ixgbe_common.c 57.4 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel 10 Gigabit PCI Express Linux driver
4
  Copyright(c) 1999 - 2009 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/sched.h>
J
Jiri Pirko 已提交
31 32
#include <linux/list.h>
#include <linux/netdevice.h>
33

34
#include "ixgbe.h"
35 36 37 38
#include "ixgbe_common.h"
#include "ixgbe_phy.h"

static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw);
39
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
40 41
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
42 43 44 45 46 47 48 49
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
                                        u16 count);
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
50 51
static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw);

52 53
static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index);
static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index);
54
static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
55
static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq);
56 57

/**
58
 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
59 60 61 62 63 64 65
 *  @hw: pointer to hardware structure
 *
 *  Starts the hardware by filling the bus info structure and media type, clears
 *  all on chip counters, initializes receive address registers, multicast
 *  table, VLAN filter table, calls routine to set up link and flow control
 *  settings, and leaves transmit and receive units disabled and uninitialized
 **/
66
s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
67 68 69 70 71 72 73
{
	u32 ctrl_ext;

	/* Set the media type */
	hw->phy.media_type = hw->mac.ops.get_media_type(hw);

	/* Identify the PHY */
74
	hw->phy.ops.identify(hw);
75 76

	/* Clear the VLAN filter table */
77
	hw->mac.ops.clear_vfta(hw);
78 79

	/* Clear statistics registers */
80
	hw->mac.ops.clear_hw_cntrs(hw);
81 82 83 84 85

	/* Set No Snoop Disable */
	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
86
	IXGBE_WRITE_FLUSH(hw);
87 88 89 90 91 92 93 94

	/* Clear adapter stopped flag */
	hw->adapter_stopped = false;

	return 0;
}

/**
95
 *  ixgbe_init_hw_generic - Generic hardware initialization
96 97
 *  @hw: pointer to hardware structure
 *
98
 *  Initialize the hardware by resetting the hardware, filling the bus info
99 100 101 102 103
 *  structure and media type, clears all on chip counters, initializes receive
 *  address registers, multicast table, VLAN filter table, calls routine to set
 *  up link and flow control settings, and leaves transmit and receive units
 *  disabled and uninitialized
 **/
104
s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
105 106
{
	/* Reset the hardware */
107
	hw->mac.ops.reset_hw(hw);
108 109

	/* Start the HW */
110
	hw->mac.ops.start_hw(hw);
111 112 113 114 115

	return 0;
}

/**
116
 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
117 118 119 120 121
 *  @hw: pointer to hardware structure
 *
 *  Clears all hardware statistics counters by reading them from the hardware
 *  Statistics counters are clear on read.
 **/
122
s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
{
	u16 i = 0;

	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
	IXGBE_READ_REG(hw, IXGBE_ERRBC);
	IXGBE_READ_REG(hw, IXGBE_MSPDC);
	for (i = 0; i < 8; i++)
		IXGBE_READ_REG(hw, IXGBE_MPC(i));

	IXGBE_READ_REG(hw, IXGBE_MLFC);
	IXGBE_READ_REG(hw, IXGBE_MRFC);
	IXGBE_READ_REG(hw, IXGBE_RLEC);
	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
	IXGBE_READ_REG(hw, IXGBE_LXONRXC);
	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
	IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);

	for (i = 0; i < 8; i++) {
		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
		IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
		IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
	}

	IXGBE_READ_REG(hw, IXGBE_PRC64);
	IXGBE_READ_REG(hw, IXGBE_PRC127);
	IXGBE_READ_REG(hw, IXGBE_PRC255);
	IXGBE_READ_REG(hw, IXGBE_PRC511);
	IXGBE_READ_REG(hw, IXGBE_PRC1023);
	IXGBE_READ_REG(hw, IXGBE_PRC1522);
	IXGBE_READ_REG(hw, IXGBE_GPRC);
	IXGBE_READ_REG(hw, IXGBE_BPRC);
	IXGBE_READ_REG(hw, IXGBE_MPRC);
	IXGBE_READ_REG(hw, IXGBE_GPTC);
	IXGBE_READ_REG(hw, IXGBE_GORCL);
	IXGBE_READ_REG(hw, IXGBE_GORCH);
	IXGBE_READ_REG(hw, IXGBE_GOTCL);
	IXGBE_READ_REG(hw, IXGBE_GOTCH);
	for (i = 0; i < 8; i++)
		IXGBE_READ_REG(hw, IXGBE_RNBC(i));
	IXGBE_READ_REG(hw, IXGBE_RUC);
	IXGBE_READ_REG(hw, IXGBE_RFC);
	IXGBE_READ_REG(hw, IXGBE_ROC);
	IXGBE_READ_REG(hw, IXGBE_RJC);
	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
	IXGBE_READ_REG(hw, IXGBE_TORL);
	IXGBE_READ_REG(hw, IXGBE_TORH);
	IXGBE_READ_REG(hw, IXGBE_TPR);
	IXGBE_READ_REG(hw, IXGBE_TPT);
	IXGBE_READ_REG(hw, IXGBE_PTC64);
	IXGBE_READ_REG(hw, IXGBE_PTC127);
	IXGBE_READ_REG(hw, IXGBE_PTC255);
	IXGBE_READ_REG(hw, IXGBE_PTC511);
	IXGBE_READ_REG(hw, IXGBE_PTC1023);
	IXGBE_READ_REG(hw, IXGBE_PTC1522);
	IXGBE_READ_REG(hw, IXGBE_MPTC);
	IXGBE_READ_REG(hw, IXGBE_BPTC);
	for (i = 0; i < 16; i++) {
		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
		IXGBE_READ_REG(hw, IXGBE_QBRC(i));
		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
		IXGBE_READ_REG(hw, IXGBE_QBTC(i));
	}

	return 0;
}

/**
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
 *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
 *  @hw: pointer to hardware structure
 *  @pba_num: stores the part number from the EEPROM
 *
 *  Reads the part number from the EEPROM.
 **/
s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
{
	s32 ret_val;
	u16 data;

	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}
	*pba_num = (u32)(data << 16);

	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}
	*pba_num |= data;

	return 0;
}

/**
 *  ixgbe_get_mac_addr_generic - Generic get MAC address
224 225 226 227 228 229 230
 *  @hw: pointer to hardware structure
 *  @mac_addr: Adapter MAC address
 *
 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 *  A reset of the adapter must be performed prior to calling this function
 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 **/
231
s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
{
	u32 rar_high;
	u32 rar_low;
	u16 i;

	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));

	for (i = 0; i < 4; i++)
		mac_addr[i] = (u8)(rar_low >> (i*8));

	for (i = 0; i < 2; i++)
		mac_addr[i+4] = (u8)(rar_high >> (i*8));

	return 0;
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/**
 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 *  @hw: pointer to hardware structure
 *
 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 **/
s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
{
	struct ixgbe_adapter *adapter = hw->back;
	struct ixgbe_mac_info *mac = &hw->mac;
	u16 link_status;

	hw->bus.type = ixgbe_bus_type_pci_express;

	/* Get the negotiated link width and speed from PCI config space */
	pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
	                     &link_status);

