inode.c 101.9 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28 29
#include <linux/ext4_jbd2.h>
#include <linux/jbd2.h>
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include <linux/mpage.h>
#include <linux/uio.h>
#include <linux/bio.h>
#include "xattr.h"
#include "acl.h"

/*
 * Test whether an inode is a fast symlink.
 */
45
static int ext4_inode_is_fast_symlink(struct inode *inode)
46
{
47
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
48 49 50 51 52 53
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
54
 * The ext4 forget function must perform a revoke if we are freeing data
55 56 57 58 59 60 61
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
 */
62 63
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
			struct buffer_head *bh, ext4_fsblk_t blocknr)
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
{
	int err;

	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
		  "data mode %lx\n",
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

81 82
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
83
		if (bh) {
84
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
85
			return ext4_journal_forget(handle, bh);
86 87 88 89 90 91 92
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
93 94
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
95
	if (err)
96
		ext4_abort(inode->i_sb, __FUNCTION__,
97 98 99 100 101 102 103 104 105 106 107
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
108
	ext4_lblk_t needed;
109 110 111 112 113 114

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
115
	 * like a regular file for ext4 to try to delete it.  Things
116 117 118 119 120 121 122
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
123 124
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
125

126
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

143
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
144 145 146
	if (!IS_ERR(result))
		return result;

147
	ext4_std_error(inode->i_sb, PTR_ERR(result));
148 149 150 151 152 153 154 155 156 157 158
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
159
	if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160
		return 0;
161
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162 163 164 165 166 167 168 169 170
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
171
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
172 173
{
	jbd_debug(2, "restarting handle %p\n", handle);
174
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
175 176 177 178 179
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
180
void ext4_delete_inode (struct inode * inode)
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
{
	handle_t *handle;

	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

	handle = start_transaction(inode);
	if (IS_ERR(handle)) {
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
196
		ext4_orphan_del(NULL, inode);
197 198 199 200 201 202 203
		goto no_delete;
	}

	if (IS_SYNC(inode))
		handle->h_sync = 1;
	inode->i_size = 0;
	if (inode->i_blocks)
204
		ext4_truncate(inode);
205
	/*
206
	 * Kill off the orphan record which ext4_truncate created.
207
	 * AKPM: I think this can be inside the above `if'.
208
	 * Note that ext4_orphan_del() has to be able to cope with the
209
	 * deletion of a non-existent orphan - this is because we don't
210
	 * know if ext4_truncate() actually created an orphan record.
211 212
	 * (Well, we could do this if we need to, but heck - it works)
	 */
213 214
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
215 216 217 218 219 220 221 222

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
223
	if (ext4_mark_inode_dirty(handle, inode))
224 225 226
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
227 228
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
247
 *	ext4_block_to_path - parse the block number into array of offsets
248 249 250
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
251 252
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
253
 *
254
 *	To store the locations of file's data ext4 uses a data structure common
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

277
static int ext4_block_to_path(struct inode *inode,
A
Aneesh Kumar K.V 已提交
278 279
			ext4_lblk_t i_block,
			ext4_lblk_t offsets[4], int *boundary)
280
{
281 282 283
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
284 285 286 287 288 289
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
290
		ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
291 292 293 294
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
295
		offsets[n++] = EXT4_IND_BLOCK;
296 297 298
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
299
		offsets[n++] = EXT4_DIND_BLOCK;
300 301 302 303
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
304
		offsets[n++] = EXT4_TIND_BLOCK;
305 306 307 308 309
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
310
		ext4_warning(inode->i_sb, "ext4_block_to_path",
311
				"block %lu > max",
312 313
				i_block + direct_blocks +
				indirect_blocks + double_blocks);
314 315 316 317 318 319 320
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

