
Peter Zijlstra 已提交
1768 1769 1770 1771
	ret = -ERESTART_RESTARTBLOCK;

out_put_key:
	put_futex_key(fshared, &q.key);
1772
out:
1773 1774 1775 1776
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
1777 1778 1779
	return ret;
}

N
Nick Piggin 已提交
1780 1781 1782

static long futex_wait_restart(struct restart_block *restart)
{
1783
	u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
P
Peter Zijlstra 已提交
1784
	int fshared = 0;
1785
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
1786

1787 1788 1789 1790
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
		t.tv64 = restart->futex.time;
		tp = &t;
	}
N
Nick Piggin 已提交
1791
	restart->fn = do_no_restart_syscall;
1792
	if (restart->futex.flags & FLAGS_SHARED)
P
Peter Zijlstra 已提交
1793
		fshared = 1;
1794
	return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1795 1796
				restart->futex.bitset,
				restart->futex.flags & FLAGS_CLOCKRT);
N
Nick Piggin 已提交
1797 1798 1799
}


1800 1801 1802 1803 1804 1805
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
 * if there are waiters then it will block, it does PI, etc. (Due to
 * races the kernel might see a 0 value of the futex too.)
 */
P
Peter Zijlstra 已提交
1806
static int futex_lock_pi(u32 __user *uaddr, int fshared,
E
Eric Dumazet 已提交
1807
			 int detect, ktime_t *time, int trylock)
1808
{
1809
	struct hrtimer_sleeper timeout, *to = NULL;
1810
	struct futex_hash_bucket *hb;
1811
	u32 uval;
1812
	struct futex_q q;
1813
	int res, ret;
1814 1815 1816 1817

	if (refill_pi_state_cache())
		return -ENOMEM;

1818
	if (time) {
1819
		to = &timeout;
1820 1821
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
1822
		hrtimer_init_sleeper(to, current);
1823
		hrtimer_set_expires(&to->timer, *time);
1824 1825
	}

1826
	q.pi_state = NULL;
1827
	q.rt_waiter = NULL;
1828
retry:
1829
	q.key = FUTEX_KEY_INIT;
1830
	ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
1831
	if (unlikely(ret != 0))
1832
		goto out;
1833

D
Darren Hart 已提交
1834
retry_private:
E
Eric Sesterhenn 已提交
1835
	hb = queue_lock(&q);
1836

1837
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1838
	if (unlikely(ret)) {
1839
		switch (ret) {
1840 1841 1842 1843 1844 1845
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
1846 1847 1848 1849 1850 1851
		case -EAGAIN:
			/*
			 * Task is exiting and we just wait for the
			 * exit to complete.
			 */
			queue_unlock(&q, hb);
1852
			put_futex_key(fshared, &q.key);
1853 1854 1855
			cond_resched();
			goto retry;
		default:
1856
			goto out_unlock_put_key;
1857 1858 1859 1860 1861 1862
		}
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
E
Eric Sesterhenn 已提交
1863
	queue_me(&q, hb);
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
	if (!trylock)
		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
	else {
		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

1877
	spin_lock(q.lock_ptr);
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
	res = fixup_owner(uaddr, fshared, &q, !ret);
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
1889

1890
	/*
1891 1892
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
1893 1894 1895 1896
	 */
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
		rt_mutex_unlock(&q.pi_state->pi_mutex);

1897 1898
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
1899

1900
	goto out;
1901

1902
out_unlock_put_key:
1903 1904
	queue_unlock(&q, hb);

1905
out_put_key:
1906
	put_futex_key(fshared, &q.key);
1907
out:
1908 1909
	if (to)
		destroy_hrtimer_on_stack(&to->timer);
1910
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
1911

1912
uaddr_faulted:
1913
	/*
1914 1915 1916 1917 1918
	 * We have to r/w  *(int __user *)uaddr, and we have to modify it
	 * atomically.  Therefore, if we continue to fault after get_user()
	 * below, we need to handle the fault ourselves, while still holding
	 * the mmap_sem.  This can occur if the uaddr is under contention as
	 * we have to drop the mmap_sem in order to call get_user().
1919
	 */
1920 1921
	queue_unlock(&q, hb);

