ixgbe_common.c 78.8 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel 10 Gigabit PCI Express Linux driver
4
  Copyright(c) 1999 - 2011 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/sched.h>
J
Jiri Pirko 已提交
31
#include <linux/netdevice.h>
32

33
#include "ixgbe.h"
34 35 36
#include "ixgbe_common.h"
#include "ixgbe_phy.h"

37
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
38 39
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
40 41 42 43 44 45 46 47
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
                                        u16 count);
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
48 49

static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
50 51 52 53 54 55
static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw);
static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw);
static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw);
static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw);
static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm);
56
static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num);
57 58

/**
59
 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
60 61 62 63 64 65 66
 *  @hw: pointer to hardware structure
 *
 *  Starts the hardware by filling the bus info structure and media type, clears
 *  all on chip counters, initializes receive address registers, multicast
 *  table, VLAN filter table, calls routine to set up link and flow control
 *  settings, and leaves transmit and receive units disabled and uninitialized
 **/
67
s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
68 69 70 71 72 73 74
{
	u32 ctrl_ext;

	/* Set the media type */
	hw->phy.media_type = hw->mac.ops.get_media_type(hw);

	/* Identify the PHY */
75
	hw->phy.ops.identify(hw);
76 77

	/* Clear the VLAN filter table */
78
	hw->mac.ops.clear_vfta(hw);
79 80

	/* Clear statistics registers */
81
	hw->mac.ops.clear_hw_cntrs(hw);
82 83 84 85 86

	/* Set No Snoop Disable */
	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
87
	IXGBE_WRITE_FLUSH(hw);
88

89 90 91
	/* Setup flow control */
	ixgbe_setup_fc(hw, 0);

92 93 94 95 96 97
	/* Clear adapter stopped flag */
	hw->adapter_stopped = false;

	return 0;
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
/**
 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 *  @hw: pointer to hw structure
 *
 * Performs the init sequence common to the second generation
 * of 10 GbE devices.
 * Devices in the second generation:
 *     82599
 *     X540
 **/
s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
{
	u32 i;

	/* Clear the rate limiters */
	for (i = 0; i < hw->mac.max_tx_queues; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
	}
	IXGBE_WRITE_FLUSH(hw);

	return 0;
}

122
/**
123
 *  ixgbe_init_hw_generic - Generic hardware initialization
124 125
 *  @hw: pointer to hardware structure
 *
126
 *  Initialize the hardware by resetting the hardware, filling the bus info
127 128 129 130 131
 *  structure and media type, clears all on chip counters, initializes receive
 *  address registers, multicast table, VLAN filter table, calls routine to set
 *  up link and flow control settings, and leaves transmit and receive units
 *  disabled and uninitialized
 **/
132
s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
133
{
134 135
	s32 status;

136
	/* Reset the hardware */
137
	status = hw->mac.ops.reset_hw(hw);
138

139 140 141 142
	if (status == 0) {
		/* Start the HW */
		status = hw->mac.ops.start_hw(hw);
	}
143

144
	return status;
145 146 147
}

/**
148
 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
149 150 151 152 153
 *  @hw: pointer to hardware structure
 *
 *  Clears all hardware statistics counters by reading them from the hardware
 *  Statistics counters are clear on read.
 **/
154
s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
{
	u16 i = 0;

	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
	IXGBE_READ_REG(hw, IXGBE_ERRBC);
	IXGBE_READ_REG(hw, IXGBE_MSPDC);
	for (i = 0; i < 8; i++)
		IXGBE_READ_REG(hw, IXGBE_MPC(i));

	IXGBE_READ_REG(hw, IXGBE_MLFC);
	IXGBE_READ_REG(hw, IXGBE_MRFC);
	IXGBE_READ_REG(hw, IXGBE_RLEC);
	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
170 171 172 173 174 175 176
	if (hw->mac.type >= ixgbe_mac_82599EB) {
		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
	} else {
		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
	}
177 178 179 180

	for (i = 0; i < 8; i++) {
		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
181 182 183 184 185 186 187
		if (hw->mac.type >= ixgbe_mac_82599EB) {
			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
		} else {
			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
		}
188
	}
189 190 191
	if (hw->mac.type >= ixgbe_mac_82599EB)
		for (i = 0; i < 8; i++)
			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
	IXGBE_READ_REG(hw, IXGBE_PRC64);
	IXGBE_READ_REG(hw, IXGBE_PRC127);
	IXGBE_READ_REG(hw, IXGBE_PRC255);
	IXGBE_READ_REG(hw, IXGBE_PRC511);
	IXGBE_READ_REG(hw, IXGBE_PRC1023);
	IXGBE_READ_REG(hw, IXGBE_PRC1522);
	IXGBE_READ_REG(hw, IXGBE_GPRC);
	IXGBE_READ_REG(hw, IXGBE_BPRC);
	IXGBE_READ_REG(hw, IXGBE_MPRC);
	IXGBE_READ_REG(hw, IXGBE_GPTC);
	IXGBE_READ_REG(hw, IXGBE_GORCL);
	IXGBE_READ_REG(hw, IXGBE_GORCH);
	IXGBE_READ_REG(hw, IXGBE_GOTCL);
	IXGBE_READ_REG(hw, IXGBE_GOTCH);
	for (i = 0; i < 8; i++)
		IXGBE_READ_REG(hw, IXGBE_RNBC(i));
	IXGBE_READ_REG(hw, IXGBE_RUC);
	IXGBE_READ_REG(hw, IXGBE_RFC);
	IXGBE_READ_REG(hw, IXGBE_ROC);
	IXGBE_READ_REG(hw, IXGBE_RJC);
	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
	IXGBE_READ_REG(hw, IXGBE_TORL);
	IXGBE_READ_REG(hw, IXGBE_TORH);
	IXGBE_READ_REG(hw, IXGBE_TPR);
	IXGBE_READ_REG(hw, IXGBE_TPT);
	IXGBE_READ_REG(hw, IXGBE_PTC64);
	IXGBE_READ_REG(hw, IXGBE_PTC127);
	IXGBE_READ_REG(hw, IXGBE_PTC255);
	IXGBE_READ_REG(hw, IXGBE_PTC511);
	IXGBE_READ_REG(hw, IXGBE_PTC1023);
	IXGBE_READ_REG(hw, IXGBE_PTC1522);
	IXGBE_READ_REG(hw, IXGBE_MPTC);
	IXGBE_READ_REG(hw, IXGBE_BPTC);
	for (i = 0; i < 16; i++) {
		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
230 231 232 233 234 235 236 237 238 239
		if (hw->mac.type >= ixgbe_mac_82599EB) {
			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
		} else {
			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
		}
240 241
	}

242 243 244 245 246 247 248 249 250
	if (hw->mac.type == ixgbe_mac_X540) {
		if (hw->phy.id == 0)
			hw->phy.ops.identify(hw);
		hw->phy.ops.read_reg(hw, 0x3, IXGBE_PCRC8ECL, &i);
		hw->phy.ops.read_reg(hw, 0x3, IXGBE_PCRC8ECH, &i);
		hw->phy.ops.read_reg(hw, 0x3, IXGBE_LDPCECL, &i);
		hw->phy.ops.read_reg(hw, 0x3, IXGBE_LDPCECH, &i);
	}

251 252 253 254
	return 0;
}

/**
255
 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
256
 *  @hw: pointer to hardware structure
257 258
 *  @pba_num: stores the part number string from the EEPROM
 *  @pba_num_size: part number string buffer length
259
 *
260
 *  Reads the part number string from the EEPROM.
261
 **/
262 263
s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
                                  u32 pba_num_size)
264 265 266
{
	s32 ret_val;
	u16 data;
267 268 269 270 271 272 273 274
	u16 pba_ptr;
	u16 offset;
	u16 length;

	if (pba_num == NULL) {
		hw_dbg(hw, "PBA string buffer was null\n");
		return IXGBE_ERR_INVALID_ARGUMENT;
	}
275 276 277 278 279 280 281

	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}

282
	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
283 284 285 286
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

	/*
	 * if data is not ptr guard the PBA must be in legacy format which
	 * means pba_ptr is actually our second data word for the PBA number
	 * and we can decode it into an ascii string
	 */
	if (data != IXGBE_PBANUM_PTR_GUARD) {
		hw_dbg(hw, "NVM PBA number is not stored as string\n");

		/* we will need 11 characters to store the PBA */
		if (pba_num_size < 11) {
			hw_dbg(hw, "PBA string buffer too small\n");
			return IXGBE_ERR_NO_SPACE;
		}

		/* extract hex string from data and pba_ptr */
		pba_num[0] = (data >> 12) & 0xF;
		pba_num[1] = (data >> 8) & 0xF;
		pba_num[2] = (data >> 4) & 0xF;
		pba_num[3] = data & 0xF;
		pba_num[4] = (pba_ptr >> 12) & 0xF;
		pba_num[5] = (pba_ptr >> 8) & 0xF;
		pba_num[6] = '-';
		pba_num[7] = 0;
		pba_num[8] = (pba_ptr >> 4) & 0xF;
		pba_num[9] = pba_ptr & 0xF;

		/* put a null character on the end of our string */
		pba_num[10] = '\0';

		/* switch all the data but the '-' to hex char */
		for (offset = 0; offset < 10; offset++) {
			if (pba_num[offset] < 0xA)
				pba_num[offset] += '0';
			else if (pba_num[offset] < 0x10)
				pba_num[offset] += 'A' - 0xA;
		}

		return 0;
	}

	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}

	if (length == 0xFFFF || length == 0) {
		hw_dbg(hw, "NVM PBA number section invalid length\n");
		return IXGBE_ERR_PBA_SECTION;
	}