/**
321
 *	ext4_get_branch - read the chain of indirect blocks leading to data
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
346 347
 *
 *      Need to be called with
348
 *      down_read(&EXT4_I(inode)->i_data_sem)
349
 */
A
Aneesh Kumar K.V 已提交
350 351
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
352 353 354 355 356 357 358 359
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
360
	add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
	if (!p->key)
		goto no_block;
	while (--depth) {
		bh = sb_bread(sb, le32_to_cpu(p->key));
		if (!bh)
			goto failure;
		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
381
 *	ext4_find_near - find a place for allocation with sufficient locality
382 383 384
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
385
 *	This function returns the preferred place for block allocation.
386 387 388 389 390 391 392 393 394 395 396 397 398 399
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
400
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
401
{
402
	struct ext4_inode_info *ei = EXT4_I(inode);
403 404
	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
	__le32 *p;
405
	ext4_fsblk_t bg_start;
406
	ext4_fsblk_t last_block;
407
	ext4_grpblk_t colour;
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
423
	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
424 425 426 427
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
428
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
429 430
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
431 432 433 434
	return bg_start + colour;
}

/**
435
 *	ext4_find_goal - find a preferred place for allocation.
436 437 438 439
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
440
 *	Normally this function find the preferred place for block allocation,
441
 *	returns it.
442
 */
A
Aneesh Kumar K.V 已提交
443
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
444
		Indirect *partial)
445
{
446
	struct ext4_block_alloc_info *block_i;
447

448
	block_i =  EXT4_I(inode)->i_block_alloc_info;
449 450 451 452 453 454 455 456 457 458

	/*
	 * try the heuristic for sequential allocation,
	 * failing that at least try to get decent locality.
	 */
	if (block_i && (block == block_i->last_alloc_logical_block + 1)
		&& (block_i->last_alloc_physical_block != 0)) {
		return block_i->last_alloc_physical_block + 1;
	}

459
	return ext4_find_near(inode, partial);
460 461 462
}

/**
463
 *	ext4_blks_to_allocate: Look up the block map and count the number
464 465 466 467 468 469 470 471 472 473
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
474
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
		int blocks_to_boundary)
{
	unsigned long count = 0;

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
501
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
502 503 504 505 506 507 508 509
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
510 511 512
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
			ext4_fsblk_t goal, int indirect_blks, int blks,
			ext4_fsblk_t new_blocks[4], int *err)
513 514 515 516
{
	int target, i;
	unsigned long count = 0;
	int index = 0;
517
	ext4_fsblk_t current_block = 0;
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
	target = blks + indirect_blks;

	while (1) {
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
533
		current_block = ext4_new_blocks(handle,inode,goal,&count,err);
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}

		if (count > 0)
			break;
	}

	/* save the new block number for the first direct block */
	new_blocks[index] = current_block;

	/* total number of blocks allocated for direct blocks */
	ret = count;
	*err = 0;
	return ret;
failed_out:
	for (i = 0; i <index; i++)
557
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
558 559 560 561
	return ret;
}

/**
562
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
563 564 565 566 567 568 569 570 571 572
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
573
 *	the same format as ext4_get_branch() would do. We are calling it after
574 575
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
576
 *	picture as after the successful ext4_get_block(), except that in one
577 578 579 580 581 582
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
583
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
584 585
 *	as described above and return 0.
 */
586 587
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
			int indirect_blks, int *blks, ext4_fsblk_t goal,
A
Aneesh Kumar K.V 已提交
588
			ext4_lblk_t *offsets, Indirect *branch)
589 590 591 592 593 594
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
595 596
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
597

598
	num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
617
		err = ext4_journal_get_create_access(handle, bh);
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
		if (err) {
			unlock_buffer(bh);
			brelse(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
		if ( n == indirect_blks) {
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
			for (i=1; i < num; i++)
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

642 643
		BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, bh);
644 645 646 647 648 649 650 651
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
652
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
653
		ext4_journal_forget(handle, branch[i].bh);
654 655
	}
	for (i = 0; i <indirect_blks; i++)
656
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
657

