inode.c 102.9 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34 35 36 37
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include <linux/mpage.h>
#include <linux/uio.h>
#include <linux/bio.h>
38
#include "ext4_jbd2.h"
39 40 41 42 43 44
#include "xattr.h"
#include "acl.h"

/*
 * Test whether an inode is a fast symlink.
 */
45
static int ext4_inode_is_fast_symlink(struct inode *inode)
46
{
47
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
48 49 50 51 52 53
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
54
 * The ext4 forget function must perform a revoke if we are freeing data
55 56 57 58 59 60 61
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
 */
62 63
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
			struct buffer_head *bh, ext4_fsblk_t blocknr)
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
{
	int err;

	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
		  "data mode %lx\n",
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

81 82
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
83
		if (bh) {
84
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
85
			return ext4_journal_forget(handle, bh);
86 87 88 89 90 91 92
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
93 94
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
95
	if (err)
96
		ext4_abort(inode->i_sb, __func__,
97 98 99 100 101 102 103 104 105 106 107
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
108
	ext4_lblk_t needed;
109 110 111 112 113 114

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
115
	 * like a regular file for ext4 to try to delete it.  Things
116 117 118 119 120 121 122
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
123 124
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
125

126
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

143
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
144 145 146
	if (!IS_ERR(result))
		return result;

147
	ext4_std_error(inode->i_sb, PTR_ERR(result));
148 149 150 151 152 153 154 155 156 157 158
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
159
	if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160
		return 0;
161
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162 163 164 165 166 167 168 169 170
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
171
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
172 173
{
	jbd_debug(2, "restarting handle %p\n", handle);
174
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
175 176 177 178 179
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
180
void ext4_delete_inode (struct inode * inode)
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
{
	handle_t *handle;

	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

	handle = start_transaction(inode);
	if (IS_ERR(handle)) {
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
196
		ext4_orphan_del(NULL, inode);
197 198 199 200 201 202 203
		goto no_delete;
	}

	if (IS_SYNC(inode))
		handle->h_sync = 1;
	inode->i_size = 0;
	if (inode->i_blocks)
204
		ext4_truncate(inode);
205
	/*
206
	 * Kill off the orphan record which ext4_truncate created.
207
	 * AKPM: I think this can be inside the above `if'.
208
	 * Note that ext4_orphan_del() has to be able to cope with the
209
	 * deletion of a non-existent orphan - this is because we don't
210
	 * know if ext4_truncate() actually created an orphan record.
211 212
	 * (Well, we could do this if we need to, but heck - it works)
	 */
213 214
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
215 216 217 218 219 220 221 222

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
223
	if (ext4_mark_inode_dirty(handle, inode))
224 225 226
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
227 228
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
247
 *	ext4_block_to_path - parse the block number into array of offsets
248 249 250
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
251 252
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
253
 *
254
 *	To store the locations of file's data ext4 uses a data structure common
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

277
static int ext4_block_to_path(struct inode *inode,
A
Aneesh Kumar K.V 已提交
278 279
			ext4_lblk_t i_block,
			ext4_lblk_t offsets[4], int *boundary)
280
{
281 282 283
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
284 285 286 287 288 289
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
290
		ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
291 292 293 294
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
295
		offsets[n++] = EXT4_IND_BLOCK;
296 297 298
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
299
		offsets[n++] = EXT4_DIND_BLOCK;
300 301 302 303
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
304
		offsets[n++] = EXT4_TIND_BLOCK;
305 306 307 308 309
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
310
		ext4_warning(inode->i_sb, "ext4_block_to_path",
311
				"block %lu > max",
312 313
				i_block + direct_blocks +
				indirect_blocks + double_blocks);
314 315 316 317 318 319 320
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

/**
321
 *	ext4_get_branch - read the chain of indirect blocks leading to data
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
346 347
 *
 *      Need to be called with
348
 *      down_read(&EXT4_I(inode)->i_data_sem)
349
 */
A
Aneesh Kumar K.V 已提交
350 351
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
352 353 354 355 356 357 358 359
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
360
	add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
	if (!p->key)
		goto no_block;
	while (--depth) {
		bh = sb_bread(sb, le32_to_cpu(p->key));
		if (!bh)
			goto failure;
		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
381
 *	ext4_find_near - find a place for allocation with sufficient locality
382 383 384
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
385
 *	This function returns the preferred place for block allocation.
386 387 388 389 390 391 392 393 394 395 396 397 398 399
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
400
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
401
{
402
	struct ext4_inode_info *ei = EXT4_I(inode);
403 404
	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
	__le32 *p;
405
	ext4_fsblk_t bg_start;
406
	ext4_fsblk_t last_block;
407
	ext4_grpblk_t colour;
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
423
	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
424 425 426 427
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
428
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
429 430
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
431 432 433 434
	return bg_start + colour;
}

/**
435
 *	ext4_find_goal - find a preferred place for allocation.
436 437 438 439
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
440
 *	Normally this function find the preferred place for block allocation,
441
 *	returns it.
442
 */
A
Aneesh Kumar K.V 已提交
443
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
444
		Indirect *partial)
445
{
446
	struct ext4_block_alloc_info *block_i;
447

448
	block_i =  EXT4_I(inode)->i_block_alloc_info;
449 450 451 452 453 454 455 456 457 458

	/*
	 * try the heuristic for sequential allocation,
	 * failing that at least try to get decent locality.
	 */
	if (block_i && (block == block_i->last_alloc_logical_block + 1)
		&& (block_i->last_alloc_physical_block != 0)) {
		return block_i->last_alloc_physical_block + 1;
	}

459
	return ext4_find_near(inode, partial);
460 461 462
}

/**
463
 *	ext4_blks_to_allocate: Look up the block map and count the number
464 465 466 467 468 469 470 471 472 473
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
474
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
		int blocks_to_boundary)
{
	unsigned long count = 0;

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
501
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
502 503 504 505 506 507 508 509
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
510
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
511 512 513
				ext4_lblk_t iblock, ext4_fsblk_t goal,
				int indirect_blks, int blks,
				ext4_fsblk_t new_blocks[4], int *err)
514 515
{
	int target, i;
516
	unsigned long count = 0, blk_allocated = 0;
517
	int index = 0;
518
	ext4_fsblk_t current_block = 0;
519 520 521 522 523 524 525 526 527 528
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
529 530 531
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
532 533
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
534 535
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
536 537 538 539 540 541 542 543 544
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
545 546 547 548 549 550 551 552 553
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
554
			break;
555
		}
556 557
	}

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
	count = target;
	/* allocating blocks for indirect blocks and direct blocks */
	current_block = ext4_new_blocks(handle, inode, iblock,
						goal, &count, err);
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
		/*
		 * save the new block number
		 * for the first direct block
		 */
			new_blocks[index] = current_block;
		}
		blk_allocated += count;
	}
allocated:
585
	/* total number of blocks allocated for direct blocks */
586
	ret = blk_allocated;
587 588 589 590
	*err = 0;
	return ret;
failed_out:
	for (i = 0; i <index; i++)
591
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
592 593 594 595
	return ret;
}