	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
	case IXGBE_PCI_LINK_WIDTH_1:
		hw->bus.width = ixgbe_bus_width_pcie_x1;
		break;
	case IXGBE_PCI_LINK_WIDTH_2:
		hw->bus.width = ixgbe_bus_width_pcie_x2;
		break;
	case IXGBE_PCI_LINK_WIDTH_4:
		hw->bus.width = ixgbe_bus_width_pcie_x4;
		break;
	case IXGBE_PCI_LINK_WIDTH_8:
		hw->bus.width = ixgbe_bus_width_pcie_x8;
		break;
	default:
		hw->bus.width = ixgbe_bus_width_unknown;
		break;
	}

	switch (link_status & IXGBE_PCI_LINK_SPEED) {
	case IXGBE_PCI_LINK_SPEED_2500:
		hw->bus.speed = ixgbe_bus_speed_2500;
		break;
	case IXGBE_PCI_LINK_SPEED_5000:
		hw->bus.speed = ixgbe_bus_speed_5000;
		break;
	default:
		hw->bus.speed = ixgbe_bus_speed_unknown;
		break;
	}

	mac->ops.set_lan_id(hw);

	return 0;
}

/**
 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 *  @hw: pointer to the HW structure
 *
 *  Determines the LAN function id by reading memory-mapped registers
 *  and swaps the port value if requested.
 **/
void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
{
	struct ixgbe_bus_info *bus = &hw->bus;
	u32 reg;

	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
	bus->lan_id = bus->func;

	/* check for a port swap */
	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
	if (reg & IXGBE_FACTPS_LFS)
		bus->func ^= 0x1;
}

324
/**
325
 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
326 327 328 329 330 331 332
 *  @hw: pointer to hardware structure
 *
 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 *  disables transmit and receive units. The adapter_stopped flag is used by
 *  the shared code and drivers to determine if the adapter is in a stopped
 *  state and should not touch the hardware.
 **/
333
s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
{
	u32 number_of_queues;
	u32 reg_val;
	u16 i;

	/*
	 * Set the adapter_stopped flag so other driver functions stop touching
	 * the hardware
	 */
	hw->adapter_stopped = true;

	/* Disable the receive unit */
	reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
	reg_val &= ~(IXGBE_RXCTRL_RXEN);
	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
349
	IXGBE_WRITE_FLUSH(hw);
350 351 352 353 354 355 356 357 358
	msleep(2);

	/* Clear interrupt mask to stop from interrupts being generated */
	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);

	/* Clear any pending interrupts */
	IXGBE_READ_REG(hw, IXGBE_EICR);

	/* Disable the transmit unit.  Each queue must be disabled. */
359
	number_of_queues = hw->mac.max_tx_queues;
360 361 362 363 364 365 366 367
	for (i = 0; i < number_of_queues; i++) {
		reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
		if (reg_val & IXGBE_TXDCTL_ENABLE) {
			reg_val &= ~IXGBE_TXDCTL_ENABLE;
			IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
		}
	}

368 369 370 371 372 373 374
	/*
	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
	 * access and verify no pending requests
	 */
	if (ixgbe_disable_pcie_master(hw) != 0)
		hw_dbg(hw, "PCI-E Master disable polling has failed.\n");

375 376 377 378
	return 0;
}

/**
379
 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
380 381 382
 *  @hw: pointer to hardware structure
 *  @index: led number to turn on
 **/
383
s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
384 385 386 387 388 389 390
{
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

	/* To turn on the LED, set mode to ON. */
	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
391
	IXGBE_WRITE_FLUSH(hw);
392 393 394 395 396

	return 0;
}

/**
397
 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
398 399 400
 *  @hw: pointer to hardware structure
 *  @index: led number to turn off
 **/
401
s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
402 403 404 405 406 407 408
{
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

	/* To turn off the LED, set mode to OFF. */
	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
409
	IXGBE_WRITE_FLUSH(hw);
410 411 412 413 414

	return 0;
}

/**
415
 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
416 417 418 419 420
 *  @hw: pointer to hardware structure
 *
 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 *  ixgbe_hw struct in order to set up EEPROM access.
 **/
421
s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
422 423 424 425 426 427 428
{
	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
	u32 eec;
	u16 eeprom_size;

	if (eeprom->type == ixgbe_eeprom_uninitialized) {
		eeprom->type = ixgbe_eeprom_none;
429 430 431
		/* Set default semaphore delay to 10ms which is a well
		 * tested value */
		eeprom->semaphore_delay = 10;
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

		/*
		 * Check for EEPROM present first.
		 * If not present leave as none
		 */
		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
		if (eec & IXGBE_EEC_PRES) {
			eeprom->type = ixgbe_eeprom_spi;

			/*
			 * SPI EEPROM is assumed here.  This code would need to
			 * change if a future EEPROM is not SPI.
			 */
			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
					    IXGBE_EEC_SIZE_SHIFT);
			eeprom->word_size = 1 << (eeprom_size +
						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
		}

		if (eec & IXGBE_EEC_ADDR_SIZE)
			eeprom->address_bits = 16;
		else
			eeprom->address_bits = 8;
		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
			  "%d\n", eeprom->type, eeprom->word_size,
			  eeprom->address_bits);
	}

	return 0;
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
/**
 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be written to
 *  @data: 16 bit word to be written to the EEPROM
 *
 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 *  EEPROM will most likely contain an invalid checksum.
 **/
s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
{
	s32 status;
	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;

	hw->eeprom.ops.init_params(hw);

	if (offset >= hw->eeprom.word_size) {
		status = IXGBE_ERR_EEPROM;
		goto out;
	}

	/* Prepare the EEPROM for writing  */
	status = ixgbe_acquire_eeprom(hw);

	if (status == 0) {
		if (ixgbe_ready_eeprom(hw) != 0) {
			ixgbe_release_eeprom(hw);
			status = IXGBE_ERR_EEPROM;
		}
	}

	if (status == 0) {
		ixgbe_standby_eeprom(hw);

		/*  Send the WRITE ENABLE command (8 bit opcode )  */
		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_WREN_OPCODE_SPI,
		                            IXGBE_EEPROM_OPCODE_BITS);

		ixgbe_standby_eeprom(hw);

		/*
		 * Some SPI eeproms use the 8th address bit embedded in the
		 * opcode
		 */
		if ((hw->eeprom.address_bits == 8) && (offset >= 128))
			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;

		/* Send the Write command (8-bit opcode + addr) */
		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
		                            IXGBE_EEPROM_OPCODE_BITS);
		ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
		                            hw->eeprom.address_bits);

		/* Send the data */
		data = (data >> 8) | (data << 8);
		ixgbe_shift_out_eeprom_bits(hw, data, 16);
		ixgbe_standby_eeprom(hw);

		msleep(hw->eeprom.semaphore_delay);
		/* Done with writing - release the EEPROM */
		ixgbe_release_eeprom(hw);
	}

out:
	return status;
}

530
/**
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be read
 *  @data: read 16 bit value from EEPROM
 *
 *  Reads 16 bit value from EEPROM through bit-bang method
 **/
s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
                                       u16 *data)
{
	s32 status;
	u16 word_in;
	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;

	hw->eeprom.ops.init_params(hw);

	if (offset >= hw->eeprom.word_size) {
		status = IXGBE_ERR_EEPROM;
		goto out;
	}