658
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
659 660 661 662 663

	return err;
}

/**
664
 * ext4_splice_branch - splice the allocated branch onto inode.
665 666 667
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
668
 *	ext4_alloc_branch)
669 670 671 672 673 674 675 676
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
677
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
678
			ext4_lblk_t block, Indirect *where, int num, int blks)
679 680 681
{
	int i;
	int err = 0;
682 683
	struct ext4_block_alloc_info *block_i;
	ext4_fsblk_t current_block;
684

685
	block_i = EXT4_I(inode)->i_block_alloc_info;
686 687 688 689 690 691 692
	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
693
		err = ext4_journal_get_write_access(handle, where->bh);
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
			*(where->p + i ) = cpu_to_le32(current_block++);
	}

	/*
	 * update the most recently allocated logical & physical block
	 * in i_block_alloc_info, to assist find the proper goal block for next
	 * allocation
	 */
	if (block_i) {
		block_i->last_alloc_logical_block = block + blks - 1;
		block_i->last_alloc_physical_block =
				le32_to_cpu(where[num].key) + blks - 1;
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */

K
Kalpak Shah 已提交
724
	inode->i_ctime = ext4_current_time(inode);
725
	ext4_mark_inode_dirty(handle, inode);
726 727 728 729 730 731 732 733 734

	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
735
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
736 737
		 */
		jbd_debug(5, "splicing indirect only\n");
738 739
		BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, where->bh);
740 741 742 743 744 745 746 747 748 749 750 751 752
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 * Inode was dirtied above.
		 */
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
753
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
754
		ext4_journal_forget(handle, where[i].bh);
755 756
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
757
	}
758
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779

	return err;
}

/*
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
780 781 782
 *
 *
 * Need to be called with
783 784
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
785
 */
786
int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
787
		ext4_lblk_t iblock, unsigned long maxblocks,
788 789 790 791
		struct buffer_head *bh_result,
		int create, int extend_disksize)
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
792
	ext4_lblk_t offsets[4];
793 794
	Indirect chain[4];
	Indirect *partial;
795
	ext4_fsblk_t goal;
796 797 798
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
799
	struct ext4_inode_info *ei = EXT4_I(inode);
800
	int count = 0;
801
	ext4_fsblk_t first_block = 0;
802 803


A
Alex Tomas 已提交
804
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
805
	J_ASSERT(handle != NULL || create == 0);
A
Aneesh Kumar K.V 已提交
806 807
	depth = ext4_block_to_path(inode, iblock, offsets,
					&blocks_to_boundary);
808 809 810 811

	if (depth == 0)
		goto out;

812
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
813 814 815 816 817 818 819 820

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
821
			ext4_fsblk_t blk;
822 823 824 825 826 827 828 829

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
830
		goto got_it;
831 832 833 834 835 836 837 838 839 840 841
	}

	/* Next simple case - plain lookup or failed read of indirect block */
	if (!create || err == -EIO)
		goto cleanup;

	/*
	 * Okay, we need to do block allocation.  Lazily initialize the block
	 * allocation info here if necessary
	*/
	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
842
		ext4_init_block_alloc_info(inode);
843

844
	goal = ext4_find_goal(inode, iblock, partial);
845 846 847 848 849 850 851 852

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
853
	count = ext4_blks_to_allocate(partial, indirect_blks,
854 855
					maxblocks, blocks_to_boundary);
	/*
856
	 * Block out ext4_truncate while we alter the tree
857
	 */
858
	err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
859 860 861
				offsets + (partial - chain), partial);

	/*
862
	 * The ext4_splice_branch call will free and forget any buffers
863 864 865 866 867 868
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
869
		err = ext4_splice_branch(handle, inode, iblock,
870 871
					partial, indirect_blks, count);
	/*
872
	 * i_disksize growing is protected by i_data_sem.  Don't forget to
873
	 * protect it if you're about to implement concurrent
874
	 * ext4_get_block() -bzzz
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
	*/
	if (!err && extend_disksize && inode->i_size > ei->i_disksize)
		ei->i_disksize = inode->i_size;
	if (err)
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