/**
596
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
597 598 599 600 601 602 603 604 605 606
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
607
 *	the same format as ext4_get_branch() would do. We are calling it after
608 609
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
610
 *	picture as after the successful ext4_get_block(), except that in one
611 612 613 614 615 616
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
617
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
618 619
 *	as described above and return 0.
 */
620
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
621 622 623
				ext4_lblk_t iblock, int indirect_blks,
				int *blks, ext4_fsblk_t goal,
				ext4_lblk_t *offsets, Indirect *branch)
624 625 626 627 628 629
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
630 631
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
632

633
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
652
		err = ext4_journal_get_create_access(handle, bh);
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
		if (err) {
			unlock_buffer(bh);
			brelse(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
		if ( n == indirect_blks) {
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
			for (i=1; i < num; i++)
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

677 678
		BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, bh);
679 680 681 682 683 684 685 686
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
687
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
688
		ext4_journal_forget(handle, branch[i].bh);
689 690
	}
	for (i = 0; i <indirect_blks; i++)
691
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
692

693
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
694 695 696 697 698

	return err;
}

/**
699
 * ext4_splice_branch - splice the allocated branch onto inode.
700 701 702
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
703
 *	ext4_alloc_branch)
704 705 706 707 708 709 710 711
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
712
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
713
			ext4_lblk_t block, Indirect *where, int num, int blks)
714 715 716
{
	int i;
	int err = 0;
717 718
	struct ext4_block_alloc_info *block_i;
	ext4_fsblk_t current_block;
719

720
	block_i = EXT4_I(inode)->i_block_alloc_info;
721 722 723 724 725 726 727
	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
728
		err = ext4_journal_get_write_access(handle, where->bh);
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
			*(where->p + i ) = cpu_to_le32(current_block++);
	}

	/*
	 * update the most recently allocated logical & physical block
	 * in i_block_alloc_info, to assist find the proper goal block for next
	 * allocation
	 */
	if (block_i) {
		block_i->last_alloc_logical_block = block + blks - 1;
		block_i->last_alloc_physical_block =
				le32_to_cpu(where[num].key) + blks - 1;
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */

K
Kalpak Shah 已提交
759
	inode->i_ctime = ext4_current_time(inode);
760
	ext4_mark_inode_dirty(handle, inode);
761 762 763 764 765 766 767 768 769

	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
770
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
771 772
		 */
		jbd_debug(5, "splicing indirect only\n");
773 774
		BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, where->bh);
775 776 777 778 779 780 781 782 783 784 785 786 787
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 * Inode was dirtied above.
		 */
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
788
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
789
		ext4_journal_forget(handle, where[i].bh);
790 791
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
792
	}
793
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814

	return err;
}

/*
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
815 816 817
 *
 *
 * Need to be called with
818 819
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
820
 */
821
int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
822
		ext4_lblk_t iblock, unsigned long maxblocks,
823 824 825 826
		struct buffer_head *bh_result,
		int create, int extend_disksize)
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
827
	ext4_lblk_t offsets[4];
828 829
	Indirect chain[4];
	Indirect *partial;
830
	ext4_fsblk_t goal;
831 832 833
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
834
	struct ext4_inode_info *ei = EXT4_I(inode);
835
	int count = 0;
836
	ext4_fsblk_t first_block = 0;
837 838


A
Alex Tomas 已提交
839
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
840
	J_ASSERT(handle != NULL || create == 0);
A
Aneesh Kumar K.V 已提交
841 842
	depth = ext4_block_to_path(inode, iblock, offsets,
					&blocks_to_boundary);
843 844 845 846

	if (depth == 0)
		goto out;

847
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
848 849 850 851 852 853 854 855

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
856
			ext4_fsblk_t blk;
857 858 859 860 861 862 863 864

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
865
		goto got_it;
866 867 868 869 870 871 872 873 874 875 876
	}

	/* Next simple case - plain lookup or failed read of indirect block */
	if (!create || err == -EIO)
		goto cleanup;

	/*
	 * Okay, we need to do block allocation.  Lazily initialize the block
	 * allocation info here if necessary
	*/
	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
877
		ext4_init_block_alloc_info(inode);
878

879
	goal = ext4_find_goal(inode, iblock, partial);
880 881 882 883 884 885 886 887

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
888
	count = ext4_blks_to_allocate(partial, indirect_blks,
889 890
					maxblocks, blocks_to_boundary);
	/*
891
	 * Block out ext4_truncate while we alter the tree
892
	 */
893 894 895
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
					&count, goal,
					offsets + (partial - chain), partial);
896 897

	/*
898
	 * The ext4_splice_branch call will free and forget any buffers
899 900 901 902 903 904
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
905
		err = ext4_splice_branch(handle, inode, iblock,
906 907
					partial, indirect_blks, count);
	/*
908
	 * i_disksize growing is protected by i_data_sem.  Don't forget to
909
	 * protect it if you're about to implement concurrent
910
	 * ext4_get_block() -bzzz
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
	*/
	if (!err && extend_disksize && inode->i_size > ei->i_disksize)
		ei->i_disksize = inode->i_size;
	if (err)
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

J
Jan Kara 已提交
936 937 938 939 940 941 942 943 944 945
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096
/*
 * Number of credits we need for writing DIO_MAX_BLOCKS:
 * We need sb + group descriptor + bitmap + inode -> 4
 * For B blocks with A block pointers per block we need:
 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
 */
#define DIO_CREDITS 25
946

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970

/*
 *
 *
 * ext4_ext4 get_block() wrapper function
 * It will do a look up first, and returns if the blocks already mapped.
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
971 972 973 974 975
int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
			unsigned long max_blocks, struct buffer_head *bh,
			int create, int extend_disksize)
{
	int retval;
976 977 978

	clear_buffer_mapped(bh);

979 980 981 982 983 984 985 986
	/*
	 * Try to see if we can get  the block without requesting
	 * for new file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, 0, 0);
987
	} else {
988 989
		retval = ext4_get_blocks_handle(handle,
				inode, block, max_blocks, bh, 0, 0);
990
	}
991
	up_read((&EXT4_I(inode)->i_data_sem));
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004

	/* If it is only a block(s) look up */
	if (!create)
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1005 1006 1007
		return retval;

	/*
1008 1009 1010 1011
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1012 1013 1014 1015 1016 1017
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1018 1019 1020 1021 1022 1023
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, create, extend_disksize);
	} else {
		retval = ext4_get_blocks_handle(handle, inode, block,
				max_blocks, bh, create, extend_disksize);
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
							~EXT4_EXT_MIGRATE;
		}
1034
	}
1035
	up_write((&EXT4_I(inode)->i_data_sem));
1036 1037 1038
	return retval;
}

1039
static int ext4_get_block(struct inode *inode, sector_t iblock,
1040 1041
			struct buffer_head *bh_result, int create)
{
1042
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1043
	int ret = 0, started = 0;
1044 1045
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

J
Jan Kara 已提交
1046 1047 1048 1049 1050 1051 1052
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
		handle = ext4_journal_start(inode, DIO_CREDITS +
			      2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
		if (IS_ERR(handle)) {
1053
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1054
			goto out;
1055
		}
J
Jan Kara 已提交
1056
		started = 1;
1057 1058
	}