1922
	ret = get_user(uval, uaddr);
D
Darren Hart 已提交
1923 1924
	if (ret)
		goto out_put_key;
1925

D
Darren Hart 已提交
1926 1927 1928 1929 1930
	if (!fshared)
		goto retry_private;

	put_futex_key(fshared, &q.key);
	goto retry;
1931 1932
}

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
static long futex_lock_pi_restart(struct restart_block *restart)
{
	u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
	ktime_t t, *tp = NULL;
	int fshared = restart->futex.flags & FLAGS_SHARED;

	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
		t.tv64 = restart->futex.time;
		tp = &t;
	}
	restart->fn = do_no_restart_syscall;

	return (long)futex_lock_pi(uaddr, fshared, restart->futex.val, tp, 0);
}
1947

1948 1949 1950 1951 1952
/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
P
Peter Zijlstra 已提交
1953
static int futex_unlock_pi(u32 __user *uaddr, int fshared)
1954 1955 1956 1957
{
	struct futex_hash_bucket *hb;
	struct futex_q *this, *next;
	u32 uval;
P
Pierre Peiffer 已提交
1958
	struct plist_head *head;
1959
	union futex_key key = FUTEX_KEY_INIT;
D
Darren Hart 已提交
1960
	int ret;
1961 1962 1963 1964 1965 1966 1967

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
1968
	if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1969 1970
		return -EPERM;

1971
	ret = get_futex_key(uaddr, fshared, &key, VERIFY_WRITE);
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
	if (unlikely(ret != 0))
		goto out;

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
	 * To avoid races, try to do the TID -> 0 atomic transition
	 * again. If it succeeds then we can return without waking
	 * anyone else up:
	 */
T
Thomas Gleixner 已提交
1983
	if (!(uval & FUTEX_OWNER_DIED))
1984
		uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
T
Thomas Gleixner 已提交
1985

1986 1987 1988 1989 1990 1991 1992

	if (unlikely(uval == -EFAULT))
		goto pi_faulted;
	/*
	 * Rare case: we managed to release the lock atomically,
	 * no need to wake anyone else up:
	 */
1993
	if (unlikely(uval == task_pid_vnr(current)))
1994 1995 1996 1997 1998 1999 2000 2001
		goto out_unlock;

	/*
	 * Ok, other tasks may need to be woken up - check waiters
	 * and do the wakeup if necessary:
	 */
	head = &hb->chain;

P
Pierre Peiffer 已提交
2002
	plist_for_each_entry_safe(this, next, head, list) {
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
		if (!match_futex (&this->key, &key))
			continue;
		ret = wake_futex_pi(uaddr, uval, this);
		/*
		 * The atomic access to the futex value
		 * generated a pagefault, so retry the
		 * user-access and the wakeup:
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
		goto out_unlock;
	}
	/*
	 * No waiters - kernel unlocks the futex:
	 */
2018 2019 2020 2021 2022
	if (!(uval & FUTEX_OWNER_DIED)) {
		ret = unlock_futex_pi(uaddr, uval);
		if (ret == -EFAULT)
			goto pi_faulted;
	}
2023 2024 2025

out_unlock:
	spin_unlock(&hb->lock);
2026
	put_futex_key(fshared, &key);
2027

2028
out:
2029 2030 2031 2032
	return ret;

pi_faulted:
	/*
2033 2034 2035 2036 2037
	 * We have to r/w  *(int __user *)uaddr, and we have to modify it
	 * atomically.  Therefore, if we continue to fault after get_user()
	 * below, we need to handle the fault ourselves, while still holding
	 * the mmap_sem.  This can occur if the uaddr is under contention as
	 * we have to drop the mmap_sem in order to call get_user().
2038
	 */
2039
	spin_unlock(&hb->lock);
D
Darren Hart 已提交
2040
	put_futex_key(fshared, &key);
2041 2042

	ret = get_user(uval, uaddr);
2043
	if (!ret)
2044 2045
		goto retry;