	/* check if pba_num buffer is big enough */
	if (pba_num_size  < (((u32)length * 2) - 1)) {
		hw_dbg(hw, "PBA string buffer too small\n");
		return IXGBE_ERR_NO_SPACE;
	}

	/* trim pba length from start of string */
	pba_ptr++;
	length--;

	for (offset = 0; offset < length; offset++) {
		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
		if (ret_val) {
			hw_dbg(hw, "NVM Read Error\n");
			return ret_val;
		}
		pba_num[offset * 2] = (u8)(data >> 8);
		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
	}
	pba_num[offset * 2] = '\0';
359 360 361 362 363 364

	return 0;
}

/**
 *  ixgbe_get_mac_addr_generic - Generic get MAC address
365 366 367 368 369 370 371
 *  @hw: pointer to hardware structure
 *  @mac_addr: Adapter MAC address
 *
 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 *  A reset of the adapter must be performed prior to calling this function
 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 **/
372
s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
{
	u32 rar_high;
	u32 rar_low;
	u16 i;

	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));

	for (i = 0; i < 4; i++)
		mac_addr[i] = (u8)(rar_low >> (i*8));

	for (i = 0; i < 2; i++)
		mac_addr[i+4] = (u8)(rar_high >> (i*8));

	return 0;
}

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
/**
 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 *  @hw: pointer to hardware structure
 *
 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 **/
s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
{
	struct ixgbe_adapter *adapter = hw->back;
	struct ixgbe_mac_info *mac = &hw->mac;
	u16 link_status;

	hw->bus.type = ixgbe_bus_type_pci_express;

	/* Get the negotiated link width and speed from PCI config space */
	pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
	                     &link_status);

	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
	case IXGBE_PCI_LINK_WIDTH_1:
		hw->bus.width = ixgbe_bus_width_pcie_x1;
		break;
	case IXGBE_PCI_LINK_WIDTH_2:
		hw->bus.width = ixgbe_bus_width_pcie_x2;
		break;
	case IXGBE_PCI_LINK_WIDTH_4:
		hw->bus.width = ixgbe_bus_width_pcie_x4;
		break;
	case IXGBE_PCI_LINK_WIDTH_8:
		hw->bus.width = ixgbe_bus_width_pcie_x8;
		break;
	default:
		hw->bus.width = ixgbe_bus_width_unknown;
		break;
	}

	switch (link_status & IXGBE_PCI_LINK_SPEED) {
	case IXGBE_PCI_LINK_SPEED_2500:
		hw->bus.speed = ixgbe_bus_speed_2500;
		break;
	case IXGBE_PCI_LINK_SPEED_5000:
		hw->bus.speed = ixgbe_bus_speed_5000;
		break;
	default:
		hw->bus.speed = ixgbe_bus_speed_unknown;
		break;
	}

	mac->ops.set_lan_id(hw);

	return 0;
}

/**
 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 *  @hw: pointer to the HW structure
 *
 *  Determines the LAN function id by reading memory-mapped registers
 *  and swaps the port value if requested.
 **/
void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
{
	struct ixgbe_bus_info *bus = &hw->bus;
	u32 reg;

	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
	bus->lan_id = bus->func;

	/* check for a port swap */
	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
	if (reg & IXGBE_FACTPS_LFS)
		bus->func ^= 0x1;
}

465
/**
466
 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
467 468 469 470 471 472 473
 *  @hw: pointer to hardware structure
 *
 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 *  disables transmit and receive units. The adapter_stopped flag is used by
 *  the shared code and drivers to determine if the adapter is in a stopped
 *  state and should not touch the hardware.
 **/
474
s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
{
	u32 number_of_queues;
	u32 reg_val;
	u16 i;

	/*
	 * Set the adapter_stopped flag so other driver functions stop touching
	 * the hardware
	 */
	hw->adapter_stopped = true;

	/* Disable the receive unit */
	reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
	reg_val &= ~(IXGBE_RXCTRL_RXEN);
	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
490
	IXGBE_WRITE_FLUSH(hw);
491 492 493 494 495 496 497 498 499
	msleep(2);

	/* Clear interrupt mask to stop from interrupts being generated */
	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);

	/* Clear any pending interrupts */
	IXGBE_READ_REG(hw, IXGBE_EICR);

	/* Disable the transmit unit.  Each queue must be disabled. */
500
	number_of_queues = hw->mac.max_tx_queues;
501 502 503 504 505 506 507 508
	for (i = 0; i < number_of_queues; i++) {
		reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
		if (reg_val & IXGBE_TXDCTL_ENABLE) {
			reg_val &= ~IXGBE_TXDCTL_ENABLE;
			IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
		}
	}

509 510 511 512
	/*
	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
	 * access and verify no pending requests
	 */
513
	ixgbe_disable_pcie_master(hw);
514

515 516 517 518
	return 0;
}

/**
519
 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
520 521 522
 *  @hw: pointer to hardware structure
 *  @index: led number to turn on
 **/
523
s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
524 525 526 527 528 529 530
{
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

	/* To turn on the LED, set mode to ON. */
	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
531
	IXGBE_WRITE_FLUSH(hw);
532 533 534 535 536

	return 0;
}

/**
537
 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
538 539 540
 *  @hw: pointer to hardware structure
 *  @index: led number to turn off
 **/
541
s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
542 543 544 545 546 547 548
{
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

	/* To turn off the LED, set mode to OFF. */
	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
549
	IXGBE_WRITE_FLUSH(hw);
550 551 552 553 554

	return 0;
}

/**
555
 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
556 557 558 559 560
 *  @hw: pointer to hardware structure
 *
 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 *  ixgbe_hw struct in order to set up EEPROM access.
 **/
561
s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
562 563 564 565 566 567 568
{
	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
	u32 eec;
	u16 eeprom_size;

	if (eeprom->type == ixgbe_eeprom_uninitialized) {
		eeprom->type = ixgbe_eeprom_none;
569 570 571
		/* Set default semaphore delay to 10ms which is a well
		 * tested value */
		eeprom->semaphore_delay = 10;
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602

		/*
		 * Check for EEPROM present first.
		 * If not present leave as none
		 */
		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
		if (eec & IXGBE_EEC_PRES) {
			eeprom->type = ixgbe_eeprom_spi;

			/*
			 * SPI EEPROM is assumed here.  This code would need to
			 * change if a future EEPROM is not SPI.
			 */
			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
					    IXGBE_EEC_SIZE_SHIFT);
			eeprom->word_size = 1 << (eeprom_size +
						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
		}

		if (eec & IXGBE_EEC_ADDR_SIZE)
			eeprom->address_bits = 16;
		else
			eeprom->address_bits = 8;
		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
			  "%d\n", eeprom->type, eeprom->word_size,
			  eeprom->address_bits);
	}

	return 0;
}

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
/**
 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be written to
 *  @data: 16 bit word to be written to the EEPROM
 *
 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 *  EEPROM will most likely contain an invalid checksum.
 **/
s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
{
	s32 status;
	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;

	hw->eeprom.ops.init_params(hw);

	if (offset >= hw->eeprom.word_size) {
		status = IXGBE_ERR_EEPROM;
		goto out;
	}

	/* Prepare the EEPROM for writing  */
	status = ixgbe_acquire_eeprom(hw);

	if (status == 0) {
		if (ixgbe_ready_eeprom(hw) != 0) {
			ixgbe_release_eeprom(hw);
			status = IXGBE_ERR_EEPROM;
		}
	}

	if (status == 0) {
		ixgbe_standby_eeprom(hw);

		/*  Send the WRITE ENABLE command (8 bit opcode )  */
		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_WREN_OPCODE_SPI,
		                            IXGBE_EEPROM_OPCODE_BITS);

		ixgbe_standby_eeprom(hw);

		/*
		 * Some SPI eeproms use the 8th address bit embedded in the
		 * opcode
		 */
		if ((hw->eeprom.address_bits == 8) && (offset >= 128))
			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;

		/* Send the Write command (8-bit opcode + addr) */
		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
		                            IXGBE_EEPROM_OPCODE_BITS);
		ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
		                            hw->eeprom.address_bits);

		/* Send the data */
		data = (data >> 8) | (data << 8);
		ixgbe_shift_out_eeprom_bits(hw, data, 16);
		ixgbe_standby_eeprom(hw);

		/* Done with writing - release the EEPROM */
		ixgbe_release_eeprom(hw);
	}

out:
	return status;
}

669
/**
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be read
 *  @data: read 16 bit value from EEPROM
 *
 *  Reads 16 bit value from EEPROM through bit-bang method
 **/
s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
                                       u16 *data)
{
	s32 status;
	u16 word_in;
	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;

	hw->eeprom.ops.init_params(hw);

	if (offset >= hw->eeprom.word_size) {
		status = IXGBE_ERR_EEPROM;
		goto out;
	}

	/* Prepare the EEPROM for reading  */
	status = ixgbe_acquire_eeprom(hw);

	if (status == 0) {
		if (ixgbe_ready_eeprom(hw) != 0) {
			ixgbe_release_eeprom(hw);
			status = IXGBE_ERR_EEPROM;
		}
	}

	if (status == 0) {
		ixgbe_standby_eeprom(hw);

		/*
		 * Some SPI eeproms use the 8th address bit embedded in the
		 * opcode
		 */
		if ((hw->eeprom.address_bits == 8) && (offset >= 128))
			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;

		/* Send the READ command (opcode + addr) */
		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
		                            IXGBE_EEPROM_OPCODE_BITS);
		ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
		                            hw->eeprom.address_bits);

		/* Read the data. */
		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
		*data = (word_in >> 8) | (word_in << 8);