J
Jan Kara 已提交
1059
	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1060
					max_blocks, bh_result, create, 0);
J
Jan Kara 已提交
1061 1062 1063
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1064
	}
J
Jan Kara 已提交
1065 1066 1067
	if (started)
		ext4_journal_stop(handle);
out:
1068 1069 1070 1071 1072 1073
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1074
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1075
				ext4_lblk_t block, int create, int *errp)
1076 1077 1078 1079 1080 1081 1082 1083 1084
{
	struct buffer_head dummy;
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
A
Alex Tomas 已提交
1085
	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1086 1087
					&dummy, create, 1);
	/*
1088
	 * ext4_get_blocks_handle() returns number of blocks
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	 * mapped. 0 in case of a HOLE.
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1106
			J_ASSERT(handle != NULL);
1107 1108 1109 1110 1111

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1112
			 * writes use ext4_get_block instead, so it's not a
1113 1114 1115 1116
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1117
			fatal = ext4_journal_get_create_access(handle, bh);
1118 1119 1120 1121 1122
			if (!fatal && !buffer_uptodate(bh)) {
				memset(bh->b_data,0,inode->i_sb->s_blocksize);
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1123 1124
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			err = ext4_journal_dirty_metadata(handle, bh);
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1141
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1142
			       ext4_lblk_t block, int create, int *err)
1143 1144 1145
{
	struct buffer_head * bh;

1146
	bh = ext4_getblk(handle, inode, block, create, err);
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

static int walk_page_buffers(	handle_t *handle,
				struct buffer_head *head,
				unsigned from,
				unsigned to,
				int *partial,
				int (*fn)(	handle_t *handle,
						struct buffer_head *bh))
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

	for (	bh = head, block_start = 0;
		ret == 0 && (bh != head || !block_start);
		block_start = block_end, bh = next)
	{
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1195
 * close off a transaction and start a new one between the ext4_get_block()
1196
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1197 1198
 * prepare_write() is the right place.
 *
1199 1200
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1201 1202 1203 1204
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1205
 * By accident, ext4 can be reentered when a transaction is open via
1206 1207 1208 1209 1210 1211
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1212
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1213 1214 1215 1216 1217 1218 1219 1220 1221
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
					struct buffer_head *bh)
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1222
	return ext4_journal_get_write_access(handle, bh);
1223 1224
}

N
Nick Piggin 已提交
1225 1226 1227
static int ext4_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
1228
{
N
Nick Piggin 已提交
1229
 	struct inode *inode = mapping->host;
1230
	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1231 1232
	handle_t *handle;
	int retries = 0;
N
Nick Piggin 已提交
1233 1234 1235 1236 1237 1238 1239
 	struct page *page;
 	pgoff_t index;
 	unsigned from, to;

 	index = pos >> PAGE_CACHE_SHIFT;
 	from = pos & (PAGE_CACHE_SIZE - 1);
 	to = from + len;
1240 1241

retry:
N
Nick Piggin 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
 	page = __grab_cache_page(mapping, index);
 	if (!page)
 		return -ENOMEM;
 	*pagep = page;

  	handle = ext4_journal_start(inode, needed_blocks);
  	if (IS_ERR(handle)) {
 		unlock_page(page);
 		page_cache_release(page);
  		ret = PTR_ERR(handle);
  		goto out;
1253
	}
1254

N
Nick Piggin 已提交
1255 1256 1257 1258
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_get_block);

	if (!ret && ext4_should_journal_data(inode)) {
1259 1260 1261
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1262 1263

	if (ret) {
1264
		ext4_journal_stop(handle);
N
Nick Piggin 已提交
1265 1266 1267 1268
 		unlock_page(page);
 		page_cache_release(page);
	}

1269
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1270
		goto retry;
1271
out:
1272 1273 1274
	return ret;
}

1275
int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1276
{
1277
	int err = jbd2_journal_dirty_data(handle, bh);
1278
	if (err)
1279
		ext4_journal_abort_handle(__func__, __func__,
N
Nick Piggin 已提交
1280
						bh, handle, err);
1281 1282 1283
	return err;
}

N
Nick Piggin 已提交
1284 1285
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1286 1287 1288 1289
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1290
	return ext4_journal_dirty_metadata(handle, bh);
1291 1292
}

N
Nick Piggin 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
/*
 * Generic write_end handler for ordered and writeback ext4 journal modes.
 * We can't use generic_write_end, because that unlocks the page and we need to
 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
 * after block_write_end.
 */
static int ext4_generic_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	struct inode *inode = file->f_mapping->host;

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	if (pos+copied > inode->i_size) {
		i_size_write(inode, pos+copied);
		mark_inode_dirty(inode);
	}

	return copied;
}

1316 1317 1318 1319
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1320
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1321 1322
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1323 1324 1325 1326
static int ext4_ordered_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1327
{
1328
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1329 1330
	struct inode *inode = file->f_mapping->host;
	unsigned from, to;
1331 1332
	int ret = 0, ret2;

N
Nick Piggin 已提交
1333 1334 1335
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1336
	ret = walk_page_buffers(handle, page_buffers(page),
1337
		from, to, NULL, ext4_journal_dirty_data);
1338 1339 1340

	if (ret == 0) {
		/*
N
Nick Piggin 已提交
1341
		 * generic_write_end() will run mark_inode_dirty() if i_size
1342 1343 1344 1345 1346
		 * changes.  So let's piggyback the i_disksize mark_inode_dirty
		 * into that.
		 */
		loff_t new_i_size;

N
Nick Piggin 已提交
1347
		new_i_size = pos + copied;
1348 1349
		if (new_i_size > EXT4_I(inode)->i_disksize)
			EXT4_I(inode)->i_disksize = new_i_size;
1350
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1351
							page, fsdata);
1352 1353 1354
		copied = ret2;
		if (ret2 < 0)
			ret = ret2;
1355
	}
1356
	ret2 = ext4_journal_stop(handle);
1357 1358
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1359 1360 1361 1362
	unlock_page(page);
	page_cache_release(page);

	return ret ? ret : copied;
1363 1364
}

N
Nick Piggin 已提交
1365 1366 1367 1368
static int ext4_writeback_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1369
{
1370
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1371
	struct inode *inode = file->f_mapping->host;
1372 1373 1374
	int ret = 0, ret2;
	loff_t new_i_size;

N
Nick Piggin 已提交
1375
	new_i_size = pos + copied;
1376 1377
	if (new_i_size > EXT4_I(inode)->i_disksize)
		EXT4_I(inode)->i_disksize = new_i_size;
1378

1379
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1380
							page, fsdata);
1381 1382 1383
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
1384

1385
	ret2 = ext4_journal_stop(handle);
1386 1387
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1388 1389 1390 1391
	unlock_page(page);
	page_cache_release(page);

	return ret ? ret : copied;
1392 1393
}

N
Nick Piggin 已提交
1394 1395 1396 1397
static int ext4_journalled_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1398
{
1399
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1400
	struct inode *inode = mapping->host;
1401 1402
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1403
	unsigned from, to;
1404