L
Linus Torvalds 已提交
2046 2047 2048
	return ret;
}

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
 * Returns
 *  0 - no early wakeup detected
 * <0 - -ETIMEDOUT or -ERESTARTSYS (FIXME: or ERESTARTNOINTR?)
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
		plist_del(&q->list, &q->list.plist);
		drop_futex_key_refs(&q->key);

		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
		else {
			/*
			 * We expect signal_pending(current), but another
			 * thread may have handled it for us already.
			 */
			/* FIXME: ERESTARTSYS or ERESTARTNOINTR?  Do we care if
			 * the user specified SA_RESTART or not? */
			ret = -ERESTARTSYS;
		}
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
 * @uaddr:	the futex we initialyl wait on (non-pi)
 * @fshared:	whether the futexes are shared (1) or not (0).  They must be
 * 		the same type, no requeueing from private to shared, etc.
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all.
 * @clockrt:	whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
 * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
 * complete the acquisition of the rt_mutex prior to returning to userspace.
 * This ensures the rt_mutex maintains an owner when it has waiters; without
 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
 * need to.
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
 * via the following:
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
 * 2) wakeup on uaddr2 after a requeue and subsequent unlock
 * 3) signal (before or after requeue)
 * 4) timeout (before or after requeue)
 *
 * If 3, we setup a restart_block with futex_wait_requeue_pi() as the function.
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
 * If 6, we setup a restart_block with futex_lock_pi() as the function.
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
 * Returns:
 *  0 - On success
 * <0 - On error
 */
static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
				 u32 val, ktime_t *abs_time, u32 bitset,
				 int clockrt, u32 __user *uaddr2)
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct rt_mutex_waiter rt_waiter;
	struct rt_mutex *pi_mutex = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
	union futex_key key2;
	struct futex_q q;
	int res, ret;
	u32 uval;

	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
		hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
				      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
	debug_rt_mutex_init_waiter(&rt_waiter);
	rt_waiter.task = NULL;

	q.pi_state = NULL;
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;

	key2 = FUTEX_KEY_INIT;
2182
	ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
	if (unlikely(ret != 0))
		goto out;

	/* Prepare to wait on uaddr. */
	ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
	if (ret) {
		put_futex_key(fshared, &key2);
		goto out;
	}

	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
2194
	futex_wait_queue_me(hb, &q, to);
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
	 * race with the atomic proxy lock acquition by the requeue code.
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
			ret = fixup_pi_state_owner(uaddr2, &q, current,
						   fshared);
			spin_unlock(q.lock_ptr);
		}
	} else {
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
		WARN_ON(!&q.pi_state);
		pi_mutex = &q.pi_state->pi_mutex;
		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
		debug_rt_mutex_free_waiter(&rt_waiter);

		spin_lock(q.lock_ptr);
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
		res = fixup_owner(uaddr2, fshared, &q, !ret);
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
		 * acquired the lock, clear our -ETIMEDOUT or -EINTR.
		 */
		if (res)
			ret = (res < 0) ? res : 0;

		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

	/*
	 * If fixup_pi_state_owner() faulted and was unable to handle the
	 * fault, unlock the rt_mutex and return the fault to userspace.
	 */
	if (ret == -EFAULT) {
		if (rt_mutex_owner(pi_mutex) == current)
			rt_mutex_unlock(pi_mutex);
	} else if (ret == -EINTR) {
		ret = -EFAULT;
		if (get_user(uval, uaddr2))
			goto out_put_keys;