		/* End this read operation */
		ixgbe_release_eeprom(hw);
	}

out:
	return status;
}

/**
730
 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
731 732 733 734 735 736
 *  @hw: pointer to hardware structure
 *  @offset: offset of  word in the EEPROM to read
 *  @data: word read from the EEPROM
 *
 *  Reads a 16 bit word from the EEPROM using the EERD register.
 **/
737
s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
738 739 740 741
{
	u32 eerd;
	s32 status;

742 743 744 745 746 747 748
	hw->eeprom.ops.init_params(hw);

	if (offset >= hw->eeprom.word_size) {
		status = IXGBE_ERR_EEPROM;
		goto out;
	}

749 750
	eerd = (offset << IXGBE_EEPROM_RW_ADDR_SHIFT) +
	       IXGBE_EEPROM_RW_REG_START;
751 752

	IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
753
	status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
754 755 756

	if (status == 0)
		*data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
757
		         IXGBE_EEPROM_RW_REG_DATA);
758 759 760
	else
		hw_dbg(hw, "Eeprom read timed out\n");

761
out:
762 763 764 765
	return status;
}

/**
766
 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
767
 *  @hw: pointer to hardware structure
768
 *  @ee_reg: EEPROM flag for polling
769
 *
770 771
 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
 *  read or write is done respectively.
772
 **/
773
s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
774 775 776 777 778
{
	u32 i;
	u32 reg;
	s32 status = IXGBE_ERR_EEPROM;

779 780 781 782 783 784 785
	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
		if (ee_reg == IXGBE_NVM_POLL_READ)
			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
		else
			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);

		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
786 787 788 789 790 791 792 793
			status = 0;
			break;
		}
		udelay(5);
	}
	return status;
}

794 795 796 797 798 799 800 801 802 803
/**
 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
 *  @hw: pointer to hardware structure
 *
 *  Prepares EEPROM for access using bit-bang method. This function should
 *  be called before issuing a command to the EEPROM.
 **/
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
{
	s32 status = 0;
804
	u32 eec;
805 806
	u32 i;

807
	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
		status = IXGBE_ERR_SWFW_SYNC;

	if (status == 0) {
		eec = IXGBE_READ_REG(hw, IXGBE_EEC);

		/* Request EEPROM Access */
		eec |= IXGBE_EEC_REQ;
		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);

		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
			if (eec & IXGBE_EEC_GNT)
				break;
			udelay(5);
		}

		/* Release if grant not acquired */
		if (!(eec & IXGBE_EEC_GNT)) {
			eec &= ~IXGBE_EEC_REQ;
			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
			hw_dbg(hw, "Could not acquire EEPROM grant\n");

830
			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
831 832 833
			status = IXGBE_ERR_EEPROM;
		}

834 835 836 837 838 839 840 841
		/* Setup EEPROM for Read/Write */
		if (status == 0) {
			/* Clear CS and SK */
			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
			IXGBE_WRITE_FLUSH(hw);
			udelay(1);
		}
842 843 844 845
	}
	return status;
}

846 847 848 849 850 851 852 853 854
/**
 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
 *  @hw: pointer to hardware structure
 *
 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
 **/
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
{
	s32 status = IXGBE_ERR_EEPROM;
855
	u32 timeout = 2000;
856 857 858 859 860 861 862 863 864 865 866 867 868 869
	u32 i;
	u32 swsm;

	/* Get SMBI software semaphore between device drivers first */
	for (i = 0; i < timeout; i++) {
		/*
		 * If the SMBI bit is 0 when we read it, then the bit will be
		 * set and we have the semaphore
		 */
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
		if (!(swsm & IXGBE_SWSM_SMBI)) {
			status = 0;
			break;
		}
870
		udelay(50);
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
	}

	/* Now get the semaphore between SW/FW through the SWESMBI bit */
	if (status == 0) {
		for (i = 0; i < timeout; i++) {
			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);

			/* Set the SW EEPROM semaphore bit to request access */
			swsm |= IXGBE_SWSM_SWESMBI;
			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);

			/*
			 * If we set the bit successfully then we got the
			 * semaphore.
			 */
			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
			if (swsm & IXGBE_SWSM_SWESMBI)
				break;

			udelay(50);
		}

		/*
		 * Release semaphores and return error if SW EEPROM semaphore
		 * was not granted because we don't have access to the EEPROM
		 */
		if (i >= timeout) {
898
			hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
899
			       "not granted.\n");
900 901 902
			ixgbe_release_eeprom_semaphore(hw);
			status = IXGBE_ERR_EEPROM;
		}
903 904 905
	} else {
		hw_dbg(hw, "Software semaphore SMBI between device drivers "
		       "not granted.\n");
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
	}

	return status;
}

/**
 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
 *  @hw: pointer to hardware structure
 *
 *  This function clears hardware semaphore bits.
 **/
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
{
	u32 swsm;

	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);

	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
926
	IXGBE_WRITE_FLUSH(hw);
927 928
}

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
/**
 *  ixgbe_ready_eeprom - Polls for EEPROM ready
 *  @hw: pointer to hardware structure
 **/
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
{
	s32 status = 0;
	u16 i;
	u8 spi_stat_reg;

	/*
	 * Read "Status Register" repeatedly until the LSB is cleared.  The
	 * EEPROM will signal that the command has been completed by clearing
	 * bit 0 of the internal status register.  If it's not cleared within
	 * 5 milliseconds, then error out.
	 */
	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
		                            IXGBE_EEPROM_OPCODE_BITS);
		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
			break;

		udelay(5);
		ixgbe_standby_eeprom(hw);
	};

	/*
	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
	 * devices (and only 0-5mSec on 5V devices)
	 */
	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
		hw_dbg(hw, "SPI EEPROM Status error\n");
		status = IXGBE_ERR_EEPROM;
	}

	return status;
}

/**
 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
 *  @hw: pointer to hardware structure
 **/
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
{
	u32 eec;

	eec = IXGBE_READ_REG(hw, IXGBE_EEC);

	/* Toggle CS to flush commands */
	eec |= IXGBE_EEC_CS;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
	eec &= ~IXGBE_EEC_CS;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
 *  @hw: pointer to hardware structure
 *  @data: data to send to the EEPROM
 *  @count: number of bits to shift out
 **/
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
                                        u16 count)
{
	u32 eec;
	u32 mask;
	u32 i;

	eec = IXGBE_READ_REG(hw, IXGBE_EEC);

	/*
	 * Mask is used to shift "count" bits of "data" out to the EEPROM
	 * one bit at a time.  Determine the starting bit based on count
	 */
	mask = 0x01 << (count - 1);

	for (i = 0; i < count; i++) {
		/*
		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
		 * "1", and then raising and then lowering the clock (the SK
		 * bit controls the clock input to the EEPROM).  A "0" is
		 * shifted out to the EEPROM by setting "DI" to "0" and then
		 * raising and then lowering the clock.
		 */
		if (data & mask)
			eec |= IXGBE_EEC_DI;
		else
			eec &= ~IXGBE_EEC_DI;

		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
		IXGBE_WRITE_FLUSH(hw);

		udelay(1);

		ixgbe_raise_eeprom_clk(hw, &eec);
		ixgbe_lower_eeprom_clk(hw, &eec);

		/*
		 * Shift mask to signify next bit of data to shift in to the
		 * EEPROM
		 */
		mask = mask >> 1;
	};

	/* We leave the "DI" bit set to "0" when we leave this routine. */
	eec &= ~IXGBE_EEC_DI;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
	IXGBE_WRITE_FLUSH(hw);
}

/**
 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
 *  @hw: pointer to hardware structure
 **/
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
{
	u32 eec;
	u32 i;
	u16 data = 0;

	/*
	 * In order to read a register from the EEPROM, we need to shift
	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
	 * the clock input to the EEPROM (setting the SK bit), and then reading
	 * the value of the "DO" bit.  During this "shifting in" process the
	 * "DI" bit should always be clear.
	 */
	eec = IXGBE_READ_REG(hw, IXGBE_EEC);

	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);

	for (i = 0; i < count; i++) {
		data = data << 1;
		ixgbe_raise_eeprom_clk(hw, &eec);

		eec = IXGBE_READ_REG(hw, IXGBE_EEC);

		eec &= ~(IXGBE_EEC_DI);
		if (eec & IXGBE_EEC_DO)
			data |= 1;

		ixgbe_lower_eeprom_clk(hw, &eec);
	}

	return data;
}

/**
 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
 *  @hw: pointer to hardware structure
 *  @eec: EEC register's current value
 **/
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
{
	/*
	 * Raise the clock input to the EEPROM
	 * (setting the SK bit), then delay
	 */
	*eec = *eec | IXGBE_EEC_SK;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
 *  @hw: pointer to hardware structure
 *  @eecd: EECD's current value
 **/
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
{
	/*
	 * Lower the clock input to the EEPROM (clearing the SK bit), then
	 * delay
	 */
	*eec = *eec & ~IXGBE_EEC_SK;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
 *  @hw: pointer to hardware structure
 **/
static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
{
	u32 eec;

	eec = IXGBE_READ_REG(hw, IXGBE_EEC);

	eec |= IXGBE_EEC_CS;  /* Pull CS high */
	eec &= ~IXGBE_EEC_SK; /* Lower SCK */

	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
	IXGBE_WRITE_FLUSH(hw);

	udelay(1);

	/* Stop requesting EEPROM access */
	eec &= ~IXGBE_EEC_REQ;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);

1137
	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1138 1139 1140

	/* Delay before attempt to obtain semaphore again to allow FW access */
	msleep(hw->eeprom.semaphore_delay);
1141 1142
}