	/* Prepare the EEPROM for reading  */
	status = ixgbe_acquire_eeprom(hw);

	if (status == 0) {
		if (ixgbe_ready_eeprom(hw) != 0) {
			ixgbe_release_eeprom(hw);
			status = IXGBE_ERR_EEPROM;
		}
	}

	if (status == 0) {
		ixgbe_standby_eeprom(hw);

		/*
		 * Some SPI eeproms use the 8th address bit embedded in the
		 * opcode
		 */
		if ((hw->eeprom.address_bits == 8) && (offset >= 128))
			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;

		/* Send the READ command (opcode + addr) */
		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
		                            IXGBE_EEPROM_OPCODE_BITS);
		ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
		                            hw->eeprom.address_bits);

		/* Read the data. */
		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
		*data = (word_in >> 8) | (word_in << 8);

		/* End this read operation */
		ixgbe_release_eeprom(hw);
	}

out:
	return status;
}

/**
 *  ixgbe_read_eeprom_generic - Read EEPROM word using EERD
592 593 594 595 596 597
 *  @hw: pointer to hardware structure
 *  @offset: offset of  word in the EEPROM to read
 *  @data: word read from the EEPROM
 *
 *  Reads a 16 bit word from the EEPROM using the EERD register.
 **/
598
s32 ixgbe_read_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
599 600 601 602
{
	u32 eerd;
	s32 status;

603 604 605 606 607 608 609
	hw->eeprom.ops.init_params(hw);

	if (offset >= hw->eeprom.word_size) {
		status = IXGBE_ERR_EEPROM;
		goto out;
	}

610 611 612 613 614 615 616 617
	eerd = (offset << IXGBE_EEPROM_READ_ADDR_SHIFT) +
	       IXGBE_EEPROM_READ_REG_START;

	IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
	status = ixgbe_poll_eeprom_eerd_done(hw);

	if (status == 0)
		*data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
618
		         IXGBE_EEPROM_READ_REG_DATA);
619 620 621
	else
		hw_dbg(hw, "Eeprom read timed out\n");

622
out:
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
	return status;
}

/**
 *  ixgbe_poll_eeprom_eerd_done - Poll EERD status
 *  @hw: pointer to hardware structure
 *
 *  Polls the status bit (bit 1) of the EERD to determine when the read is done.
 **/
static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw)
{
	u32 i;
	u32 reg;
	s32 status = IXGBE_ERR_EEPROM;

	for (i = 0; i < IXGBE_EERD_ATTEMPTS; i++) {
		reg = IXGBE_READ_REG(hw, IXGBE_EERD);
		if (reg & IXGBE_EEPROM_READ_REG_DONE) {
			status = 0;
			break;
		}
		udelay(5);
	}
	return status;
}

649 650 651 652 653 654 655 656 657 658
/**
 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
 *  @hw: pointer to hardware structure
 *
 *  Prepares EEPROM for access using bit-bang method. This function should
 *  be called before issuing a command to the EEPROM.
 **/
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
{
	s32 status = 0;
659
	u32 eec = 0;
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
	u32 i;

	if (ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
		status = IXGBE_ERR_SWFW_SYNC;

	if (status == 0) {
		eec = IXGBE_READ_REG(hw, IXGBE_EEC);

		/* Request EEPROM Access */
		eec |= IXGBE_EEC_REQ;
		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);

		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
			if (eec & IXGBE_EEC_GNT)
				break;
			udelay(5);
		}

		/* Release if grant not acquired */
		if (!(eec & IXGBE_EEC_GNT)) {
			eec &= ~IXGBE_EEC_REQ;
			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
			hw_dbg(hw, "Could not acquire EEPROM grant\n");

			ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
			status = IXGBE_ERR_EEPROM;
		}
	}

	/* Setup EEPROM for Read/Write */
	if (status == 0) {
		/* Clear CS and SK */
		eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
		IXGBE_WRITE_FLUSH(hw);
		udelay(1);
	}
	return status;
}

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
/**
 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
 *  @hw: pointer to hardware structure
 *
 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
 **/
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
{
	s32 status = IXGBE_ERR_EEPROM;
	u32 timeout;
	u32 i;
	u32 swsm;

	/* Set timeout value based on size of EEPROM */
	timeout = hw->eeprom.word_size + 1;

	/* Get SMBI software semaphore between device drivers first */
	for (i = 0; i < timeout; i++) {
		/*
		 * If the SMBI bit is 0 when we read it, then the bit will be
		 * set and we have the semaphore
		 */
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
		if (!(swsm & IXGBE_SWSM_SMBI)) {
			status = 0;
			break;
		}
		msleep(1);
	}

	/* Now get the semaphore between SW/FW through the SWESMBI bit */
	if (status == 0) {
		for (i = 0; i < timeout; i++) {
			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);

			/* Set the SW EEPROM semaphore bit to request access */
			swsm |= IXGBE_SWSM_SWESMBI;
			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);

			/*
			 * If we set the bit successfully then we got the
			 * semaphore.
			 */
			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
			if (swsm & IXGBE_SWSM_SWESMBI)
				break;

			udelay(50);
		}

		/*
		 * Release semaphores and return error if SW EEPROM semaphore
		 * was not granted because we don't have access to the EEPROM
		 */
		if (i >= timeout) {
			hw_dbg(hw, "Driver can't access the Eeprom - Semaphore "
757
			       "not granted.\n");
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
			ixgbe_release_eeprom_semaphore(hw);
			status = IXGBE_ERR_EEPROM;
		}
	}

	return status;
}

/**
 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
 *  @hw: pointer to hardware structure
 *
 *  This function clears hardware semaphore bits.
 **/
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
{
	u32 swsm;

	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);

	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
781
	IXGBE_WRITE_FLUSH(hw);
782 783
}

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
/**
 *  ixgbe_ready_eeprom - Polls for EEPROM ready
 *  @hw: pointer to hardware structure
 **/
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
{
	s32 status = 0;
	u16 i;
	u8 spi_stat_reg;

	/*
	 * Read "Status Register" repeatedly until the LSB is cleared.  The
	 * EEPROM will signal that the command has been completed by clearing
	 * bit 0 of the internal status register.  If it's not cleared within
	 * 5 milliseconds, then error out.
	 */
	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
		                            IXGBE_EEPROM_OPCODE_BITS);
		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
			break;

		udelay(5);
		ixgbe_standby_eeprom(hw);
	};

	/*
	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
	 * devices (and only 0-5mSec on 5V devices)
	 */
	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
		hw_dbg(hw, "SPI EEPROM Status error\n");
		status = IXGBE_ERR_EEPROM;
	}

	return status;
}

/**
 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
 *  @hw: pointer to hardware structure
 **/
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
{
	u32 eec;

	eec = IXGBE_READ_REG(hw, IXGBE_EEC);

	/* Toggle CS to flush commands */
	eec |= IXGBE_EEC_CS;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
	eec &= ~IXGBE_EEC_CS;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
 *  @hw: pointer to hardware structure
 *  @data: data to send to the EEPROM
 *  @count: number of bits to shift out
 **/
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
                                        u16 count)
{
	u32 eec;
	u32 mask;
	u32 i;

	eec = IXGBE_READ_REG(hw, IXGBE_EEC);