N
Nick Piggin 已提交
1405 1406 1407 1408 1409 1410 1411 1412
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1413 1414

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1415
				to, &partial, write_end_fn);
1416 1417
	if (!partial)
		SetPageUptodate(page);
N
Nick Piggin 已提交
1418 1419
	if (pos+copied > inode->i_size)
		i_size_write(inode, pos+copied);
1420 1421 1422 1423
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	if (inode->i_size > EXT4_I(inode)->i_disksize) {
		EXT4_I(inode)->i_disksize = inode->i_size;
		ret2 = ext4_mark_inode_dirty(handle, inode);
1424 1425 1426
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1427

1428
	ret2 = ext4_journal_stop(handle);
1429 1430
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1431 1432 1433 1434
	unlock_page(page);
	page_cache_release(page);

	return ret ? ret : copied;
1435 1436 1437 1438 1439 1440 1441
}

/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
1442
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
1443 1444 1445 1446 1447 1448 1449 1450
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
1451
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1452 1453 1454 1455 1456
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

1457
	if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
1469
		 * NB. EXT4_STATE_JDATA is not set on files other than
1470 1471 1472 1473 1474 1475
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

1476 1477
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
1478 1479 1480
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
1481 1482 1483 1484 1485

		if (err)
			return 0;
	}

1486
	return generic_block_bmap(mapping,block,ext4_get_block);
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
}

static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

1501
static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1502 1503
{
	if (buffer_mapped(bh))
1504
		return ext4_journal_dirty_data(handle, bh);
1505 1506 1507 1508 1509 1510
	return 0;
}

/*
 * Note that we always start a transaction even if we're not journalling
 * data.  This is to preserve ordering: any hole instantiation within
1511
 * __block_write_full_page -> ext4_get_block() should be journalled
1512 1513 1514 1515 1516 1517 1518
 * along with the data so we don't crash and then get metadata which
 * refers to old data.
 *
 * In all journalling modes block_write_full_page() will start the I/O.
 *
 * Problem:
 *
1519 1520
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
1521 1522 1523
 *
 * Similar for:
 *
1524
 *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1525
 *
1526
 * Same applies to ext4_get_block().  We will deadlock on various things like
1527
 * lock_journal and i_data_sem
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
 *
 * Setting PF_MEMALLOC here doesn't work - too many internal memory
 * allocations fail.
 *
 * 16May01: If we're reentered then journal_current_handle() will be
 *	    non-zero. We simply *return*.
 *
 * 1 July 2001: @@@ FIXME:
 *   In journalled data mode, a data buffer may be metadata against the
 *   current transaction.  But the same file is part of a shared mapping
 *   and someone does a writepage() on it.
 *
 *   We will move the buffer onto the async_data list, but *after* it has
 *   been dirtied. So there's a small window where we have dirty data on
 *   BJ_Metadata.
 *
 *   Note that this only applies to the last partial page in the file.  The
 *   bit which block_write_full_page() uses prepare/commit for.  (That's
 *   broken code anyway: it's wrong for msync()).
 *
 *   It's a rare case: affects the final partial page, for journalled data
 *   where the file is subject to bith write() and writepage() in the same
 *   transction.  To fix it we'll need a custom block_write_full_page().
 *   We'll probably need that anyway for journalling writepage() output.
 *
 * We don't honour synchronous mounts for writepage().  That would be
 * disastrous.  Any write() or metadata operation will sync the fs for
 * us.
 *
 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
 * we don't need to open a transaction here.
 */
1560
static int ext4_ordered_writepage(struct page *page,
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

	J_ASSERT(PageLocked(page));

	/*
	 * We give up here if we're reentered, because it might be for a
	 * different filesystem.
	 */
1575
	if (ext4_journal_current_handle())
1576 1577
		goto out_fail;

1578
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592

	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out_fail;
	}

	if (!page_has_buffers(page)) {
		create_empty_buffers(page, inode->i_sb->s_blocksize,
				(1 << BH_Dirty)|(1 << BH_Uptodate));
	}
	page_bufs = page_buffers(page);
	walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, bget_one);

1593
	ret = block_write_full_page(page, ext4_get_block, wbc);
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608

	/*
	 * The page can become unlocked at any point now, and
	 * truncate can then come in and change things.  So we
	 * can't touch *page from now on.  But *page_bufs is
	 * safe due to elevated refcount.
	 */

	/*
	 * And attach them to the current transaction.  But only if
	 * block_write_full_page() succeeded.  Otherwise they are unmapped,
	 * and generally junk.
	 */
	if (ret == 0) {
		err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1609
					NULL, jbd2_journal_dirty_data_fn);
1610 1611 1612 1613 1614
		if (!ret)
			ret = err;
	}
	walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, bput_one);
1615
	err = ext4_journal_stop(handle);
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
	if (!ret)
		ret = err;
	return ret;

out_fail:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return ret;
}

1626
static int ext4_writeback_writepage(struct page *page,
1627 1628 1629 1630 1631 1632 1633
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1634
	if (ext4_journal_current_handle())
1635 1636
		goto out_fail;

1637
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1638 1639 1640 1641 1642
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out_fail;
	}

1643 1644
	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
		ret = nobh_writepage(page, ext4_get_block, wbc);
1645
	else
1646
		ret = block_write_full_page(page, ext4_get_block, wbc);
1647

1648
	err = ext4_journal_stop(handle);
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
	if (!ret)
		ret = err;
	return ret;

out_fail:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return ret;
}

1659
static int ext4_journalled_writepage(struct page *page,
1660 1661 1662 1663 1664 1665 1666
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1667
	if (ext4_journal_current_handle())
1668 1669
		goto no_write;

1670
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto no_write;
	}

	if (!page_has_buffers(page) || PageChecked(page)) {
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1683
					ext4_get_block);
1684
		if (ret != 0) {
1685
			ext4_journal_stop(handle);
1686 1687 1688 1689 1690 1691
			goto out_unlock;
		}
		ret = walk_page_buffers(handle, page_buffers(page), 0,
			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);

		err = walk_page_buffers(handle, page_buffers(page), 0,
N
Nick Piggin 已提交
1692
				PAGE_CACHE_SIZE, NULL, write_end_fn);
1693 1694
		if (ret == 0)
			ret = err;
1695
		EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1696 1697 1698 1699 1700 1701 1702
		unlock_page(page);
	} else {
		/*
		 * It may be a page full of checkpoint-mode buffers.  We don't
		 * really know unless we go poke around in the buffer_heads.
		 * But block_write_full_page will do the right thing.
		 */
1703
		ret = block_write_full_page(page, ext4_get_block, wbc);
1704
	}
1705
	err = ext4_journal_stop(handle);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	if (!ret)
		ret = err;
out:
	return ret;

no_write:
	redirty_page_for_writepage(wbc, page);
out_unlock:
	unlock_page(page);
	goto out;
}