J
Jan Kara 已提交
900 901 902 903 904 905 906 907 908 909
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096
/*
 * Number of credits we need for writing DIO_MAX_BLOCKS:
 * We need sb + group descriptor + bitmap + inode -> 4
 * For B blocks with A block pointers per block we need:
 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
 */
#define DIO_CREDITS 25
910

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934

/*
 *
 *
 * ext4_ext4 get_block() wrapper function
 * It will do a look up first, and returns if the blocks already mapped.
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
935 936 937 938 939
int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
			unsigned long max_blocks, struct buffer_head *bh,
			int create, int extend_disksize)
{
	int retval;
940 941 942

	clear_buffer_mapped(bh);

943 944 945 946 947 948 949 950
	/*
	 * Try to see if we can get  the block without requesting
	 * for new file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, 0, 0);
951
	} else {
952 953
		retval = ext4_get_blocks_handle(handle,
				inode, block, max_blocks, bh, 0, 0);
954
	}
955
	up_read((&EXT4_I(inode)->i_data_sem));
956 957 958 959 960 961 962 963 964 965 966 967 968

	/* If it is only a block(s) look up */
	if (!create)
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
969 970 971
		return retval;

	/*
972 973 974 975
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
976 977 978 979 980 981
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
982 983 984 985 986 987
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, create, extend_disksize);
	} else {
		retval = ext4_get_blocks_handle(handle, inode, block,
				max_blocks, bh, create, extend_disksize);
988 989 990 991 992 993 994 995 996 997

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
							~EXT4_EXT_MIGRATE;
		}
998
	}
999
	up_write((&EXT4_I(inode)->i_data_sem));
1000 1001 1002
	return retval;
}

1003
static int ext4_get_block(struct inode *inode, sector_t iblock,
1004 1005
			struct buffer_head *bh_result, int create)
{
1006
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1007
	int ret = 0, started = 0;
1008 1009
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

J
Jan Kara 已提交
1010 1011 1012 1013 1014 1015 1016
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
		handle = ext4_journal_start(inode, DIO_CREDITS +
			      2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
		if (IS_ERR(handle)) {
1017
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1018
			goto out;
1019
		}
J
Jan Kara 已提交
1020
		started = 1;
1021 1022
	}

J
Jan Kara 已提交
1023
	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1024
					max_blocks, bh_result, create, 0);
J
Jan Kara 已提交
1025 1026 1027
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1028
	}
J
Jan Kara 已提交
1029 1030 1031
	if (started)
		ext4_journal_stop(handle);
out:
1032 1033 1034 1035 1036 1037
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1038
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1039
				ext4_lblk_t block, int create, int *errp)
1040 1041 1042 1043 1044 1045 1046 1047 1048
{
	struct buffer_head dummy;
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
A
Alex Tomas 已提交
1049
	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1050 1051
					&dummy, create, 1);
	/*
1052
	 * ext4_get_blocks_handle() returns number of blocks
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	 * mapped. 0 in case of a HOLE.
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1070
			J_ASSERT(handle != NULL);
1071 1072 1073 1074 1075

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1076
			 * writes use ext4_get_block instead, so it's not a
1077 1078 1079 1080
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1081
			fatal = ext4_journal_get_create_access(handle, bh);
1082 1083 1084 1085 1086
			if (!fatal && !buffer_uptodate(bh)) {
				memset(bh->b_data,0,inode->i_sb->s_blocksize);
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1087 1088
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			err = ext4_journal_dirty_metadata(handle, bh);
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1105
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1106
			       ext4_lblk_t block, int create, int *err)
1107 1108 1109
{
	struct buffer_head * bh;