	/*
	 * Mask is used to shift "count" bits of "data" out to the EEPROM
	 * one bit at a time.  Determine the starting bit based on count
	 */
	mask = 0x01 << (count - 1);

	for (i = 0; i < count; i++) {
		/*
		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
		 * "1", and then raising and then lowering the clock (the SK
		 * bit controls the clock input to the EEPROM).  A "0" is
		 * shifted out to the EEPROM by setting "DI" to "0" and then
		 * raising and then lowering the clock.
		 */
		if (data & mask)
			eec |= IXGBE_EEC_DI;
		else
			eec &= ~IXGBE_EEC_DI;

		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
		IXGBE_WRITE_FLUSH(hw);

		udelay(1);

		ixgbe_raise_eeprom_clk(hw, &eec);
		ixgbe_lower_eeprom_clk(hw, &eec);

		/*
		 * Shift mask to signify next bit of data to shift in to the
		 * EEPROM
		 */
		mask = mask >> 1;
	};

	/* We leave the "DI" bit set to "0" when we leave this routine. */
	eec &= ~IXGBE_EEC_DI;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
	IXGBE_WRITE_FLUSH(hw);
}

/**
 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
 *  @hw: pointer to hardware structure
 **/
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
{
	u32 eec;
	u32 i;
	u16 data = 0;

	/*
	 * In order to read a register from the EEPROM, we need to shift
	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
	 * the clock input to the EEPROM (setting the SK bit), and then reading
	 * the value of the "DO" bit.  During this "shifting in" process the
	 * "DI" bit should always be clear.
	 */
	eec = IXGBE_READ_REG(hw, IXGBE_EEC);

	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);

	for (i = 0; i < count; i++) {
		data = data << 1;
		ixgbe_raise_eeprom_clk(hw, &eec);

		eec = IXGBE_READ_REG(hw, IXGBE_EEC);

		eec &= ~(IXGBE_EEC_DI);
		if (eec & IXGBE_EEC_DO)
			data |= 1;

		ixgbe_lower_eeprom_clk(hw, &eec);
	}

	return data;
}

/**
 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
 *  @hw: pointer to hardware structure
 *  @eec: EEC register's current value
 **/
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
{
	/*
	 * Raise the clock input to the EEPROM
	 * (setting the SK bit), then delay
	 */
	*eec = *eec | IXGBE_EEC_SK;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
 *  @hw: pointer to hardware structure
 *  @eecd: EECD's current value
 **/
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
{
	/*
	 * Lower the clock input to the EEPROM (clearing the SK bit), then
	 * delay
	 */
	*eec = *eec & ~IXGBE_EEC_SK;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
 *  @hw: pointer to hardware structure
 **/
static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
{
	u32 eec;

	eec = IXGBE_READ_REG(hw, IXGBE_EEC);

	eec |= IXGBE_EEC_CS;  /* Pull CS high */
	eec &= ~IXGBE_EEC_SK; /* Lower SCK */

	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
	IXGBE_WRITE_FLUSH(hw);

	udelay(1);

	/* Stop requesting EEPROM access */
	eec &= ~IXGBE_EEC_REQ;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);

	ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
}

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
/**
 *  ixgbe_calc_eeprom_checksum - Calculates and returns the checksum
 *  @hw: pointer to hardware structure
 **/
static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw)
{
	u16 i;
	u16 j;
	u16 checksum = 0;
	u16 length = 0;
	u16 pointer = 0;
	u16 word = 0;

	/* Include 0x0-0x3F in the checksum */
	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1010
		if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1011 1012 1013 1014 1015 1016 1017 1018
			hw_dbg(hw, "EEPROM read failed\n");
			break;
		}
		checksum += word;
	}

	/* Include all data from pointers except for the fw pointer */
	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1019
		hw->eeprom.ops.read(hw, i, &pointer);
1020 1021 1022

		/* Make sure the pointer seems valid */
		if (pointer != 0xFFFF && pointer != 0) {
1023
			hw->eeprom.ops.read(hw, pointer, &length);
1024 1025 1026

			if (length != 0xFFFF && length != 0) {
				for (j = pointer+1; j <= pointer+length; j++) {
1027
					hw->eeprom.ops.read(hw, j, &word);
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
					checksum += word;
				}
			}
		}
	}

	checksum = (u16)IXGBE_EEPROM_SUM - checksum;

	return checksum;
}

/**
1040
 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1041 1042 1043 1044 1045 1046
 *  @hw: pointer to hardware structure
 *  @checksum_val: calculated checksum
 *
 *  Performs checksum calculation and validates the EEPROM checksum.  If the
 *  caller does not need checksum_val, the value can be NULL.
 **/
1047 1048
s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
                                           u16 *checksum_val)
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
{
	s32 status;
	u16 checksum;
	u16 read_checksum = 0;

	/*
	 * Read the first word from the EEPROM. If this times out or fails, do
	 * not continue or we could be in for a very long wait while every
	 * EEPROM read fails
	 */
1059
	status = hw->eeprom.ops.read(hw, 0, &checksum);
1060 1061 1062 1063

	if (status == 0) {
		checksum = ixgbe_calc_eeprom_checksum(hw);

1064
		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

		/*
		 * Verify read checksum from EEPROM is the same as
		 * calculated checksum
		 */
		if (read_checksum != checksum)
			status = IXGBE_ERR_EEPROM_CHECKSUM;

		/* If the user cares, return the calculated checksum */
		if (checksum_val)
			*checksum_val = checksum;
	} else {
		hw_dbg(hw, "EEPROM read failed\n");
	}

	return status;
}

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
/**
 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
 *  @hw: pointer to hardware structure
 **/
s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
{
	s32 status;
	u16 checksum;

	/*
	 * Read the first word from the EEPROM. If this times out or fails, do
	 * not continue or we could be in for a very long wait while every
	 * EEPROM read fails
	 */
	status = hw->eeprom.ops.read(hw, 0, &checksum);

	if (status == 0) {
		checksum = ixgbe_calc_eeprom_checksum(hw);
		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
		                            checksum);
	} else {
		hw_dbg(hw, "EEPROM read failed\n");
	}

	return status;
}

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
/**
 *  ixgbe_validate_mac_addr - Validate MAC address
 *  @mac_addr: pointer to MAC address.
 *
 *  Tests a MAC address to ensure it is a valid Individual Address
 **/
s32 ixgbe_validate_mac_addr(u8 *mac_addr)
{
	s32 status = 0;

	/* Make sure it is not a multicast address */
	if (IXGBE_IS_MULTICAST(mac_addr))
		status = IXGBE_ERR_INVALID_MAC_ADDR;
	/* Not a broadcast address */
	else if (IXGBE_IS_BROADCAST(mac_addr))
		status = IXGBE_ERR_INVALID_MAC_ADDR;
	/* Reject the zero address */
	else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1128
	         mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
1129 1130 1131 1132 1133 1134
		status = IXGBE_ERR_INVALID_MAC_ADDR;

	return status;
}

/**
1135
 *  ixgbe_set_rar_generic - Set Rx address register
1136 1137
 *  @hw: pointer to hardware structure
 *  @index: Receive address register to write
1138 1139
 *  @addr: Address to put into receive address register
 *  @vmdq: VMDq "set" or "pool" index
1140 1141 1142 1143
 *  @enable_addr: set flag that address is active
 *
 *  Puts an ethernet address into a receive address register.
 **/
1144 1145
s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
                          u32 enable_addr)
1146 1147
{
	u32 rar_low, rar_high;
1148 1149 1150 1151
	u32 rar_entries = hw->mac.num_rar_entries;