1143
/**
1144
 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1145 1146
 *  @hw: pointer to hardware structure
 **/
1147
u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
{
	u16 i;
	u16 j;
	u16 checksum = 0;
	u16 length = 0;
	u16 pointer = 0;
	u16 word = 0;

	/* Include 0x0-0x3F in the checksum */
	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1158
		if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1159 1160 1161 1162 1163 1164 1165 1166
			hw_dbg(hw, "EEPROM read failed\n");
			break;
		}
		checksum += word;
	}

	/* Include all data from pointers except for the fw pointer */
	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1167
		hw->eeprom.ops.read(hw, i, &pointer);
1168 1169 1170

		/* Make sure the pointer seems valid */
		if (pointer != 0xFFFF && pointer != 0) {
1171
			hw->eeprom.ops.read(hw, pointer, &length);
1172 1173 1174

			if (length != 0xFFFF && length != 0) {
				for (j = pointer+1; j <= pointer+length; j++) {
1175
					hw->eeprom.ops.read(hw, j, &word);
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
					checksum += word;
				}
			}
		}
	}

	checksum = (u16)IXGBE_EEPROM_SUM - checksum;

	return checksum;
}

/**
1188
 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1189 1190 1191 1192 1193 1194
 *  @hw: pointer to hardware structure
 *  @checksum_val: calculated checksum
 *
 *  Performs checksum calculation and validates the EEPROM checksum.  If the
 *  caller does not need checksum_val, the value can be NULL.
 **/
1195 1196
s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
                                           u16 *checksum_val)
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
{
	s32 status;
	u16 checksum;
	u16 read_checksum = 0;

	/*
	 * Read the first word from the EEPROM. If this times out or fails, do
	 * not continue or we could be in for a very long wait while every
	 * EEPROM read fails
	 */
1207
	status = hw->eeprom.ops.read(hw, 0, &checksum);
1208 1209

	if (status == 0) {
1210
		checksum = hw->eeprom.ops.calc_checksum(hw);
1211

1212
		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

		/*
		 * Verify read checksum from EEPROM is the same as
		 * calculated checksum
		 */
		if (read_checksum != checksum)
			status = IXGBE_ERR_EEPROM_CHECKSUM;

		/* If the user cares, return the calculated checksum */
		if (checksum_val)
			*checksum_val = checksum;
	} else {
		hw_dbg(hw, "EEPROM read failed\n");
	}

	return status;
}

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
/**
 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
 *  @hw: pointer to hardware structure
 **/
s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
{
	s32 status;
	u16 checksum;

	/*
	 * Read the first word from the EEPROM. If this times out or fails, do
	 * not continue or we could be in for a very long wait while every
	 * EEPROM read fails
	 */
	status = hw->eeprom.ops.read(hw, 0, &checksum);

	if (status == 0) {
1248
		checksum = hw->eeprom.ops.calc_checksum(hw);
1249
		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1250
					      checksum);
1251 1252 1253 1254 1255 1256 1257
	} else {
		hw_dbg(hw, "EEPROM read failed\n");
	}

	return status;
}

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
/**
 *  ixgbe_validate_mac_addr - Validate MAC address
 *  @mac_addr: pointer to MAC address.
 *
 *  Tests a MAC address to ensure it is a valid Individual Address
 **/
s32 ixgbe_validate_mac_addr(u8 *mac_addr)
{
	s32 status = 0;

	/* Make sure it is not a multicast address */
	if (IXGBE_IS_MULTICAST(mac_addr))
		status = IXGBE_ERR_INVALID_MAC_ADDR;
	/* Not a broadcast address */
	else if (IXGBE_IS_BROADCAST(mac_addr))
		status = IXGBE_ERR_INVALID_MAC_ADDR;
	/* Reject the zero address */
	else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1276
	         mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
1277 1278 1279 1280 1281 1282
		status = IXGBE_ERR_INVALID_MAC_ADDR;

	return status;
}

/**
1283
 *  ixgbe_set_rar_generic - Set Rx address register
1284 1285
 *  @hw: pointer to hardware structure
 *  @index: Receive address register to write
1286 1287
 *  @addr: Address to put into receive address register
 *  @vmdq: VMDq "set" or "pool" index
1288 1289 1290 1291
 *  @enable_addr: set flag that address is active
 *
 *  Puts an ethernet address into a receive address register.
 **/
1292 1293
s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
                          u32 enable_addr)
1294 1295
{
	u32 rar_low, rar_high;
1296 1297
	u32 rar_entries = hw->mac.num_rar_entries;

1298 1299 1300 1301 1302 1303
	/* Make sure we are using a valid rar index range */
	if (index >= rar_entries) {
		hw_dbg(hw, "RAR index %d is out of range.\n", index);
		return IXGBE_ERR_INVALID_ARGUMENT;
	}

1304 1305
	/* setup VMDq pool selection before this RAR gets enabled */
	hw->mac.ops.set_vmdq(hw, index, vmdq);
1306

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	/*
	 * HW expects these in little endian so we reverse the byte
	 * order from network order (big endian) to little endian
	 */
	rar_low = ((u32)addr[0] |
		   ((u32)addr[1] << 8) |
		   ((u32)addr[2] << 16) |
		   ((u32)addr[3] << 24));
	/*
	 * Some parts put the VMDq setting in the extra RAH bits,
	 * so save everything except the lower 16 bits that hold part
	 * of the address and the address valid bit.
	 */
	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1323

1324 1325
	if (enable_addr != 0)
		rar_high |= IXGBE_RAH_AV;
1326

1327 1328
	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345

	return 0;
}

/**
 *  ixgbe_clear_rar_generic - Remove Rx address register
 *  @hw: pointer to hardware structure
 *  @index: Receive address register to write
 *
 *  Clears an ethernet address from a receive address register.
 **/
s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
{
	u32 rar_high;
	u32 rar_entries = hw->mac.num_rar_entries;

	/* Make sure we are using a valid rar index range */
1346
	if (index >= rar_entries) {
1347
		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1348
		return IXGBE_ERR_INVALID_ARGUMENT;
1349 1350
	}

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	/*
	 * Some parts put the VMDq setting in the extra RAH bits,
	 * so save everything except the lower 16 bits that hold part
	 * of the address and the address valid bit.
	 */
	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);

	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);

1362 1363
	/* clear VMDq pool/queue selection for this RAR */
	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1364 1365 1366 1367

	return 0;
}

1368 1369
/**
 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1370 1371 1372
 *  @hw: pointer to hardware structure
 *
 *  Places the MAC address in receive address register 0 and clears the rest
1373
 *  of the receive address registers. Clears the multicast table. Assumes
1374 1375
 *  the receiver is in reset when the routine is called.
 **/
1376
s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1377 1378
{
	u32 i;
1379
	u32 rar_entries = hw->mac.num_rar_entries;
1380 1381 1382 1383 1384 1385 1386 1387 1388

	/*
	 * If the current mac address is valid, assume it is a software override
	 * to the permanent address.
	 * Otherwise, use the permanent address from the eeprom.
	 */
	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
	    IXGBE_ERR_INVALID_MAC_ADDR) {
		/* Get the MAC address from the RAR0 for later reference */
1389
		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1390

1391
		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1392 1393 1394
	} else {
		/* Setup the receive address. */
		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1395
		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1396

1397
		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1398 1399 1400

		/*  clear VMDq pool/queue selection for RAR 0 */
		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1401
	}
1402
	hw->addr_ctrl.overflow_promisc = 0;
1403 1404 1405 1406

	hw->addr_ctrl.rar_used_count = 1;

	/* Zero out the other receive addresses. */
1407
	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	for (i = 1; i < rar_entries; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
	}

	/* Clear the MTA */
	hw->addr_ctrl.mta_in_use = 0;
	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);

	hw_dbg(hw, " Clearing MTA\n");
1418
	for (i = 0; i < hw->mac.mcft_size; i++)
1419 1420
		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);

1421 1422 1423
	if (hw->mac.ops.init_uta_tables)
		hw->mac.ops.init_uta_tables(hw);

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
	return 0;
}

/**
 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
 *  @hw: pointer to hardware structure
 *  @mc_addr: the multicast address
 *
 *  Extracts the 12 bits, from a multicast address, to determine which
 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
 *  incoming rx multicast addresses, to determine the bit-vector to check in
 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1436
 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1437 1438 1439 1440 1441 1442 1443
 *  to mc_filter_type.
 **/
static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
{
	u32 vector = 0;

	switch (hw->mac.mc_filter_type) {
1444
	case 0:   /* use bits [47:36] of the address */
1445 1446
		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
		break;
1447
	case 1:   /* use bits [46:35] of the address */
1448 1449
		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
		break;
1450
	case 2:   /* use bits [45:34] of the address */
1451 1452
		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
		break;
1453
	case 3:   /* use bits [43:32] of the address */
1454 1455
		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
		break;
1456
	default:  /* Invalid mc_filter_type */
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
		hw_dbg(hw, "MC filter type param set incorrectly\n");
		break;
	}

	/* vector can only be 12-bits or boundary will be exceeded */
	vector &= 0xFFF;
	return vector;
}

/**
 *  ixgbe_set_mta - Set bit-vector in multicast table
 *  @hw: pointer to hardware structure
 *  @hash_value: Multicast address hash value
 *
 *  Sets the bit-vector in the multicast table.
 **/
static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
{
	u32 vector;
	u32 vector_bit;
	u32 vector_reg;

	hw->addr_ctrl.mta_in_use++;

	vector = ixgbe_mta_vector(hw, mc_addr);
	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);