1718
static int ext4_readpage(struct file *file, struct page *page)
1719
{
1720
	return mpage_readpage(page, ext4_get_block);
1721 1722 1723
}

static int
1724
ext4_readpages(struct file *file, struct address_space *mapping,
1725 1726
		struct list_head *pages, unsigned nr_pages)
{
1727
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1728 1729
}

1730
static void ext4_invalidatepage(struct page *page, unsigned long offset)
1731
{
1732
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1733 1734 1735 1736 1737 1738 1739

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

1740
	jbd2_journal_invalidatepage(journal, page, offset);
1741 1742
}

1743
static int ext4_releasepage(struct page *page, gfp_t wait)
1744
{
1745
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1746 1747 1748 1749

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
1750
	return jbd2_journal_try_to_free_buffers(journal, page, wait);
1751 1752 1753 1754 1755 1756 1757 1758
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
1759 1760
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
1761
 */
1762
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1763 1764 1765 1766 1767
			const struct iovec *iov, loff_t offset,
			unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
1768
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
1769
	handle_t *handle;
1770 1771 1772 1773 1774 1775 1776 1777
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
1778 1779 1780 1781 1782 1783
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
1784
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
1785 1786 1787 1788
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
1789 1790
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
1791
			ext4_journal_stop(handle);
1792 1793 1794 1795 1796
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
1797
				 ext4_get_block, NULL);
1798

J
Jan Kara 已提交
1799
	if (orphan) {
1800 1801
		int err;

J
Jan Kara 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
1812
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
1813
		if (ret > 0) {
1814 1815 1816 1817 1818 1819 1820 1821
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
1822
				 * ext4_mark_inode_dirty() to userspace.  So
1823 1824
				 * ignore it.
				 */
1825
				ext4_mark_inode_dirty(handle, inode);
1826 1827
			}
		}
1828
		err = ext4_journal_stop(handle);
1829 1830 1831 1832 1833 1834 1835 1836
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
1837
 * Pages can be marked dirty completely asynchronously from ext4's journalling
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
1849
static int ext4_journalled_set_page_dirty(struct page *page)
1850 1851 1852 1853 1854
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

1855 1856 1857 1858
static const struct address_space_operations ext4_ordered_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_ordered_writepage,
1859
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
1860 1861
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_ordered_write_end,
1862 1863 1864 1865
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
	.direct_IO	= ext4_direct_IO,
1866 1867 1868
	.migratepage	= buffer_migrate_page,
};

1869 1870 1871 1872
static const struct address_space_operations ext4_writeback_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_writeback_writepage,
1873
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
1874 1875
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_writeback_write_end,
1876 1877 1878 1879
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
	.direct_IO	= ext4_direct_IO,
1880 1881 1882
	.migratepage	= buffer_migrate_page,
};

1883 1884 1885 1886
static const struct address_space_operations ext4_journalled_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_journalled_writepage,
1887
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
1888 1889
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_journalled_write_end,
1890 1891 1892 1893
	.set_page_dirty	= ext4_journalled_set_page_dirty,
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
1894 1895
};

1896
void ext4_set_aops(struct inode *inode)
1897
{
1898 1899 1900 1901
	if (ext4_should_order_data(inode))
		inode->i_mapping->a_ops = &ext4_ordered_aops;
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
1902
	else
1903
		inode->i_mapping->a_ops = &ext4_journalled_aops;
1904 1905 1906
}

/*
1907
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1908 1909 1910 1911
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
A
Alex Tomas 已提交
1912
int ext4_block_truncate_page(handle_t *handle, struct page *page,
1913 1914
		struct address_space *mapping, loff_t from)
{
1915
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1916
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
1917 1918
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1932
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
1933
		zero_user(page, offset, length);
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
1958
		ext4_get_block(inode, iblock, bh, 0);
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

1979
	if (ext4_should_journal_data(inode)) {
1980
		BUFFER_TRACE(bh, "get write access");
1981
		err = ext4_journal_get_write_access(handle, bh);
1982 1983 1984 1985
		if (err)
			goto unlock;
	}

1986
	zero_user(page, offset, length);
1987 1988 1989 1990

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
1991 1992
	if (ext4_should_journal_data(inode)) {
		err = ext4_journal_dirty_metadata(handle, bh);
1993
	} else {
1994 1995
		if (ext4_should_order_data(inode))
			err = ext4_journal_dirty_data(handle, bh);
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
2019
 *	ext4_find_shared - find the indirect blocks for partial truncation.
2020 2021
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
2022
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
2023 2024 2025
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
2026
 *	This is a helper function used by ext4_truncate().
2027 2028 2029 2030 2031 2032 2033
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
2034
 *	past the truncation point is possible until ext4_truncate()
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

2053
static Indirect *ext4_find_shared(struct inode *inode, int depth,
A
Aneesh Kumar K.V 已提交
2054
			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
2055 2056 2057 2058 2059 2060 2061 2062
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
2063
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
2086
		/* Nope, don't do this in ext4.  Must leave the tree intact */
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

	while(partial > p) {
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
2109 2110
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
		struct buffer_head *bh, ext4_fsblk_t block_to_free,
2111 2112 2113 2114 2115
		unsigned long count, __le32 *first, __le32 *last)
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
2116 2117
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			ext4_journal_dirty_metadata(handle, bh);
2118
		}
2119 2120
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
2121 2122
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
2123
			ext4_journal_get_write_access(handle, bh);
2124 2125 2126 2127 2128
		}
	}

	/*
	 * Any buffers which are on the journal will be in memory. We find
2129
	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2130
	 * on them.  We've already detached each block from the file, so
2131
	 * bforget() in jbd2_journal_forget() should be safe.
2132
	 *
2133
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2134 2135 2136 2137
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
2138
			struct buffer_head *tbh;
2139 2140

			*p = 0;
A
Aneesh Kumar K.V 已提交
2141 2142
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
2143 2144 2145
		}
	}

2146
	ext4_free_blocks(handle, inode, block_to_free, count, 0);
2147 2148 2149
}

/**
2150
 * ext4_free_data - free a list of data blocks
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
2168
static void ext4_free_data(handle_t *handle, struct inode *inode,
2169 2170 2171
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
2172
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2173 2174 2175 2176
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
2177
	ext4_fsblk_t nr;		    /* Current block # */
2178 2179 2180 2181 2182 2183
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
2184
		err = ext4_journal_get_write_access(handle, this_bh);
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
2202
				ext4_clear_blocks(handle, inode, this_bh,
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
2213
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2214 2215 2216
				  count, block_to_free_p, p);

	if (this_bh) {
2217
		BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
		if (bh2jh(this_bh))
			ext4_journal_dirty_metadata(handle, this_bh);
		else
			ext4_error(inode->i_sb, __func__,
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
2233 2234 2235 2236
	}
}

/**
2237
 *	ext4_free_branches - free an array of branches
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
2249
static void ext4_free_branches(handle_t *handle, struct inode *inode,
2250 2251 2252
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
2253
	ext4_fsblk_t nr;
2254 2255 2256 2257 2258 2259 2260
	__le32 *p;

	if (is_handle_aborted(handle))
		return;

	if (depth--) {
		struct buffer_head *bh;
2261
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
2276
				ext4_error(inode->i_sb, "ext4_free_branches",
2277
					   "Read failure, inode=%lu, block=%llu",
2278 2279 2280 2281 2282 2283
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
2284
			ext4_free_branches(handle, inode, bh,
2285 2286 2287 2288 2289 2290 2291 2292
					   (__le32*)bh->b_data,
					   (__le32*)bh->b_data + addr_per_block,
					   depth);