	/* setup VMDq pool selection before this RAR gets enabled */
	hw->mac.ops.set_vmdq(hw, index, vmdq);
1152

1153 1154
	/* Make sure we are using a valid rar index range */
	if (index < rar_entries) {
1155
		/*
1156 1157
		 * HW expects these in little endian so we reverse the byte
		 * order from network order (big endian) to little endian
1158 1159 1160 1161 1162
		 */
		rar_low = ((u32)addr[0] |
		           ((u32)addr[1] << 8) |
		           ((u32)addr[2] << 16) |
		           ((u32)addr[3] << 24));
1163 1164 1165 1166 1167 1168 1169 1170
		/*
		 * Some parts put the VMDq setting in the extra RAH bits,
		 * so save everything except the lower 16 bits that hold part
		 * of the address and the address valid bit.
		 */
		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
		rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
		rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1171

1172 1173
		if (enable_addr != 0)
			rar_high |= IXGBE_RAH_AV;
1174

1175 1176
		IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
		IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	} else {
		hw_dbg(hw, "RAR index %d is out of range.\n", index);
	}

	return 0;
}

/**
 *  ixgbe_clear_rar_generic - Remove Rx address register
 *  @hw: pointer to hardware structure
 *  @index: Receive address register to write
 *
 *  Clears an ethernet address from a receive address register.
 **/
s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
{
	u32 rar_high;
	u32 rar_entries = hw->mac.num_rar_entries;

	/* Make sure we are using a valid rar index range */
	if (index < rar_entries) {
		/*
		 * Some parts put the VMDq setting in the extra RAH bits,
		 * so save everything except the lower 16 bits that hold part
		 * of the address and the address valid bit.
		 */
		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
		rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);

		IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
		IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
	} else {
		hw_dbg(hw, "RAR index %d is out of range.\n", index);
	}

	/* clear VMDq pool/queue selection for this RAR */
	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1214 1215 1216 1217 1218

	return 0;
}

/**
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
 *  ixgbe_enable_rar - Enable Rx address register
 *  @hw: pointer to hardware structure
 *  @index: index into the RAR table
 *
 *  Enables the select receive address register.
 **/
static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index)
{
	u32 rar_high;

	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
	rar_high |= IXGBE_RAH_AV;
	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
}

/**
 *  ixgbe_disable_rar - Disable Rx address register
 *  @hw: pointer to hardware structure
 *  @index: index into the RAR table
 *
 *  Disables the select receive address register.
 **/
static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index)
{
	u32 rar_high;

	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
	rar_high &= (~IXGBE_RAH_AV);
	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
}

/**
 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1252 1253 1254
 *  @hw: pointer to hardware structure
 *
 *  Places the MAC address in receive address register 0 and clears the rest
1255
 *  of the receive address registers. Clears the multicast table. Assumes
1256 1257
 *  the receiver is in reset when the routine is called.
 **/
1258
s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1259 1260
{
	u32 i;
1261
	u32 rar_entries = hw->mac.num_rar_entries;
1262 1263 1264 1265 1266 1267 1268 1269 1270

	/*
	 * If the current mac address is valid, assume it is a software override
	 * to the permanent address.
	 * Otherwise, use the permanent address from the eeprom.
	 */
	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
	    IXGBE_ERR_INVALID_MAC_ADDR) {
		/* Get the MAC address from the RAR0 for later reference */
1271
		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1272 1273

		hw_dbg(hw, " Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
1274 1275
		       hw->mac.addr[0], hw->mac.addr[1],
		       hw->mac.addr[2]);
1276
		hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
1277
		       hw->mac.addr[4], hw->mac.addr[5]);
1278 1279 1280 1281
	} else {
		/* Setup the receive address. */
		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
		hw_dbg(hw, " New MAC Addr =%.2X %.2X %.2X ",
1282 1283
		       hw->mac.addr[0], hw->mac.addr[1],
		       hw->mac.addr[2]);
1284
		hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
1285
		       hw->mac.addr[4], hw->mac.addr[5]);
1286

1287
		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1288
	}
1289
	hw->addr_ctrl.overflow_promisc = 0;
1290 1291 1292 1293

	hw->addr_ctrl.rar_used_count = 1;

	/* Zero out the other receive addresses. */
1294
	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	for (i = 1; i < rar_entries; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
	}

	/* Clear the MTA */
	hw->addr_ctrl.mc_addr_in_rar_count = 0;
	hw->addr_ctrl.mta_in_use = 0;
	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);

	hw_dbg(hw, " Clearing MTA\n");
1306
	for (i = 0; i < hw->mac.mcft_size; i++)
1307 1308
		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);

1309 1310 1311
	if (hw->mac.ops.init_uta_tables)
		hw->mac.ops.init_uta_tables(hw);

1312 1313 1314
	return 0;
}

1315 1316 1317 1318 1319 1320 1321
/**
 *  ixgbe_add_uc_addr - Adds a secondary unicast address.
 *  @hw: pointer to hardware structure
 *  @addr: new address
 *
 *  Adds it to unused receive address register or goes into promiscuous mode.
 **/
1322
static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
{
	u32 rar_entries = hw->mac.num_rar_entries;
	u32 rar;

	hw_dbg(hw, " UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
	          addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);

	/*
	 * Place this address in the RAR if there is room,
	 * else put the controller into promiscuous mode
	 */
	if (hw->addr_ctrl.rar_used_count < rar_entries) {
		rar = hw->addr_ctrl.rar_used_count -
		      hw->addr_ctrl.mc_addr_in_rar_count;
1337
		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
		hw_dbg(hw, "Added a secondary address to RAR[%d]\n", rar);
		hw->addr_ctrl.rar_used_count++;
	} else {
		hw->addr_ctrl.overflow_promisc++;
	}

	hw_dbg(hw, "ixgbe_add_uc_addr Complete\n");
}

/**
1348
 *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
 *  @hw: pointer to hardware structure
 *  @addr_list: the list of new addresses
 *  @addr_count: number of addresses
 *  @next: iterator function to walk the address list
 *
 *  The given list replaces any existing list.  Clears the secondary addrs from
 *  receive address registers.  Uses unused receive address registers for the
 *  first secondary addresses, and falls back to promiscuous mode as needed.
 *
 *  Drivers using secondary unicast addresses must set user_set_promisc when
 *  manually putting the device into promiscuous mode.
 **/
J
Jiri Pirko 已提交
1361 1362
s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw,
				      struct list_head *uc_list)
1363 1364 1365 1366 1367
{
	u32 i;
	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
	u32 uc_addr_in_use;
	u32 fctrl;
J
Jiri Pirko 已提交
1368
	struct netdev_hw_addr *ha;
1369 1370 1371 1372 1373