	/*
	 * The MTA is a register array of 128 32-bit registers. It is treated
	 * like an array of 4096 bits.  We want to set bit
	 * BitArray[vector_value]. So we figure out what register the bit is
	 * in, read it, OR in the new bit, then write back the new value.  The
	 * register is determined by the upper 7 bits of the vector value and
	 * the bit within that register are determined by the lower 5 bits of
	 * the value.
	 */
	vector_reg = (vector >> 5) & 0x7F;
	vector_bit = vector & 0x1F;
1495
	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1496 1497 1498
}

/**
1499
 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1500
 *  @hw: pointer to hardware structure
1501
 *  @netdev: pointer to net device structure
1502 1503
 *
 *  The given list replaces any existing list. Clears the MC addrs from receive
1504
 *  address registers and the multicast table. Uses unused receive address
1505 1506 1507
 *  registers for the first multicast addresses, and hashes the rest into the
 *  multicast table.
 **/
1508 1509
s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
				      struct net_device *netdev)
1510
{
1511
	struct netdev_hw_addr *ha;
1512 1513 1514 1515 1516 1517
	u32 i;

	/*
	 * Set the new number of MC addresses that we are being requested to
	 * use.
	 */
1518
	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
1519 1520
	hw->addr_ctrl.mta_in_use = 0;

1521
	/* Clear mta_shadow */
1522
	hw_dbg(hw, " Clearing MTA\n");
1523
	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
1524

1525
	/* Update mta shadow */
1526
	netdev_for_each_mc_addr(ha, netdev) {
1527
		hw_dbg(hw, " Adding the multicast addresses:\n");
1528
		ixgbe_set_mta(hw, ha->addr);
1529 1530 1531
	}

	/* Enable mta */
1532 1533 1534 1535
	for (i = 0; i < hw->mac.mcft_size; i++)
		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
				      hw->mac.mta_shadow[i]);

1536 1537
	if (hw->addr_ctrl.mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
1538
		                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
1539

1540
	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
1541 1542 1543 1544
	return 0;
}

/**
1545
 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
1546 1547
 *  @hw: pointer to hardware structure
 *
1548
 *  Enables multicast address in RAR and the use of the multicast hash table.
1549
 **/
1550
s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
1551
{
1552
	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1553

1554 1555 1556
	if (a->mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
		                hw->mac.mc_filter_type);
1557 1558 1559 1560 1561

	return 0;
}

/**
1562
 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
1563 1564
 *  @hw: pointer to hardware structure
 *
1565
 *  Disables multicast address in RAR and the use of the multicast hash table.
1566
 **/
1567
s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
1568
{
1569
	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1570

1571 1572
	if (a->mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1573 1574 1575 1576

	return 0;
}

1577
/**
1578
 *  ixgbe_fc_enable_generic - Enable flow control
1579 1580 1581 1582 1583
 *  @hw: pointer to hardware structure
 *  @packetbuf_num: packet buffer number (0-7)
 *
 *  Enable flow control according to the current settings.
 **/
1584
s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
1585 1586
{
	s32 ret_val = 0;
1587
	u32 mflcn_reg, fccfg_reg;
1588
	u32 reg;
1589
	u32 rx_pba_size;
1590
	u32 fcrtl, fcrth;
1591 1592 1593 1594 1595 1596

#ifdef CONFIG_DCB
	if (hw->fc.requested_mode == ixgbe_fc_pfc)
		goto out;

#endif /* CONFIG_DCB */
1597 1598
	/* Negotiate the fc mode to use */
	ret_val = ixgbe_fc_autoneg(hw);
1599
	if (ret_val == IXGBE_ERR_FLOW_CONTROL)
1600
		goto out;
1601

1602
	/* Disable any previous flow control settings */
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
	mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);

	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);

	/*
	 * The possible values of fc.current_mode are:
	 * 0: Flow control is completely disabled
	 * 1: Rx flow control is enabled (we can receive pause frames,
	 *    but not send pause frames).
1614 1615
	 * 2: Tx flow control is enabled (we can send pause frames but
	 *    we do not support receiving pause frames).
1616
	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1617
#ifdef CONFIG_DCB
1618
	 * 4: Priority Flow Control is enabled.
1619
#endif
1620 1621 1622 1623
	 * other: Invalid.
	 */
	switch (hw->fc.current_mode) {
	case ixgbe_fc_none:
1624 1625 1626 1627
		/*
		 * Flow control is disabled by software override or autoneg.
		 * The code below will actually disable it in the HW.
		 */
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
		break;
	case ixgbe_fc_rx_pause:
		/*
		 * Rx Flow control is enabled and Tx Flow control is
		 * disabled by software override. Since there really
		 * isn't a way to advertise that we are capable of RX
		 * Pause ONLY, we will advertise that we support both
		 * symmetric and asymmetric Rx PAUSE.  Later, we will
		 * disable the adapter's ability to send PAUSE frames.
		 */
		mflcn_reg |= IXGBE_MFLCN_RFCE;
		break;
	case ixgbe_fc_tx_pause:
		/*
		 * Tx Flow control is enabled, and Rx Flow control is
		 * disabled by software override.
		 */
		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
		break;
	case ixgbe_fc_full:
		/* Flow control (both Rx and Tx) is enabled by SW override. */
		mflcn_reg |= IXGBE_MFLCN_RFCE;
		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
		break;
1652 1653 1654 1655
#ifdef CONFIG_DCB
	case ixgbe_fc_pfc:
		goto out;
		break;
1656
#endif /* CONFIG_DCB */
1657 1658
	default:
		hw_dbg(hw, "Flow control param set incorrectly\n");
1659
		ret_val = IXGBE_ERR_CONFIG;
1660 1661 1662 1663
		goto out;
		break;
	}

1664
	/* Set 802.3x based flow control settings. */
1665
	mflcn_reg |= IXGBE_MFLCN_DPF;
1666 1667 1668
	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);

1669 1670
	rx_pba_size = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(packetbuf_num));
	rx_pba_size >>= IXGBE_RXPBSIZE_SHIFT;
1671

1672 1673
	fcrth = (rx_pba_size - hw->fc.high_water) << 10;
	fcrtl = (rx_pba_size - hw->fc.low_water) << 10;
1674

1675 1676 1677 1678
	if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
		fcrth |= IXGBE_FCRTH_FCEN;
		if (hw->fc.send_xon)
			fcrtl |= IXGBE_FCRTL_XONE;
1679 1680
	}

1681 1682 1683
	IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), fcrth);
	IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), fcrtl);

1684
	/* Configure pause time (2 TCs per register) */
1685
	reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2));
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	if ((packetbuf_num & 1) == 0)
		reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
	else
		reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
	IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);

	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));

out:
	return ret_val;
}

1698 1699 1700 1701
/**
 *  ixgbe_fc_autoneg - Configure flow control
 *  @hw: pointer to hardware structure
 *
1702 1703
 *  Compares our advertised flow control capabilities to those advertised by
 *  our link partner, and determines the proper flow control mode to use.
1704 1705 1706
 **/
s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
{
1707
	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
1708 1709
	ixgbe_link_speed speed;
	bool link_up;
1710

1711 1712 1713
	if (hw->fc.disable_fc_autoneg)
		goto out;

1714
	/*
1715 1716 1717
	 * AN should have completed when the cable was plugged in.
	 * Look for reasons to bail out.  Bail out if:
	 * - FC autoneg is disabled, or if
1718
	 * - link is not up.
1719
	 *
1720
	 * Since we're being called from an LSC, link is already known to be up.
1721
	 * So use link_up_wait_to_complete=false.
1722
	 */
1723
	hw->mac.ops.check_link(hw, &speed, &link_up, false);
1724 1725
	if (!link_up) {
		ret_val = IXGBE_ERR_FLOW_CONTROL;
1726 1727 1728
		goto out;
	}

1729 1730 1731 1732 1733 1734
	switch (hw->phy.media_type) {
	/* Autoneg flow control on fiber adapters */
	case ixgbe_media_type_fiber:
		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
			ret_val = ixgbe_fc_autoneg_fiber(hw);
		break;
1735

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	/* Autoneg flow control on backplane adapters */
	case ixgbe_media_type_backplane:
		ret_val = ixgbe_fc_autoneg_backplane(hw);
		break;

	/* Autoneg flow control on copper adapters */
	case ixgbe_media_type_copper:
		if (ixgbe_device_supports_autoneg_fc(hw) == 0)
			ret_val = ixgbe_fc_autoneg_copper(hw);
		break;

	default:
		break;
	}

out:
	if (ret_val == 0) {
		hw->fc.fc_was_autonegged = true;
	} else {
		hw->fc.fc_was_autonegged = false;
		hw->fc.current_mode = hw->fc.requested_mode;
1757
	}
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	return ret_val;
}

/**
 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according on 1 gig fiber.
 **/
static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
{
	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
	s32 ret_val;
1771 1772 1773 1774 1775 1776

	/*
	 * On multispeed fiber at 1g, bail out if
	 * - link is up but AN did not complete, or if
	 * - link is up and AN completed but timed out
	 */
1777 1778 1779 1780 1781 1782

	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
	if (((linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
	    ((linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
		ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
		goto out;
1783 1784
	}

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);

	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
			       IXGBE_PCS1GANA_ASM_PAUSE,
			       IXGBE_PCS1GANA_SYM_PAUSE,
			       IXGBE_PCS1GANA_ASM_PAUSE);

out:
	return ret_val;
}

/**
 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according to IEEE clause 37.
 **/
static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
{
	u32 links2, anlp1_reg, autoc_reg, links;
	s32 ret_val;