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
2293
			 * jbd2_journal_revoke().
2294 2295 2296
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
2297
			 * transaction then jbd2_journal_forget() will simply
2298
			 * brelse() it.  That means that if the underlying
2299
			 * block is reallocated in ext4_get_block(),
2300 2301 2302 2303 2304 2305 2306 2307
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
2308
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
			if (is_handle_aborted(handle))
				return;
			if (try_to_extend_transaction(handle, inode)) {
2329 2330
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
2331 2332
			}

2333
			ext4_free_blocks(handle, inode, nr, 1, 1);
2334 2335 2336 2337 2338 2339 2340

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
2341
				if (!ext4_journal_get_write_access(handle,
2342 2343 2344
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
2345 2346
					"call ext4_journal_dirty_metadata");
					ext4_journal_dirty_metadata(handle,
2347 2348 2349 2350 2351 2352 2353
								    parent_bh);
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
2354
		ext4_free_data(handle, inode, parent_bh, first, last);
2355 2356 2357
	}
}

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

2371
/*
2372
 * ext4_truncate()
2373
 *
2374 2375
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
2392
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
2393
 * that this inode's truncate did not complete and it will again call
2394 2395
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
2396
 * that's fine - as long as they are linked from the inode, the post-crash
2397
 * ext4_truncate() run will find them and release them.
2398
 */
2399
void ext4_truncate(struct inode *inode)
2400 2401
{
	handle_t *handle;
2402
	struct ext4_inode_info *ei = EXT4_I(inode);
2403
	__le32 *i_data = ei->i_data;
2404
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2405
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
2406
	ext4_lblk_t offsets[4];
2407 2408 2409 2410
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
2411
	ext4_lblk_t last_block;
2412 2413 2414
	unsigned blocksize = inode->i_sb->s_blocksize;
	struct page *page;

2415
	if (!ext4_can_truncate(inode))
2416 2417 2418 2419
		return;

	/*
	 * We have to lock the EOF page here, because lock_page() nests
2420
	 * outside jbd2_journal_start().
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	 */
	if ((inode->i_size & (blocksize - 1)) == 0) {
		/* Block boundary? Nothing to do */
		page = NULL;
	} else {
		page = grab_cache_page(mapping,
				inode->i_size >> PAGE_CACHE_SHIFT);
		if (!page)
			return;
	}

A
Aneesh Kumar K.V 已提交
2432 2433 2434 2435
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		ext4_ext_truncate(inode, page);
		return;
	}
A
Alex Tomas 已提交
2436

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	handle = start_transaction(inode);
	if (IS_ERR(handle)) {
		if (page) {
			clear_highpage(page);
			flush_dcache_page(page);
			unlock_page(page);
			page_cache_release(page);
		}
		return;		/* AKPM: return what? */
	}

	last_block = (inode->i_size + blocksize-1)
2449
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2450 2451

	if (page)
2452
		ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2453

2454
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
2467
	if (ext4_orphan_add(handle, inode))
2468 2469 2470 2471 2472 2473 2474
		goto out_stop;

	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
2475
	 * ext4 *really* writes onto the disk inode.
2476 2477 2478 2479
	 */
	ei->i_disksize = inode->i_size;

	/*
2480
	 * From here we block out all ext4_get_block() callers who want to
2481 2482
	 * modify the block allocation tree.
	 */
2483
	down_write(&ei->i_data_sem);
2484 2485

	if (n == 1) {		/* direct blocks */
2486 2487
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
2488 2489 2490
		goto do_indirects;
	}

2491
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2492 2493 2494 2495
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
2496
			ext4_free_branches(handle, inode, NULL,
2497 2498 2499 2500 2501 2502 2503 2504 2505
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
2506
			ext4_free_branches(handle, inode, partial->bh,
2507 2508 2509 2510 2511 2512
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
2513
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse (partial->bh);
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
2524
		nr = i_data[EXT4_IND_BLOCK];
2525
		if (nr) {
2526 2527
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
2528
		}
2529 2530
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
2531
		if (nr) {
2532 2533
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
2534
		}
2535 2536
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
2537
		if (nr) {
2538 2539
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
2540
		}
2541
	case EXT4_TIND_BLOCK:
2542 2543 2544
		;
	}

2545
	ext4_discard_reservation(inode);
2546

2547
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
2548
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2549
	ext4_mark_inode_dirty(handle, inode);
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
		handle->h_sync = 1;
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
2562
	 * ext4_delete_inode(), and we allow that function to clean up the
2563 2564 2565
	 * orphan info for us.
	 */
	if (inode->i_nlink)
2566
		ext4_orphan_del(handle, inode);
2567

2568
	ext4_journal_stop(handle);
2569 2570
}

2571 2572
static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
		unsigned long ino, struct ext4_iloc *iloc)
2573
{
2574
	ext4_group_t block_group;
2575
	unsigned long offset;
2576
	ext4_fsblk_t block;
A
Akinobu Mita 已提交
2577
	struct ext4_group_desc *gdp;
2578

2579
	if (!ext4_valid_inum(sb, ino)) {
2580 2581 2582 2583 2584 2585 2586 2587
		/*
		 * This error is already checked for in namei.c unless we are
		 * looking at an NFS filehandle, in which case no error
		 * report is needed
		 */
		return 0;
	}

2588
	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
A
Akinobu Mita 已提交
2589 2590
	gdp = ext4_get_group_desc(sb, block_group, NULL);
	if (!gdp)
2591 2592 2593 2594 2595
		return 0;

	/*
	 * Figure out the offset within the block group inode table
	 */
2596 2597
	offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
		EXT4_INODE_SIZE(sb);
2598 2599
	block = ext4_inode_table(sb, gdp) +
		(offset >> EXT4_BLOCK_SIZE_BITS(sb));
2600 2601

	iloc->block_group = block_group;
2602
	iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2603 2604 2605 2606
	return block;
}

/*
2607
 * ext4_get_inode_loc returns with an extra refcount against the inode's
2608 2609 2610 2611
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
2612 2613
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
2614
{
2615
	ext4_fsblk_t block;
2616 2617
	struct buffer_head *bh;

2618
	block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2619 2620 2621 2622 2623
	if (!block)
		return -EIO;

	bh = sb_getblk(inode->i_sb, block);
	if (!bh) {
2624
		ext4_error (inode->i_sb, "ext4_get_inode_loc",
2625
				"unable to read inode block - "
2626
				"inode=%lu, block=%llu",
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
				 inode->i_ino, block);
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
2645
			struct ext4_group_desc *desc;
2646 2647
			int inodes_per_buffer;
			int inode_offset, i;
2648
			ext4_group_t block_group;
2649 2650 2651
			int start;

			block_group = (inode->i_ino - 1) /
2652
					EXT4_INODES_PER_GROUP(inode->i_sb);
2653
			inodes_per_buffer = bh->b_size /
2654
				EXT4_INODE_SIZE(inode->i_sb);
2655
			inode_offset = ((inode->i_ino - 1) %
2656
					EXT4_INODES_PER_GROUP(inode->i_sb));
2657 2658 2659
			start = inode_offset & ~(inodes_per_buffer - 1);