	/*
	 * Clear accounting of old secondary address list,
	 * don't count RAR[0]
	 */
1374
	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
	hw->addr_ctrl.overflow_promisc = 0;

	/* Zero out the other receive addresses */
	hw_dbg(hw, "Clearing RAR[1-%d]\n", uc_addr_in_use);
	for (i = 1; i <= uc_addr_in_use; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
	}

	/* Add the new addresses */
J
Jiri Pirko 已提交
1386
	list_for_each_entry(ha, uc_list, list) {
1387
		hw_dbg(hw, " Adding the secondary addresses:\n");
J
Jiri Pirko 已提交
1388
		ixgbe_add_uc_addr(hw, ha->addr, 0);
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	}

	if (hw->addr_ctrl.overflow_promisc) {
		/* enable promisc if not already in overflow or set by user */
		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
			hw_dbg(hw, " Entering address overflow promisc mode\n");
			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
			fctrl |= IXGBE_FCTRL_UPE;
			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
		}
	} else {
		/* only disable if set by overflow, not by user */
		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
			hw_dbg(hw, " Leaving address overflow promisc mode\n");
			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
			fctrl &= ~IXGBE_FCTRL_UPE;
			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
		}
	}

1409
	hw_dbg(hw, "ixgbe_update_uc_addr_list_generic Complete\n");
1410 1411 1412
	return 0;
}

1413 1414 1415 1416 1417 1418 1419 1420 1421
/**
 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
 *  @hw: pointer to hardware structure
 *  @mc_addr: the multicast address
 *
 *  Extracts the 12 bits, from a multicast address, to determine which
 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
 *  incoming rx multicast addresses, to determine the bit-vector to check in
 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1422
 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1423 1424 1425 1426 1427 1428 1429
 *  to mc_filter_type.
 **/
static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
{
	u32 vector = 0;

	switch (hw->mac.mc_filter_type) {
1430
	case 0:   /* use bits [47:36] of the address */
1431 1432
		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
		break;
1433
	case 1:   /* use bits [46:35] of the address */
1434 1435
		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
		break;
1436
	case 2:   /* use bits [45:34] of the address */
1437 1438
		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
		break;
1439
	case 3:   /* use bits [43:32] of the address */
1440 1441
		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
		break;
1442
	default:  /* Invalid mc_filter_type */
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
		hw_dbg(hw, "MC filter type param set incorrectly\n");
		break;
	}

	/* vector can only be 12-bits or boundary will be exceeded */
	vector &= 0xFFF;
	return vector;
}

/**
 *  ixgbe_set_mta - Set bit-vector in multicast table
 *  @hw: pointer to hardware structure
 *  @hash_value: Multicast address hash value
 *
 *  Sets the bit-vector in the multicast table.
 **/
static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
{
	u32 vector;
	u32 vector_bit;
	u32 vector_reg;
	u32 mta_reg;

	hw->addr_ctrl.mta_in_use++;

	vector = ixgbe_mta_vector(hw, mc_addr);
	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);

	/*
	 * The MTA is a register array of 128 32-bit registers. It is treated
	 * like an array of 4096 bits.  We want to set bit
	 * BitArray[vector_value]. So we figure out what register the bit is
	 * in, read it, OR in the new bit, then write back the new value.  The
	 * register is determined by the upper 7 bits of the vector value and
	 * the bit within that register are determined by the lower 5 bits of
	 * the value.
	 */
	vector_reg = (vector >> 5) & 0x7F;
	vector_bit = vector & 0x1F;
	mta_reg = IXGBE_READ_REG(hw, IXGBE_MTA(vector_reg));
	mta_reg |= (1 << vector_bit);
	IXGBE_WRITE_REG(hw, IXGBE_MTA(vector_reg), mta_reg);
}

/**
1488
 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1489 1490 1491
 *  @hw: pointer to hardware structure
 *  @mc_addr_list: the list of new multicast addresses
 *  @mc_addr_count: number of addresses
1492
 *  @next: iterator function to walk the multicast address list
1493 1494
 *
 *  The given list replaces any existing list. Clears the MC addrs from receive
1495
 *  address registers and the multicast table. Uses unused receive address
1496 1497 1498
 *  registers for the first multicast addresses, and hashes the rest into the
 *  multicast table.
 **/
1499
s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
1500
                                      u32 mc_addr_count, ixgbe_mc_addr_itr next)
1501 1502
{
	u32 i;
1503
	u32 vmdq;
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

	/*
	 * Set the new number of MC addresses that we are being requested to
	 * use.
	 */
	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
	hw->addr_ctrl.mta_in_use = 0;

	/* Clear the MTA */
	hw_dbg(hw, " Clearing MTA\n");
1514
	for (i = 0; i < hw->mac.mcft_size; i++)
1515 1516 1517 1518 1519
		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);

	/* Add the new addresses */
	for (i = 0; i < mc_addr_count; i++) {
		hw_dbg(hw, " Adding the multicast addresses:\n");
1520
		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
1521 1522 1523 1524 1525
	}

	/* Enable mta */
	if (hw->addr_ctrl.mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
1526
		                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
1527

1528
	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
1529 1530 1531 1532
	return 0;
}

/**
1533
 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
1534 1535
 *  @hw: pointer to hardware structure
 *
1536
 *  Enables multicast address in RAR and the use of the multicast hash table.
1537
 **/
1538
s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
1539
{
1540 1541 1542
	u32 i;
	u32 rar_entries = hw->mac.num_rar_entries;
	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1543

1544 1545 1546 1547
	if (a->mc_addr_in_rar_count > 0)
		for (i = (rar_entries - a->mc_addr_in_rar_count);
		     i < rar_entries; i++)
			ixgbe_enable_rar(hw, i);
1548

1549 1550 1551
	if (a->mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
		                hw->mac.mc_filter_type);
1552 1553 1554 1555 1556

	return 0;
}

/**
1557
 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
1558 1559
 *  @hw: pointer to hardware structure
 *
1560
 *  Disables multicast address in RAR and the use of the multicast hash table.
1561
 **/
1562
s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
1563
{
1564 1565 1566
	u32 i;
	u32 rar_entries = hw->mac.num_rar_entries;
	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1567

1568 1569 1570 1571
	if (a->mc_addr_in_rar_count > 0)
		for (i = (rar_entries - a->mc_addr_in_rar_count);
		     i < rar_entries; i++)
			ixgbe_disable_rar(hw, i);
1572

1573 1574
	if (a->mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1575 1576 1577 1578

	return 0;
}

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
/**
 *  ixgbe_fc_enable - Enable flow control
 *  @hw: pointer to hardware structure
 *  @packetbuf_num: packet buffer number (0-7)
 *
 *  Enable flow control according to the current settings.
 **/
s32 ixgbe_fc_enable(struct ixgbe_hw *hw, s32 packetbuf_num)
{
	s32 ret_val = 0;
	u32 mflcn_reg;
	u32 fccfg_reg;
	u32 reg;
1592 1593 1594 1595 1596 1597 1598
	u32 rx_pba_size;

#ifdef CONFIG_DCB
	if (hw->fc.requested_mode == ixgbe_fc_pfc)
		goto out;

#endif /* CONFIG_DCB */
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610

	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
	mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);

	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);