1809
	/*
1810 1811 1812
	 * On backplane, bail out if
	 * - backplane autoneg was not completed, or if
	 * - we are 82599 and link partner is not AN enabled
1813
	 */
1814 1815
	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
1816 1817
		hw->fc.fc_was_autonegged = false;
		hw->fc.current_mode = hw->fc.requested_mode;
1818
		ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
1819 1820 1821
		goto out;
	}

1822 1823 1824 1825 1826 1827 1828 1829 1830
	if (hw->mac.type == ixgbe_mac_82599EB) {
		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
			hw->fc.fc_was_autonegged = false;
			hw->fc.current_mode = hw->fc.requested_mode;
			ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
			goto out;
		}
	}
1831
	/*
1832
	 * Read the 10g AN autoc and LP ability registers and resolve
1833 1834
	 * local flow control settings accordingly
	 */
1835 1836
	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
1837

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);

out:
	return ret_val;
}

/**
 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according to IEEE clause 37.
 **/
static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
{
	u16 technology_ability_reg = 0;
	u16 lp_technology_ability_reg = 0;

	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
			     MDIO_MMD_AN,
			     &technology_ability_reg);
	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
			     MDIO_MMD_AN,
			     &lp_technology_ability_reg);

	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
				  (u32)lp_technology_ability_reg,
				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
}

/**
 *  ixgbe_negotiate_fc - Negotiate flow control
 *  @hw: pointer to hardware structure
 *  @adv_reg: flow control advertised settings
 *  @lp_reg: link partner's flow control settings
 *  @adv_sym: symmetric pause bit in advertisement
 *  @adv_asm: asymmetric pause bit in advertisement
 *  @lp_sym: symmetric pause bit in link partner advertisement
 *  @lp_asm: asymmetric pause bit in link partner advertisement
 *
 *  Find the intersection between advertised settings and link partner's
 *  advertised settings
 **/
static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
{
	if ((!(adv_reg)) ||  (!(lp_reg)))
		return IXGBE_ERR_FC_NOT_NEGOTIATED;

	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
1890
		/*
1891 1892 1893 1894 1895
		 * Now we need to check if the user selected Rx ONLY
		 * of pause frames.  In this case, we had to advertise
		 * FULL flow control because we could not advertise RX
		 * ONLY. Hence, we must now check to see if we need to
		 * turn OFF the TRANSMISSION of PAUSE frames.
1896
		 */
1897 1898 1899
		if (hw->fc.requested_mode == ixgbe_fc_full) {
			hw->fc.current_mode = ixgbe_fc_full;
			hw_dbg(hw, "Flow Control = FULL.\n");
1900
		} else {
1901 1902
			hw->fc.current_mode = ixgbe_fc_rx_pause;
			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
1903
		}
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
		hw->fc.current_mode = ixgbe_fc_tx_pause;
		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
		hw->fc.current_mode = ixgbe_fc_rx_pause;
		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
	} else {
		hw->fc.current_mode = ixgbe_fc_none;
		hw_dbg(hw, "Flow Control = NONE.\n");
1915
	}
1916
	return 0;
1917 1918
}

1919
/**
1920
 *  ixgbe_setup_fc - Set up flow control
1921 1922
 *  @hw: pointer to hardware structure
 *
1923
 *  Called at init time to set up flow control.
1924
 **/
1925
static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
1926 1927
{
	s32 ret_val = 0;
1928 1929
	u32 reg = 0, reg_bp = 0;
	u16 reg_cu = 0;
1930

1931 1932 1933 1934 1935 1936
#ifdef CONFIG_DCB
	if (hw->fc.requested_mode == ixgbe_fc_pfc) {
		hw->fc.current_mode = hw->fc.requested_mode;
		goto out;
	}

1937
#endif /* CONFIG_DCB */
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
	/* Validate the packetbuf configuration */
	if (packetbuf_num < 0 || packetbuf_num > 7) {
		hw_dbg(hw, "Invalid packet buffer number [%d], expected range "
		       "is 0-7\n", packetbuf_num);
		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
		goto out;
	}

	/*
	 * Validate the water mark configuration.  Zero water marks are invalid
	 * because it causes the controller to just blast out fc packets.
	 */
	if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) {
1951 1952 1953
		hw_dbg(hw, "Invalid water mark configuration\n");
		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
		goto out;
1954 1955 1956 1957
	}

	/*
	 * Validate the requested mode.  Strict IEEE mode does not allow
1958
	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	 */
	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict "
		       "IEEE mode\n");
		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
		goto out;
	}

	/*
	 * 10gig parts do not have a word in the EEPROM to determine the
	 * default flow control setting, so we explicitly set it to full.
	 */
	if (hw->fc.requested_mode == ixgbe_fc_default)
		hw->fc.requested_mode = ixgbe_fc_full;

	/*
1975 1976 1977
	 * Set up the 1G and 10G flow control advertisement registers so the
	 * HW will be able to do fc autoneg once the cable is plugged in.  If
	 * we link at 10G, the 1G advertisement is harmless and vice versa.
1978
	 */
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

	switch (hw->phy.media_type) {
	case ixgbe_media_type_fiber:
	case ixgbe_media_type_backplane:
		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
		reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
		break;

	case ixgbe_media_type_copper:
		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
					MDIO_MMD_AN, &reg_cu);
		break;

	default:
		;
	}
1995

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	/*
	 * The possible values of fc.requested_mode are:
	 * 0: Flow control is completely disabled
	 * 1: Rx flow control is enabled (we can receive pause frames,
	 *    but not send pause frames).
	 * 2: Tx flow control is enabled (we can send pause frames but
	 *    we do not support receiving pause frames).
	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
#ifdef CONFIG_DCB
	 * 4: Priority Flow Control is enabled.
#endif
	 * other: Invalid.
	 */
	switch (hw->fc.requested_mode) {
	case ixgbe_fc_none:
		/* Flow control completely disabled by software override. */
		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2013 2014 2015 2016 2017
		if (hw->phy.media_type == ixgbe_media_type_backplane)
			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
				    IXGBE_AUTOC_ASM_PAUSE);
		else if (hw->phy.media_type == ixgbe_media_type_copper)
			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
		break;
	case ixgbe_fc_rx_pause:
		/*
		 * Rx Flow control is enabled and Tx Flow control is
		 * disabled by software override. Since there really
		 * isn't a way to advertise that we are capable of RX
		 * Pause ONLY, we will advertise that we support both
		 * symmetric and asymmetric Rx PAUSE.  Later, we will
		 * disable the adapter's ability to send PAUSE frames.
		 */
		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2029 2030 2031 2032 2033
		if (hw->phy.media_type == ixgbe_media_type_backplane)
			reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
				   IXGBE_AUTOC_ASM_PAUSE);
		else if (hw->phy.media_type == ixgbe_media_type_copper)
			reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2034 2035 2036 2037 2038 2039 2040 2041
		break;
	case ixgbe_fc_tx_pause:
		/*
		 * Tx Flow control is enabled, and Rx Flow control is
		 * disabled by software override.
		 */
		reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
2042 2043 2044 2045 2046 2047 2048
		if (hw->phy.media_type == ixgbe_media_type_backplane) {
			reg_bp |= (IXGBE_AUTOC_ASM_PAUSE);
			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE);
		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
			reg_cu |= (IXGBE_TAF_ASM_PAUSE);
			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE);
		}
2049 2050 2051 2052
		break;
	case ixgbe_fc_full:
		/* Flow control (both Rx and Tx) is enabled by SW override. */
		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2053 2054 2055 2056 2057
		if (hw->phy.media_type == ixgbe_media_type_backplane)
			reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
				   IXGBE_AUTOC_ASM_PAUSE);
		else if (hw->phy.media_type == ixgbe_media_type_copper)
			reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2058 2059 2060
		break;
#ifdef CONFIG_DCB
	case ixgbe_fc_pfc:
2061
		goto out;
2062 2063 2064 2065
		break;
#endif /* CONFIG_DCB */
	default:
		hw_dbg(hw, "Flow control param set incorrectly\n");
2066
		ret_val = IXGBE_ERR_CONFIG;
2067 2068 2069 2070
		goto out;
		break;
	}

2071 2072 2073 2074 2075 2076 2077
	if (hw->mac.type != ixgbe_mac_X540) {
		/*
		 * Enable auto-negotiation between the MAC & PHY;
		 * the MAC will advertise clause 37 flow control.
		 */
		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
2078

2079 2080 2081
		/* Disable AN timeout */
		if (hw->fc.strict_ieee)
			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
2082

2083 2084 2085
		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
	}
2086 2087

	/*
2088 2089 2090
	 * AUTOC restart handles negotiation of 1G and 10G on backplane
	 * and copper. There is no need to set the PCS1GCTL register.
	 *
2091
	 */
2092 2093 2094 2095 2096 2097 2098
	if (hw->phy.media_type == ixgbe_media_type_backplane) {
		reg_bp |= IXGBE_AUTOC_AN_RESTART;
		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
		    (ixgbe_device_supports_autoneg_fc(hw) == 0)) {
		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
				      MDIO_MMD_AN, reg_cu);
2099 2100
	}

2101
	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
2102 2103 2104 2105
out:
	return ret_val;
}

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
/**
 *  ixgbe_disable_pcie_master - Disable PCI-express master access
 *  @hw: pointer to hardware structure
 *
 *  Disables PCI-Express master access and verifies there are no pending
 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
 *  bit hasn't caused the master requests to be disabled, else 0
 *  is returned signifying master requests disabled.
 **/
s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
{
2117
	struct ixgbe_adapter *adapter = hw->back;
2118 2119 2120
	u32 i;
	u32 reg_val;
	u32 number_of_queues;
2121 2122 2123 2124 2125 2126
	s32 status = 0;
	u16 dev_status = 0;