		/*
		 * We've already been requeued, so restart by calling
		 * futex_lock_pi() directly, rather then returning to this
		 * function.
		 */
		ret = -ERESTART_RESTARTBLOCK;
		restart = &current_thread_info()->restart_block;
		restart->fn = futex_lock_pi_restart;
		restart->futex.uaddr = (u32 *)uaddr2;
		restart->futex.val = uval;
		restart->futex.flags = 0;
		if (abs_time) {
			restart->futex.flags |= FLAGS_HAS_TIMEOUT;
			restart->futex.time = abs_time->tv64;
		}

		if (fshared)
			restart->futex.flags |= FLAGS_SHARED;
		if (clockrt)
			restart->futex.flags |= FLAGS_CLOCKRT;
	}

out_put_keys:
	put_futex_key(fshared, &q.key);
	put_futex_key(fshared, &key2);

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

2295 2296 2297 2298 2299 2300 2301
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
2302
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
 * sys_set_robust_list - set the robust-futex list head of a task
 * @head: pointer to the list-head
 * @len: length of the list-head, as userspace expects
 */
2315 2316
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
2317
{
2318 2319
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
 * sys_get_robust_list - get the robust-futex list head of a task
 * @pid: pid of the process [zero for current task]
 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
 * @len_ptr: pointer to a length field, the kernel fills in the header size
 */
2337 2338 2339
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
2340
{
A
Al Viro 已提交
2341
	struct robust_list_head __user *head;
2342
	unsigned long ret;
2343
	const struct cred *cred = current_cred(), *pcred;
2344

2345 2346 2347
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

2348 2349 2350 2351 2352 2353
	if (!pid)
		head = current->robust_list;
	else {
		struct task_struct *p;

		ret = -ESRCH;
2354
		rcu_read_lock();
2355
		p = find_task_by_vpid(pid);
2356 2357 2358
		if (!p)
			goto err_unlock;
		ret = -EPERM;
2359 2360 2361
		pcred = __task_cred(p);
		if (cred->euid != pcred->euid &&
		    cred->euid != pcred->uid &&
2362
		    !capable(CAP_SYS_PTRACE))
2363 2364
			goto err_unlock;
		head = p->robust_list;
2365
		rcu_read_unlock();
2366 2367 2368 2369 2370 2371 2372
	}

	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
2373
	rcu_read_unlock();
2374 2375 2376 2377 2378 2379 2380 2381

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
2382
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2383
{
2384
	u32 uval, nval, mval;
2385

2386 2387
retry:
	if (get_user(uval, uaddr))
2388 2389
		return -1;

2390
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
2401 2402 2403
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
		nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);

2404 2405 2406 2407
		if (nval == -EFAULT)
			return -1;

		if (nval != uval)
2408
			goto retry;
2409

2410 2411 2412 2413
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
2414
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
2415
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2416 2417 2418 2419
	}
	return 0;
}

2420 2421 2422 2423
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
2424 2425
				     struct robust_list __user * __user *head,
				     int *pi)
2426 2427 2428
{
	unsigned long uentry;

A
Al Viro 已提交
2429
	if (get_user(uentry, (unsigned long __user *)head))
2430 2431
		return -EFAULT;

A
Al Viro 已提交
2432
	*entry = (void __user *)(uentry & ~1UL);
2433 2434 2435 2436 2437
	*pi = uentry & 1;

	return 0;
}

2438 2439 2440 2441 2442 2443 2444 2445 2446
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
2447 2448
	struct robust_list __user *entry, *next_entry, *pending;
	unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2449
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
2450
	int rc;
2451

2452 2453 2454
	if (!futex_cmpxchg_enabled)
		return;

2455 2456 2457 2458
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
2459
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
2470
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2471
		return;
2472

M
Martin Schwidefsky 已提交
2473
	next_entry = NULL;	/* avoid warning with gcc */
2474
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
2475 2476 2477 2478 2479
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2480 2481
		/*
		 * A pending lock might already be on the list, so
2482
		 * don't process it twice:
2483 2484
		 */
		if (entry != pending)
A
Al Viro 已提交
2485
			if (handle_futex_death((void __user *)entry + futex_offset,
2486
						curr, pi))
2487
				return;
M
Martin Schwidefsky 已提交
2488
		if (rc)
2489
			return;
M
Martin Schwidefsky 已提交
2490 2491
		entry = next_entry;
		pi = next_pi;
2492 2493 2494 2495 2496 2497 2498 2499
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
2500 2501 2502 2503