	/*
	 * The possible values of fc.current_mode are:
	 * 0: Flow control is completely disabled
	 * 1: Rx flow control is enabled (we can receive pause frames,
	 *    but not send pause frames).
1611 1612
	 * 2: Tx flow control is enabled (we can send pause frames but
	 *    we do not support receiving pause frames).
1613
	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1614
	 * 4: Priority Flow Control is enabled.
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
	 * other: Invalid.
	 */
	switch (hw->fc.current_mode) {
	case ixgbe_fc_none:
		/* Flow control completely disabled by software override. */
		break;
	case ixgbe_fc_rx_pause:
		/*
		 * Rx Flow control is enabled and Tx Flow control is
		 * disabled by software override. Since there really
		 * isn't a way to advertise that we are capable of RX
		 * Pause ONLY, we will advertise that we support both
		 * symmetric and asymmetric Rx PAUSE.  Later, we will
		 * disable the adapter's ability to send PAUSE frames.
		 */
		mflcn_reg |= IXGBE_MFLCN_RFCE;
		break;
	case ixgbe_fc_tx_pause:
		/*
		 * Tx Flow control is enabled, and Rx Flow control is
		 * disabled by software override.
		 */
		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
		break;
	case ixgbe_fc_full:
		/* Flow control (both Rx and Tx) is enabled by SW override. */
		mflcn_reg |= IXGBE_MFLCN_RFCE;
		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
		break;
1644 1645 1646 1647 1648
#ifdef CONFIG_DCB
	case ixgbe_fc_pfc:
		goto out;
		break;
#endif
1649 1650 1651 1652 1653 1654 1655 1656
	default:
		hw_dbg(hw, "Flow control param set incorrectly\n");
		ret_val = -IXGBE_ERR_CONFIG;
		goto out;
		break;
	}

	/* Enable 802.3x based flow control settings. */
1657
	mflcn_reg |= IXGBE_MFLCN_DPF;
1658 1659 1660
	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);

1661 1662 1663 1664
	reg = IXGBE_READ_REG(hw, IXGBE_MTQC);
	/* Thresholds are different for link flow control when in DCB mode */
	if (reg & IXGBE_MTQC_RT_ENA) {
		/* Always disable XON for LFC when in DCB mode */
1665 1666 1667
		IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), 0);

		rx_pba_size = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(packetbuf_num));
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
		reg = (rx_pba_size >> 2) & 0xFFE0;
		if (hw->fc.current_mode & ixgbe_fc_tx_pause)
			reg |= IXGBE_FCRTH_FCEN;
		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), reg);
	} else {
		/*
		 * Set up and enable Rx high/low water mark thresholds,
		 * enable XON.
		 */
		if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
			if (hw->fc.send_xon) {
				IXGBE_WRITE_REG(hw,
				              IXGBE_FCRTL_82599(packetbuf_num),
			                      (hw->fc.low_water |
				              IXGBE_FCRTL_XONE));
			} else {
				IXGBE_WRITE_REG(hw,
				              IXGBE_FCRTL_82599(packetbuf_num),
				              hw->fc.low_water);
			}

			IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num),
			               (hw->fc.high_water | IXGBE_FCRTH_FCEN));
		}
1692 1693 1694
	}

	/* Configure pause time (2 TCs per register) */
1695
	reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2));
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	if ((packetbuf_num & 1) == 0)
		reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
	else
		reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
	IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);

	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));

out:
	return ret_val;
}

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
/**
 *  ixgbe_fc_autoneg - Configure flow control
 *  @hw: pointer to hardware structure
 *
 *  Negotiates flow control capabilities with link partner using autoneg and
 *  applies the results.
 **/
s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
{
	s32 ret_val = 0;
	u32 i, reg, pcs_anadv_reg, pcs_lpab_reg;

	reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);

	/*
	 * The possible values of fc.current_mode are:
	 * 0:  Flow control is completely disabled
	 * 1:  Rx flow control is enabled (we can receive pause frames,
	 *     but not send pause frames).
	 * 2:  Tx flow control is enabled (we can send pause frames but
	 *     we do not support receiving pause frames).
	 * 3:  Both Rx and Tx flow control (symmetric) are enabled.
1730
	 * 4:  Priority Flow Control is enabled.
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	 * other: Invalid.
	 */
	switch (hw->fc.current_mode) {
	case ixgbe_fc_none:
		/* Flow control completely disabled by software override. */
		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
		break;
	case ixgbe_fc_rx_pause:
		/*
		 * Rx Flow control is enabled and Tx Flow control is
		 * disabled by software override. Since there really
		 * isn't a way to advertise that we are capable of RX
		 * Pause ONLY, we will advertise that we support both
		 * symmetric and asymmetric Rx PAUSE.  Later, we will
		 * disable the adapter's ability to send PAUSE frames.
		 */
		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
		break;
	case ixgbe_fc_tx_pause:
		/*
		 * Tx Flow control is enabled, and Rx Flow control is
		 * disabled by software override.
		 */
		reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
		break;
	case ixgbe_fc_full:
		/* Flow control (both Rx and Tx) is enabled by SW override. */
		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
		break;
1761 1762 1763 1764 1765
#ifdef CONFIG_DCB
	case ixgbe_fc_pfc:
		goto out;
		break;
#endif
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
	default:
		hw_dbg(hw, "Flow control param set incorrectly\n");
		ret_val = -IXGBE_ERR_CONFIG;
		goto out;
		break;
	}

	IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
	reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);

	/* Set PCS register for autoneg */
	/* Enable and restart autoneg */
	reg |= IXGBE_PCS1GLCTL_AN_ENABLE | IXGBE_PCS1GLCTL_AN_RESTART;

	/* Disable AN timeout */
	if (hw->fc.strict_ieee)
		reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;

	hw_dbg(hw, "Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
	IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);

	/* See if autonegotiation has succeeded */
	hw->mac.autoneg_succeeded = 0;
	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
		msleep(10);
		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
		if ((reg & (IXGBE_PCS1GLSTA_LINK_OK |
		     IXGBE_PCS1GLSTA_AN_COMPLETE)) ==
		    (IXGBE_PCS1GLSTA_LINK_OK |
		     IXGBE_PCS1GLSTA_AN_COMPLETE)) {
			if (!(reg & IXGBE_PCS1GLSTA_AN_TIMED_OUT))
				hw->mac.autoneg_succeeded = 1;
			break;
		}
	}

	if (!hw->mac.autoneg_succeeded) {
		/* Autoneg failed to achieve a link, so we turn fc off */
		hw->fc.current_mode = ixgbe_fc_none;
		hw_dbg(hw, "Flow Control = NONE.\n");
		goto out;
	}