	/* Just jump out if bus mastering is already disabled */
	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
		goto out;
2127

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
	/* Disable the receive unit by stopping each queue */
	number_of_queues = hw->mac.max_rx_queues;
	for (i = 0; i < number_of_queues; i++) {
		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
		if (reg_val & IXGBE_RXDCTL_ENABLE) {
			reg_val &= ~IXGBE_RXDCTL_ENABLE;
			IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
		}
	}

	reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL);
	reg_val |= IXGBE_CTRL_GIO_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val);
2141 2142

	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
			goto check_device_status;
		udelay(100);
	}

	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;

	/*
	 * Before proceeding, make sure that the PCIe block does not have
	 * transactions pending.
	 */
check_device_status:
	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
		pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS,
							 &dev_status);
		if (!(dev_status & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2160 2161 2162 2163
			break;
		udelay(100);
	}

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
	if (i == IXGBE_PCI_MASTER_DISABLE_TIMEOUT)
		hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
	else
		goto out;

	/*
	 * Two consecutive resets are required via CTRL.RST per datasheet
	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
	 * of this need.  The first reset prevents new master requests from
	 * being issued by our device.  We then must wait 1usec for any
	 * remaining completions from the PCIe bus to trickle in, and then reset
	 * again to clear out any effects they may have had on our device.
	 */
	 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;

out:
2180 2181 2182 2183 2184
	return status;
}


/**
2185
 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2186
 *  @hw: pointer to hardware structure
2187
 *  @mask: Mask to specify which semaphore to acquire
2188
 *
E
Emil Tantilov 已提交
2189
 *  Acquires the SWFW semaphore through the GSSR register for the specified
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
 **/
s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
{
	u32 gssr;
	u32 swmask = mask;
	u32 fwmask = mask << 5;
	s32 timeout = 200;

	while (timeout) {
2200 2201 2202 2203
		/*
		 * SW EEPROM semaphore bit is used for access to all
		 * SW_FW_SYNC/GSSR bits (not just EEPROM)
		 */
2204
		if (ixgbe_get_eeprom_semaphore(hw))
2205
			return IXGBE_ERR_SWFW_SYNC;
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220

		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
		if (!(gssr & (fwmask | swmask)))
			break;

		/*
		 * Firmware currently using resource (fwmask) or other software
		 * thread currently using resource (swmask)
		 */
		ixgbe_release_eeprom_semaphore(hw);
		msleep(5);
		timeout--;
	}

	if (!timeout) {
2221
		hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n");
2222
		return IXGBE_ERR_SWFW_SYNC;
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
	}

	gssr |= swmask;
	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);

	ixgbe_release_eeprom_semaphore(hw);
	return 0;
}

/**
 *  ixgbe_release_swfw_sync - Release SWFW semaphore
 *  @hw: pointer to hardware structure
2235
 *  @mask: Mask to specify which semaphore to release
2236
 *
E
Emil Tantilov 已提交
2237
 *  Releases the SWFW semaphore through the GSSR register for the specified
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
 **/
void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
{
	u32 gssr;
	u32 swmask = mask;

	ixgbe_get_eeprom_semaphore(hw);

	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
	gssr &= ~swmask;
	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);

	ixgbe_release_eeprom_semaphore(hw);
}

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
/**
 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
 *  @hw: pointer to hardware structure
 *  @regval: register value to write to RXCTRL
 *
 *  Enables the Rx DMA unit
 **/
s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
{
	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);

	return 0;
}
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286

/**
 *  ixgbe_blink_led_start_generic - Blink LED based on index.
 *  @hw: pointer to hardware structure
 *  @index: led number to blink
 **/
s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
{
	ixgbe_link_speed speed = 0;
	bool link_up = 0;
	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

	/*
	 * Link must be up to auto-blink the LEDs;
	 * Force it if link is down.
	 */
	hw->mac.ops.check_link(hw, &speed, &link_up, false);

	if (!link_up) {
2287
		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
		autoc_reg |= IXGBE_AUTOC_FLU;
		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
		msleep(10);
	}

	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_BLINK(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
	IXGBE_WRITE_FLUSH(hw);

	return 0;
}

/**
 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
 *  @hw: pointer to hardware structure
 *  @index: led number to stop blinking
 **/
s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
{
	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

	autoc_reg &= ~IXGBE_AUTOC_FLU;
	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);

	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg &= ~IXGBE_LED_BLINK(index);
	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
	IXGBE_WRITE_FLUSH(hw);

	return 0;
}
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424

/**
 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
 *  @hw: pointer to hardware structure
 *  @san_mac_offset: SAN MAC address offset
 *
 *  This function will read the EEPROM location for the SAN MAC address
 *  pointer, and returns the value at that location.  This is used in both
 *  get and set mac_addr routines.
 **/
static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
                                        u16 *san_mac_offset)
{
	/*
	 * First read the EEPROM pointer to see if the MAC addresses are
	 * available.
	 */
	hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);

	return 0;
}

/**
 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
 *  @hw: pointer to hardware structure
 *  @san_mac_addr: SAN MAC address
 *
 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
 *  per-port, so set_lan_id() must be called before reading the addresses.
 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
 *  upon for non-SFP connections, so we must call it here.
 **/
s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
{
	u16 san_mac_data, san_mac_offset;
	u8 i;

	/*
	 * First read the EEPROM pointer to see if the MAC addresses are
	 * available.  If they're not, no point in calling set_lan_id() here.
	 */
	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);

	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
		/*
		 * No addresses available in this EEPROM.  It's not an
		 * error though, so just wipe the local address and return.
		 */
		for (i = 0; i < 6; i++)
			san_mac_addr[i] = 0xFF;

		goto san_mac_addr_out;
	}

	/* make sure we know which port we need to program */
	hw->mac.ops.set_lan_id(hw);
	/* apply the port offset to the address offset */
	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
	                 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
	for (i = 0; i < 3; i++) {
		hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
		san_mac_addr[i * 2] = (u8)(san_mac_data);
		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
		san_mac_offset++;
	}

san_mac_addr_out:
	return 0;
}

/**
 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
 *  @hw: pointer to hardware structure
 *
 *  Read PCIe configuration space, and get the MSI-X vector count from
 *  the capabilities table.
 **/
u32 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
{
	struct ixgbe_adapter *adapter = hw->back;
	u16 msix_count;
	pci_read_config_word(adapter->pdev, IXGBE_PCIE_MSIX_82599_CAPS,
	                     &msix_count);
	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;

	/* MSI-X count is zero-based in HW, so increment to give proper value */
	msix_count++;

	return msix_count;
}

/**
 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
 *  @hw: pointer to hardware struct
 *  @rar: receive address register index to disassociate
 *  @vmdq: VMDq pool index to remove from the rar
 **/
s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
{
	u32 mpsar_lo, mpsar_hi;
	u32 rar_entries = hw->mac.num_rar_entries;

2425 2426 2427 2428 2429
	/* Make sure we are using a valid rar index range */
	if (rar >= rar_entries) {
		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
		return IXGBE_ERR_INVALID_ARGUMENT;
	}
2430

2431 2432
	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2433

2434 2435
	if (!mpsar_lo && !mpsar_hi)
		goto done;
2436

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
		if (mpsar_lo) {
			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
			mpsar_lo = 0;
		}
		if (mpsar_hi) {
			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
			mpsar_hi = 0;
		}
	} else if (vmdq < 32) {
		mpsar_lo &= ~(1 << vmdq);
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2449
	} else {
2450 2451
		mpsar_hi &= ~(1 << (vmdq - 32));
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2452 2453
	}

2454 2455 2456
	/* was that the last pool using this rar? */
	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
		hw->mac.ops.clear_rar(hw, rar);
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
done:
	return 0;
}

/**
 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
 *  @hw: pointer to hardware struct
 *  @rar: receive address register index to associate with a VMDq index
 *  @vmdq: VMDq pool index
 **/
s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
{
	u32 mpsar;
	u32 rar_entries = hw->mac.num_rar_entries;

2472 2473
	/* Make sure we are using a valid rar index range */
	if (rar >= rar_entries) {
2474
		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
		return IXGBE_ERR_INVALID_ARGUMENT;
	}

	if (vmdq < 32) {
		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
		mpsar |= 1 << vmdq;
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
	} else {
		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
		mpsar |= 1 << (vmdq - 32);
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
	}
	return 0;
}

/**
 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
 *  @hw: pointer to hardware structure
 **/
s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
{
	int i;

	for (i = 0; i < 128; i++)
		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);

	return 0;
}

/**
 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
 *  @hw: pointer to hardware structure
 *  @vlan: VLAN id to write to VLAN filter
 *
 *  return the VLVF index where this VLAN id should be placed
 *
 **/
E
Emil Tantilov 已提交
2512
static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
{
	u32 bits = 0;
	u32 first_empty_slot = 0;
	s32 regindex;

	/* short cut the special case */
	if (vlan == 0)
		return 0;

	/*
	  * Search for the vlan id in the VLVF entries. Save off the first empty
	  * slot found along the way
	  */
	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
		if (!bits && !(first_empty_slot))
			first_empty_slot = regindex;
		else if ((bits & 0x0FFF) == vlan)
			break;
	}