			/* Is the inode bitmap in cache? */
2660
			desc = ext4_get_group_desc(inode->i_sb,
2661 2662 2663 2664 2665
						block_group, NULL);
			if (!desc)
				goto make_io;

			bitmap_bh = sb_getblk(inode->i_sb,
2666
				ext4_inode_bitmap(inode->i_sb, desc));
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
			for (i = start; i < start + inodes_per_buffer; i++) {
				if (i == inode_offset)
					continue;
2682
				if (ext4_test_bit(i, bitmap_bh->b_data))
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
					break;
			}
			brelse(bitmap_bh);
			if (i == start + inodes_per_buffer) {
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
2706
			ext4_error(inode->i_sb, "ext4_get_inode_loc",
2707
					"unable to read inode block - "
2708
					"inode=%lu, block=%llu",
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
					inode->i_ino, block);
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

2719
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2720 2721
{
	/* We have all inode data except xattrs in memory here. */
2722 2723
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2724 2725
}

2726
void ext4_set_inode_flags(struct inode *inode)
2727
{
2728
	unsigned int flags = EXT4_I(inode)->i_flags;
2729 2730

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2731
	if (flags & EXT4_SYNC_FL)
2732
		inode->i_flags |= S_SYNC;
2733
	if (flags & EXT4_APPEND_FL)
2734
		inode->i_flags |= S_APPEND;
2735
	if (flags & EXT4_IMMUTABLE_FL)
2736
		inode->i_flags |= S_IMMUTABLE;
2737
	if (flags & EXT4_NOATIME_FL)
2738
		inode->i_flags |= S_NOATIME;
2739
	if (flags & EXT4_DIRSYNC_FL)
2740 2741 2742
		inode->i_flags |= S_DIRSYNC;
}

2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
2761 2762 2763 2764
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
					struct ext4_inode_info *ei)
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
2765 2766
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
2767 2768 2769 2770 2771 2772

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
2773 2774 2775 2776 2777 2778
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
2779 2780 2781 2782
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
2783

2784
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
2785
{
2786 2787
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
2788
	struct ext4_inode_info *ei;
2789
	struct buffer_head *bh;
2790 2791
	struct inode *inode;
	long ret;
2792 2793
	int block;

2794 2795 2796 2797 2798 2799 2800
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
2801 2802 2803
#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
	ei->i_acl = EXT4_ACL_NOT_CACHED;
	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2804 2805 2806
#endif
	ei->i_block_alloc_info = NULL;

2807 2808
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
2809 2810
		goto bad_inode;
	bh = iloc.bh;
2811
	raw_inode = ext4_raw_inode(&iloc);
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
	if(!(test_opt (inode->i_sb, NO_UID32))) {
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
2831
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2832 2833
			/* this inode is deleted */
			brelse (bh);
2834
			ret = -ESTALE;
2835 2836 2837 2838 2839 2840 2841 2842
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2843
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2844
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2845
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2846
	    cpu_to_le32(EXT4_OS_HURD)) {
B
Badari Pulavarty 已提交
2847 2848
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2849
	}
2850
	inode->i_size = ext4_isize(raw_inode);
2851 2852 2853 2854 2855 2856 2857
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
2858
	for (block = 0; block < EXT4_N_BLOCKS; block++)
2859 2860 2861
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

2862
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2863
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2864
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2865 2866
		    EXT4_INODE_SIZE(inode->i_sb)) {
			brelse (bh);
2867
			ret = -EIO;
2868
			goto bad_inode;
2869
		}
2870 2871
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
2872 2873
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
2874 2875
		} else {
			__le32 *magic = (void *)raw_inode +
2876
					EXT4_GOOD_OLD_INODE_SIZE +
2877
					ei->i_extra_isize;
2878 2879
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
				 ei->i_state |= EXT4_STATE_XATTR;
2880 2881 2882 2883
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
2884 2885 2886 2887 2888
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

2889 2890 2891 2892 2893 2894 2895
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

2896
	if (S_ISREG(inode->i_mode)) {
2897 2898 2899
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
2900
	} else if (S_ISDIR(inode->i_mode)) {
2901 2902
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
2903
	} else if (S_ISLNK(inode->i_mode)) {
2904 2905
		if (ext4_inode_is_fast_symlink(inode))
			inode->i_op = &ext4_fast_symlink_inode_operations;
2906
		else {
2907 2908
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
2909 2910
		}
	} else {
2911
		inode->i_op = &ext4_special_inode_operations;
2912 2913 2914 2915 2916 2917 2918 2919
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
	}
	brelse (iloc.bh);
2920
	ext4_set_inode_flags(inode);
2921 2922
	unlock_new_inode(inode);
	return inode;
2923 2924

bad_inode:
2925 2926
	iget_failed(inode);
	return ERR_PTR(ret);
2927 2928
}

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;
	int err = 0;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
2943
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2944
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
2945
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
	} else if (i_blocks <= 0xffffffffffffULL) {
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
		err = ext4_update_rocompat_feature(handle, sb,
					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
		if (err)
			goto  err_out;
		/* i_block is stored in the split  48 bit fields */
A
Aneesh Kumar K.V 已提交
2956
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2957
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
2958
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2959
	} else {
A
Aneesh Kumar K.V 已提交
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
		/*
		 * i_blocks should be represented in a 48 bit variable
		 * as multiple of  file system block size
		 */
		err = ext4_update_rocompat_feature(handle, sb,
					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
		if (err)
			goto  err_out;
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2973 2974 2975 2976 2977
	}
err_out:
	return err;
}

2978 2979 2980 2981 2982 2983 2984
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
2985
static int ext4_do_update_inode(handle_t *handle,
2986
				struct inode *inode,
2987
				struct ext4_iloc *iloc)
2988
{
2989 2990
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
2991 2992 2993 2994 2995
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
2996 2997
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2998

2999
	ext4_get_inode_flags(ei);
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
	if(!(test_opt(inode->i_sb, NO_UID32))) {
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
		if(!ei->i_dtime) {
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
3026 3027 3028 3029 3030 3031

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

3032 3033
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
3034
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3035 3036
	/* clear the migrate flag in the raw_inode */
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
3037 3038
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
3039 3040
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
3041
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
3058
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3059 3060 3061 3062
			sb->s_dirt = 1;
			handle->h_sync = 1;
			err = ext4_journal_dirty_metadata(handle,
					EXT4_SB(sb)->s_sbh);
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
3077
	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
3078 3079
		raw_inode->i_block[block] = ei->i_data[block];

3080 3081 3082 3083 3084
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
3085
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3086 3087
	}