	/*
	 * Read the AN advertisement and LP ability registers and resolve
	 * local flow control settings accordingly
	 */
	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
	if ((pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
		(pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE)) {
		/*
		 * Now we need to check if the user selected Rx ONLY
		 * of pause frames.  In this case, we had to advertise
		 * FULL flow control because we could not advertise RX
		 * ONLY. Hence, we must now check to see if we need to
		 * turn OFF the TRANSMISSION of PAUSE frames.
		 */
		if (hw->fc.requested_mode == ixgbe_fc_full) {
			hw->fc.current_mode = ixgbe_fc_full;
			hw_dbg(hw, "Flow Control = FULL.\n");
		} else {
			hw->fc.current_mode = ixgbe_fc_rx_pause;
			hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
		}
	} else if (!(pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
		   (pcs_anadv_reg & IXGBE_PCS1GANA_ASM_PAUSE) &&
		   (pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
		   (pcs_lpab_reg & IXGBE_PCS1GANA_ASM_PAUSE)) {
		hw->fc.current_mode = ixgbe_fc_tx_pause;
		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
	} else if ((pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
		   (pcs_anadv_reg & IXGBE_PCS1GANA_ASM_PAUSE) &&
		   !(pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
		   (pcs_lpab_reg & IXGBE_PCS1GANA_ASM_PAUSE)) {
		hw->fc.current_mode = ixgbe_fc_rx_pause;
		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
	} else {
		hw->fc.current_mode = ixgbe_fc_none;
		hw_dbg(hw, "Flow Control = NONE.\n");
	}

out:
	return ret_val;
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
/**
 *  ixgbe_setup_fc_generic - Set up flow control
 *  @hw: pointer to hardware structure
 *
 *  Sets up flow control.
 **/
s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
{
	s32 ret_val = 0;
	ixgbe_link_speed speed;
	bool link_up;

1864 1865 1866 1867 1868 1869 1870
#ifdef CONFIG_DCB
	if (hw->fc.requested_mode == ixgbe_fc_pfc) {
		hw->fc.current_mode = hw->fc.requested_mode;
		goto out;
	}

#endif
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
	/* Validate the packetbuf configuration */
	if (packetbuf_num < 0 || packetbuf_num > 7) {
		hw_dbg(hw, "Invalid packet buffer number [%d], expected range "
		       "is 0-7\n", packetbuf_num);
		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
		goto out;
	}

	/*
	 * Validate the water mark configuration.  Zero water marks are invalid
	 * because it causes the controller to just blast out fc packets.
	 */
	if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) {
1884 1885 1886 1887 1888
		if (hw->fc.requested_mode != ixgbe_fc_none) {
			hw_dbg(hw, "Invalid water mark configuration\n");
			ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
			goto out;
		}
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
	}

	/*
	 * Validate the requested mode.  Strict IEEE mode does not allow
	 * ixgbe_fc_rx_pause because it will cause testing anomalies.
	 */
	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict "
		       "IEEE mode\n");
		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
		goto out;
	}

	/*
	 * 10gig parts do not have a word in the EEPROM to determine the
	 * default flow control setting, so we explicitly set it to full.
	 */
	if (hw->fc.requested_mode == ixgbe_fc_default)
		hw->fc.requested_mode = ixgbe_fc_full;

	/*
	 * Save off the requested flow control mode for use later.  Depending
	 * on the link partner's capabilities, we may or may not use this mode.
	 */
	hw->fc.current_mode = hw->fc.requested_mode;

	/* Decide whether to use autoneg or not. */
	hw->mac.ops.check_link(hw, &speed, &link_up, false);
D
Don Skidmore 已提交
1917 1918
	if (!hw->fc.disable_fc_autoneg && hw->phy.multispeed_fiber &&
	    (speed == IXGBE_LINK_SPEED_1GB_FULL))
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
		ret_val = ixgbe_fc_autoneg(hw);

	if (ret_val)
		goto out;

	ret_val = ixgbe_fc_enable(hw, packetbuf_num);

out:
	return ret_val;
}

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
/**
 *  ixgbe_disable_pcie_master - Disable PCI-express master access
 *  @hw: pointer to hardware structure
 *
 *  Disables PCI-Express master access and verifies there are no pending
 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
 *  bit hasn't caused the master requests to be disabled, else 0
 *  is returned signifying master requests disabled.
 **/
s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
{
1941 1942 1943
	u32 i;
	u32 reg_val;
	u32 number_of_queues;
1944 1945
	s32 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
	/* Disable the receive unit by stopping each queue */
	number_of_queues = hw->mac.max_rx_queues;
	for (i = 0; i < number_of_queues; i++) {
		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
		if (reg_val & IXGBE_RXDCTL_ENABLE) {
			reg_val &= ~IXGBE_RXDCTL_ENABLE;
			IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
		}
	}

	reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL);
	reg_val |= IXGBE_CTRL_GIO_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val);
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972

	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) {
			status = 0;
			break;
		}
		udelay(100);
	}

	return status;
}


/**
1973
 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
1974
 *  @hw: pointer to hardware structure
1975
 *  @mask: Mask to specify which semaphore to acquire
1976
 *
1977
 *  Acquires the SWFW semaphore thought the GSSR register for the specified
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
 **/
s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
{
	u32 gssr;
	u32 swmask = mask;
	u32 fwmask = mask << 5;
	s32 timeout = 200;

	while (timeout) {
		if (ixgbe_get_eeprom_semaphore(hw))
			return -IXGBE_ERR_SWFW_SYNC;

		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
		if (!(gssr & (fwmask | swmask)))
			break;

		/*
		 * Firmware currently using resource (fwmask) or other software
		 * thread currently using resource (swmask)
		 */
		ixgbe_release_eeprom_semaphore(hw);
		msleep(5);
		timeout--;
	}

	if (!timeout) {
		hw_dbg(hw, "Driver can't access resource, GSSR timeout.\n");
		return -IXGBE_ERR_SWFW_SYNC;
	}

	gssr |= swmask;
	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);

	ixgbe_release_eeprom_semaphore(hw);
	return 0;
}

/**
 *  ixgbe_release_swfw_sync - Release SWFW semaphore
 *  @hw: pointer to hardware structure
2019
 *  @mask: Mask to specify which semaphore to release
2020
 *
2021
 *  Releases the SWFW semaphore thought the GSSR register for the specified
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
 **/
void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
{
	u32 gssr;
	u32 swmask = mask;

	ixgbe_get_eeprom_semaphore(hw);

	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
	gssr &= ~swmask;
	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);

	ixgbe_release_eeprom_semaphore(hw);
}

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
/**
 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
 *  @hw: pointer to hardware structure
 *  @regval: register value to write to RXCTRL
 *
 *  Enables the Rx DMA unit
 **/
s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
{
	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);

	return 0;
}
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070

/**
 *  ixgbe_blink_led_start_generic - Blink LED based on index.
 *  @hw: pointer to hardware structure
 *  @index: led number to blink
 **/
s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
{
	ixgbe_link_speed speed = 0;
	bool link_up = 0;
	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

	/*
	 * Link must be up to auto-blink the LEDs;
	 * Force it if link is down.
	 */
	hw->mac.ops.check_link(hw, &speed, &link_up, false);

	if (!link_up) {
2071
		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
		autoc_reg |= IXGBE_AUTOC_FLU;
		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
		msleep(10);
	}

	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_BLINK(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
	IXGBE_WRITE_FLUSH(hw);

	return 0;
}

/**
 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
 *  @hw: pointer to hardware structure
 *  @index: led number to stop blinking
 **/
s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
{
	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

	autoc_reg &= ~IXGBE_AUTOC_FLU;
	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);

	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg &= ~IXGBE_LED_BLINK(index);
	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
	IXGBE_WRITE_FLUSH(hw);

	return 0;
}