	/*
	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
	  * in the VLVF. Else use the first empty VLVF register for this
	  * vlan id.
	  */
	if (regindex >= IXGBE_VLVF_ENTRIES) {
		if (first_empty_slot)
			regindex = first_empty_slot;
		else {
			hw_dbg(hw, "No space in VLVF.\n");
			regindex = IXGBE_ERR_NO_SPACE;
		}
	}

	return regindex;
}

/**
 *  ixgbe_set_vfta_generic - Set VLAN filter table
 *  @hw: pointer to hardware structure
 *  @vlan: VLAN id to write to VLAN filter
 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
 *
 *  Turn on/off specified VLAN in the VLAN filter table.
 **/
s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
                           bool vlan_on)
{
	s32 regindex;
	u32 bitindex;
	u32 vfta;
	u32 bits;
	u32 vt;
	u32 targetbit;
	bool vfta_changed = false;

	if (vlan > 4095)
		return IXGBE_ERR_PARAM;

	/*
	 * this is a 2 part operation - first the VFTA, then the
	 * VLVF and VLVFB if VT Mode is set
	 * We don't write the VFTA until we know the VLVF part succeeded.
	 */

	/* Part 1
	 * The VFTA is a bitstring made up of 128 32-bit registers
	 * that enable the particular VLAN id, much like the MTA:
	 *    bits[11-5]: which register
	 *    bits[4-0]:  which bit in the register
	 */
	regindex = (vlan >> 5) & 0x7F;
	bitindex = vlan & 0x1F;
	targetbit = (1 << bitindex);
	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));

	if (vlan_on) {
		if (!(vfta & targetbit)) {
			vfta |= targetbit;
			vfta_changed = true;
		}
	} else {
		if ((vfta & targetbit)) {
			vfta &= ~targetbit;
			vfta_changed = true;
		}
	}

	/* Part 2
	 * If VT Mode is set
	 *   Either vlan_on
	 *     make sure the vlan is in VLVF
	 *     set the vind bit in the matching VLVFB
	 *   Or !vlan_on
	 *     clear the pool bit and possibly the vind
	 */
	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
		s32 vlvf_index;

		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
		if (vlvf_index < 0)
			return vlvf_index;

		if (vlan_on) {
			/* set the pool bit */
			if (vind < 32) {
				bits = IXGBE_READ_REG(hw,
						IXGBE_VLVFB(vlvf_index*2));
				bits |= (1 << vind);
				IXGBE_WRITE_REG(hw,
						IXGBE_VLVFB(vlvf_index*2),
						bits);
			} else {
				bits = IXGBE_READ_REG(hw,
						IXGBE_VLVFB((vlvf_index*2)+1));
				bits |= (1 << (vind-32));
				IXGBE_WRITE_REG(hw,
						IXGBE_VLVFB((vlvf_index*2)+1),
						bits);
			}
		} else {
			/* clear the pool bit */
			if (vind < 32) {
				bits = IXGBE_READ_REG(hw,
						IXGBE_VLVFB(vlvf_index*2));
				bits &= ~(1 << vind);
				IXGBE_WRITE_REG(hw,
						IXGBE_VLVFB(vlvf_index*2),
						bits);
				bits |= IXGBE_READ_REG(hw,
						IXGBE_VLVFB((vlvf_index*2)+1));
			} else {
				bits = IXGBE_READ_REG(hw,
						IXGBE_VLVFB((vlvf_index*2)+1));
				bits &= ~(1 << (vind-32));
				IXGBE_WRITE_REG(hw,
						IXGBE_VLVFB((vlvf_index*2)+1),
						bits);
				bits |= IXGBE_READ_REG(hw,
						IXGBE_VLVFB(vlvf_index*2));
			}
		}

		/*
		 * If there are still bits set in the VLVFB registers
		 * for the VLAN ID indicated we need to see if the
		 * caller is requesting that we clear the VFTA entry bit.
		 * If the caller has requested that we clear the VFTA
		 * entry bit but there are still pools/VFs using this VLAN
		 * ID entry then ignore the request.  We're not worried
		 * about the case where we're turning the VFTA VLAN ID
		 * entry bit on, only when requested to turn it off as
		 * there may be multiple pools and/or VFs using the
		 * VLAN ID entry.  In that case we cannot clear the
		 * VFTA bit until all pools/VFs using that VLAN ID have also
		 * been cleared.  This will be indicated by "bits" being
		 * zero.
		 */
		if (bits) {
			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
					(IXGBE_VLVF_VIEN | vlan));
			if (!vlan_on) {
				/* someone wants to clear the vfta entry
				 * but some pools/VFs are still using it.
				 * Ignore it. */
				vfta_changed = false;
			}
		}
		else
			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
	}

	if (vfta_changed)
		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);

	return 0;
}

/**
 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
 *  @hw: pointer to hardware structure
 *
 *  Clears the VLAN filer table, and the VMDq index associated with the filter
 **/
s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
{
	u32 offset;

	for (offset = 0; offset < hw->mac.vft_size; offset++)
		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);

	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
	}

	return 0;
}

/**
 *  ixgbe_check_mac_link_generic - Determine link and speed status
 *  @hw: pointer to hardware structure
 *  @speed: pointer to link speed
 *  @link_up: true when link is up
 *  @link_up_wait_to_complete: bool used to wait for link up or not
 *
 *  Reads the links register to determine if link is up and the current speed
 **/
s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
2726
				 bool *link_up, bool link_up_wait_to_complete)
2727
{
2728
	u32 links_reg, links_orig;
2729 2730
	u32 i;

2731 2732 2733
	/* clear the old state */
	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);

2734
	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
2735 2736 2737 2738 2739 2740

	if (links_orig != links_reg) {
		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
		       links_orig, links_reg);
	}

2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
	if (link_up_wait_to_complete) {
		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
			if (links_reg & IXGBE_LINKS_UP) {
				*link_up = true;
				break;
			} else {
				*link_up = false;
			}
			msleep(100);
			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
		}
	} else {
		if (links_reg & IXGBE_LINKS_UP)
			*link_up = true;
		else
			*link_up = false;
	}

	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
	    IXGBE_LINKS_SPEED_10G_82599)
		*speed = IXGBE_LINK_SPEED_10GB_FULL;
	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
2763
		 IXGBE_LINKS_SPEED_1G_82599)
2764
		*speed = IXGBE_LINK_SPEED_1GB_FULL;
2765 2766
	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
		 IXGBE_LINKS_SPEED_100_82599)
2767
		*speed = IXGBE_LINK_SPEED_100_FULL;
2768 2769
	else
		*speed = IXGBE_LINK_SPEED_UNKNOWN;
2770 2771 2772 2773 2774 2775 2776 2777 2778

	/* if link is down, zero out the current_mode */
	if (*link_up == false) {
		hw->fc.current_mode = ixgbe_fc_none;
		hw->fc.fc_was_autonegged = false;
	}

	return 0;
}
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823

/**
 *  ixgbe_get_wwn_prefix_generic Get alternative WWNN/WWPN prefix from
 *  the EEPROM
 *  @hw: pointer to hardware structure
 *  @wwnn_prefix: the alternative WWNN prefix
 *  @wwpn_prefix: the alternative WWPN prefix
 *
 *  This function will read the EEPROM from the alternative SAN MAC address
 *  block to check the support for the alternative WWNN/WWPN prefix support.
 **/
s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
                                        u16 *wwpn_prefix)
{
	u16 offset, caps;
	u16 alt_san_mac_blk_offset;

	/* clear output first */
	*wwnn_prefix = 0xFFFF;
	*wwpn_prefix = 0xFFFF;

	/* check if alternative SAN MAC is supported */
	hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
	                    &alt_san_mac_blk_offset);

	if ((alt_san_mac_blk_offset == 0) ||
	    (alt_san_mac_blk_offset == 0xFFFF))
		goto wwn_prefix_out;

	/* check capability in alternative san mac address block */
	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
	hw->eeprom.ops.read(hw, offset, &caps);
	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
		goto wwn_prefix_out;

	/* get the corresponding prefix for WWNN/WWPN */
	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
	hw->eeprom.ops.read(hw, offset, wwnn_prefix);

	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
	hw->eeprom.ops.read(hw, offset, wwpn_prefix);

wwn_prefix_out:
	return 0;
}
2824

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
/**
 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
 *  control
 *  @hw: pointer to hardware structure
 *
 *  There are several phys that do not support autoneg flow control. This
 *  function check the device id to see if the associated phy supports
 *  autoneg flow control.
 **/
static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
{

	switch (hw->device_id) {
	case IXGBE_DEV_ID_X540T:
		return 0;
	case IXGBE_DEV_ID_82599_T3_LOM:
		return 0;
	default:
		return IXGBE_ERR_FC_NOT_SUPPORTED;
	}
}

2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
/**
 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
 *  @hw: pointer to hardware structure
 *  @enable: enable or disable switch for anti-spoofing
 *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
 *
 **/
void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
{
	int j;
	int pf_target_reg = pf >> 3;
	int pf_target_shift = pf % 8;
	u32 pfvfspoof = 0;

	if (hw->mac.type == ixgbe_mac_82598EB)
		return;

	if (enable)
		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;

	/*
	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
	 * MAC anti-spoof enables in each register array element.
	 */
	for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);

	/* If not enabling anti-spoofing then done */
	if (!enable)
		return;

	/*
	 * The PF should be allowed to spoof so that it can support
	 * emulation mode NICs.  Reset the bit assigned to the PF
	 */
	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg));
	pfvfspoof ^= (1 << pf_target_shift);
	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof);
}

/**
 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
 *  @hw: pointer to hardware structure
 *  @enable: enable or disable switch for VLAN anti-spoofing
 *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
 *
 **/
void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
{
	int vf_target_reg = vf >> 3;
	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
	u32 pfvfspoof;

	if (hw->mac.type == ixgbe_mac_82598EB)
		return;

	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
	if (enable)
		pfvfspoof |= (1 << vf_target_shift);
	else
		pfvfspoof &= ~(1 << vf_target_shift);
	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
}