3088

3089 3090
	BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
	rc = ext4_journal_dirty_metadata(handle, bh);
3091 3092
	if (!err)
		err = rc;
3093
	ei->i_state &= ~EXT4_STATE_NEW;
3094 3095 3096

out_brelse:
	brelse (bh);
3097
	ext4_std_error(inode->i_sb, err);
3098 3099 3100 3101
	return err;
}

/*
3102
 * ext4_write_inode()
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
3119
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
3136
int ext4_write_inode(struct inode *inode, int wait)
3137 3138 3139 3140
{
	if (current->flags & PF_MEMALLOC)
		return 0;

3141
	if (ext4_journal_current_handle()) {
M
Mingming Cao 已提交
3142
		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3143 3144 3145 3146 3147 3148 3149
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

3150
	return ext4_force_commit(inode->i_sb);
3151 3152 3153
}

/*
3154
 * ext4_setattr()
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
 * Called with inode->sem down.
 */
3170
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
3186 3187
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3188 3189 3190 3191 3192 3193
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
		if (error) {
3194
			ext4_journal_stop(handle);
3195 3196 3197 3198 3199 3200 3201 3202
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
3203 3204
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
3205 3206
	}

3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

3218 3219 3220 3221
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

3222
		handle = ext4_journal_start(inode, 3);
3223 3224 3225 3226 3227
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

3228 3229 3230
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
3231 3232
		if (!error)
			error = rc;
3233
		ext4_journal_stop(handle);
3234 3235 3236 3237
	}

	rc = inode_setattr(inode, attr);

3238
	/* If inode_setattr's call to ext4_truncate failed to get a
3239 3240 3241
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
3242
		ext4_orphan_del(NULL, inode);
3243 3244

	if (!rc && (ia_valid & ATTR_MODE))
3245
		rc = ext4_acl_chmod(inode);
3246 3247

err_out:
3248
	ext4_std_error(inode->i_sb, error);
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
	if (!error)
		error = rc;
	return error;
}


/*
 * How many blocks doth make a writepage()?
 *
 * With N blocks per page, it may be:
 * N data blocks
 * 2 indirect block
 * 2 dindirect
 * 1 tindirect
 * N+5 bitmap blocks (from the above)
 * N+5 group descriptor summary blocks
 * 1 inode block
 * 1 superblock.
3267
 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3268
 *
3269
 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
 *
 * With ordered or writeback data it's the same, less the N data blocks.
 *
 * If the inode's direct blocks can hold an integral number of pages then a
 * page cannot straddle two indirect blocks, and we can only touch one indirect
 * and dindirect block, and the "5" above becomes "3".
 *
 * This still overestimates under most circumstances.  If we were to pass the
 * start and end offsets in here as well we could do block_to_path() on each
 * block and work out the exact number of indirects which are touched.  Pah.
 */

A
Alex Tomas 已提交
3282
int ext4_writepage_trans_blocks(struct inode *inode)
3283
{
3284 3285
	int bpp = ext4_journal_blocks_per_page(inode);
	int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3286 3287
	int ret;

A
Alex Tomas 已提交
3288 3289 3290
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_writepage_trans_blocks(inode, bpp);

3291
	if (ext4_should_journal_data(inode))
3292 3293 3294 3295 3296 3297 3298
		ret = 3 * (bpp + indirects) + 2;
	else
		ret = 2 * (bpp + indirects) + 2;

#ifdef CONFIG_QUOTA
	/* We know that structure was already allocated during DQUOT_INIT so
	 * we will be updating only the data blocks + inodes */
3299
	ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3300 3301 3302 3303 3304 3305
#endif

	return ret;
}

/*
3306
 * The caller must have previously called ext4_reserve_inode_write().
3307 3308
 * Give this, we know that the caller already has write access to iloc->bh.
 */
3309 3310
int ext4_mark_iloc_dirty(handle_t *handle,
		struct inode *inode, struct ext4_iloc *iloc)
3311 3312 3313
{
	int err = 0;

3314 3315 3316
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

3317 3318 3319
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

3320
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3321
	err = ext4_do_update_inode(handle, inode, iloc);
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
3332 3333
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
3334 3335 3336
{
	int err = 0;
	if (handle) {
3337
		err = ext4_get_inode_loc(inode, iloc);
3338 3339
		if (!err) {
			BUFFER_TRACE(iloc->bh, "get_write_access");
3340
			err = ext4_journal_get_write_access(handle, iloc->bh);
3341 3342 3343 3344 3345 3346
			if (err) {
				brelse(iloc->bh);
				iloc->bh = NULL;
			}
		}
	}
3347
	ext4_std_error(inode->i_sb, err);
3348 3349 3350
	return err;
}

3351 3352 3353 3354
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
3355 3356 3357 3358
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
3407
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3408
{
3409
	struct ext4_iloc iloc;
3410 3411 3412
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
3413 3414

	might_sleep();
3415
	err = ext4_reserve_inode_write(handle, inode, &iloc);
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
3432 3433
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
3434
					ext4_warning(inode->i_sb, __func__,
3435 3436 3437
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
3438 3439
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
3440 3441 3442 3443
				}
			}
		}
	}
3444
	if (!err)
3445
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3446 3447 3448 3449
	return err;
}

/*
3450
 * ext4_dirty_inode() is called from __mark_inode_dirty()
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
3463
void ext4_dirty_inode(struct inode *inode)
3464
{
3465
	handle_t *current_handle = ext4_journal_current_handle();
3466 3467
	handle_t *handle;

3468
	handle = ext4_journal_start(inode, 2);
3469 3470 3471 3472 3473 3474
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
3475
		       __func__);
3476 3477 3478
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
3479
		ext4_mark_inode_dirty(handle, inode);
3480
	}
3481
	ext4_journal_stop(handle);
3482 3483 3484 3485 3486 3487 3488 3489
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
3490
 * ext4_reserve_inode_write, this leaves behind no bh reference and
3491 3492 3493
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
3494
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3495
{
3496
	struct ext4_iloc iloc;
3497 3498 3499

	int err = 0;
	if (handle) {
3500
		err = ext4_get_inode_loc(inode, &iloc);
3501 3502
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
3503
			err = jbd2_journal_get_write_access(handle, iloc.bh);
3504
			if (!err)
3505
				err = ext4_journal_dirty_metadata(handle,
3506 3507 3508 3509
								  iloc.bh);
			brelse(iloc.bh);
		}
	}
3510
	ext4_std_error(inode->i_sb, err);
3511 3512 3513 3514
	return err;
}
#endif

3515
int ext4_change_inode_journal_flag(struct inode *inode, int val)
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

3531
	journal = EXT4_JOURNAL(inode);
3532
	if (is_journal_aborted(journal))
3533 3534
		return -EROFS;

3535 3536
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
3547
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3548
	else
3549 3550
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
3551

3552
	jbd2_journal_unlock_updates(journal);
3553 3554 3555

	/* Finally we can mark the inode as dirty. */

3556
	handle = ext4_journal_start(inode, 1);
3557 3558 3559
	if (IS_ERR(handle))
		return PTR_ERR(handle);

3560
	err = ext4_mark_inode_dirty(handle, inode);
3561
	handle->h_sync = 1;
3562 3563
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
3564 3565 3566

	return err;
}