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
2504 2505
}

2506
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2507
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
2508
{
2509
	int clockrt, ret = -ENOSYS;
E
Eric Dumazet 已提交
2510
	int cmd = op & FUTEX_CMD_MASK;
P
Peter Zijlstra 已提交
2511
	int fshared = 0;
E
Eric Dumazet 已提交
2512 2513

	if (!(op & FUTEX_PRIVATE_FLAG))
P
Peter Zijlstra 已提交
2514
		fshared = 1;
L
Linus Torvalds 已提交
2515

2516
	clockrt = op & FUTEX_CLOCK_REALTIME;
2517
	if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2518
		return -ENOSYS;
L
Linus Torvalds 已提交
2519

E
Eric Dumazet 已提交
2520
	switch (cmd) {
L
Linus Torvalds 已提交
2521
	case FUTEX_WAIT:
2522 2523
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
2524
		ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
L
Linus Torvalds 已提交
2525 2526
		break;
	case FUTEX_WAKE:
2527 2528 2529
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
		ret = futex_wake(uaddr, fshared, val, val3);
L
Linus Torvalds 已提交
2530 2531
		break;
	case FUTEX_REQUEUE:
2532
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
2533 2534
		break;
	case FUTEX_CMP_REQUEUE:
2535 2536
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
				    0);
L
Linus Torvalds 已提交
2537
		break;
2538
	case FUTEX_WAKE_OP:
E
Eric Dumazet 已提交
2539
		ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2540
		break;
2541
	case FUTEX_LOCK_PI:
2542 2543
		if (futex_cmpxchg_enabled)
			ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2544 2545
		break;
	case FUTEX_UNLOCK_PI:
2546 2547
		if (futex_cmpxchg_enabled)
			ret = futex_unlock_pi(uaddr, fshared);
2548 2549
		break;
	case FUTEX_TRYLOCK_PI:
2550 2551
		if (futex_cmpxchg_enabled)
			ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2552
		break;
2553 2554 2555 2556 2557 2558 2559 2560 2561
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
		ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
					    clockrt, uaddr2);
		break;
	case FUTEX_CMP_REQUEUE_PI:
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
				    1);
		break;
L
Linus Torvalds 已提交
2562 2563 2564 2565 2566 2567 2568
	default:
		ret = -ENOSYS;
	}
	return ret;
}


2569 2570 2571
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
2572
{
2573 2574
	struct timespec ts;
	ktime_t t, *tp = NULL;
2575
	u32 val2 = 0;
E
Eric Dumazet 已提交
2576
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
2577

2578
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2579 2580
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2581
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
2582
			return -EFAULT;
2583
		if (!timespec_valid(&ts))
2584
			return -EINVAL;
2585 2586

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
2587
		if (cmd == FUTEX_WAIT)
2588
			t = ktime_add_safe(ktime_get(), t);
2589
		tp = &t;
L
Linus Torvalds 已提交
2590 2591
	}
	/*
2592
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2593
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
2594
	 */
2595
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2596
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2597
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
2598

2599
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
2600 2601
}

2602
static int __init futex_init(void)
L
Linus Torvalds 已提交
2603
{
2604
	u32 curval;
T
Thomas Gleixner 已提交
2605
	int i;
A
Akinobu Mita 已提交
2606

2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non functional ones will return
	 * -ENOSYS.
	 */
	curval = cmpxchg_futex_value_locked(NULL, 0, 0);
	if (curval == -EFAULT)
		futex_cmpxchg_enabled = 1;

T
Thomas Gleixner 已提交
2621 2622 2623 2624 2625
	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
		plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
2626 2627
	return 0;
}
2628
__initcall(futex_init);