1110
	bh = ext4_getblk(handle, inode, block, create, err);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

static int walk_page_buffers(	handle_t *handle,
				struct buffer_head *head,
				unsigned from,
				unsigned to,
				int *partial,
				int (*fn)(	handle_t *handle,
						struct buffer_head *bh))
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

	for (	bh = head, block_start = 0;
		ret == 0 && (bh != head || !block_start);
		block_start = block_end, bh = next)
	{
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1159
 * close off a transaction and start a new one between the ext4_get_block()
1160
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1161 1162
 * prepare_write() is the right place.
 *
1163 1164
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1165 1166 1167 1168
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1169
 * By accident, ext4 can be reentered when a transaction is open via
1170 1171 1172 1173 1174 1175
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1176
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1177 1178 1179 1180 1181 1182 1183 1184 1185
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
					struct buffer_head *bh)
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1186
	return ext4_journal_get_write_access(handle, bh);
1187 1188
}

N
Nick Piggin 已提交
1189 1190 1191
static int ext4_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
1192
{
N
Nick Piggin 已提交
1193
 	struct inode *inode = mapping->host;
1194
	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1195 1196
	handle_t *handle;
	int retries = 0;
N
Nick Piggin 已提交
1197 1198 1199 1200 1201 1202 1203
 	struct page *page;
 	pgoff_t index;
 	unsigned from, to;

 	index = pos >> PAGE_CACHE_SHIFT;
 	from = pos & (PAGE_CACHE_SIZE - 1);
 	to = from + len;
1204 1205

retry:
N
Nick Piggin 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
 	page = __grab_cache_page(mapping, index);
 	if (!page)
 		return -ENOMEM;
 	*pagep = page;

  	handle = ext4_journal_start(inode, needed_blocks);
  	if (IS_ERR(handle)) {
 		unlock_page(page);
 		page_cache_release(page);
  		ret = PTR_ERR(handle);
  		goto out;
1217
	}
1218

N
Nick Piggin 已提交
1219 1220 1221 1222
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_get_block);

	if (!ret && ext4_should_journal_data(inode)) {
1223 1224 1225
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1226 1227

	if (ret) {
1228
		ext4_journal_stop(handle);
N
Nick Piggin 已提交
1229 1230 1231 1232
 		unlock_page(page);
 		page_cache_release(page);
	}

1233
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1234
		goto retry;
1235
out:
1236 1237 1238
	return ret;
}

1239
int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1240
{
1241
	int err = jbd2_journal_dirty_data(handle, bh);
1242
	if (err)
1243
		ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
N
Nick Piggin 已提交
1244
						bh, handle, err);
1245 1246 1247
	return err;
}

N
Nick Piggin 已提交
1248 1249
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1250 1251 1252 1253
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1254
	return ext4_journal_dirty_metadata(handle, bh);
1255 1256
}

N
Nick Piggin 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
/*
 * Generic write_end handler for ordered and writeback ext4 journal modes.
 * We can't use generic_write_end, because that unlocks the page and we need to
 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
 * after block_write_end.
 */
static int ext4_generic_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	struct inode *inode = file->f_mapping->host;

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	if (pos+copied > inode->i_size) {
		i_size_write(inode, pos+copied);
		mark_inode_dirty(inode);
	}

	return copied;
}

1280 1281 1282 1283
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1284
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1285 1286
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1287 1288 1289 1290
static int ext4_ordered_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1291
{
1292
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1293 1294
	struct inode *inode = file->f_mapping->host;
	unsigned from, to;
1295 1296
	int ret = 0, ret2;

N
Nick Piggin 已提交
1297 1298 1299
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1300
	ret = walk_page_buffers(handle, page_buffers(page),
1301
		from, to, NULL, ext4_journal_dirty_data);
1302 1303 1304

	if (ret == 0) {
		/*
N
Nick Piggin 已提交
1305
		 * generic_write_end() will run mark_inode_dirty() if i_size
1306 1307 1308 1309 1310
		 * changes.  So let's piggyback the i_disksize mark_inode_dirty
		 * into that.
		 */
		loff_t new_i_size;

N
Nick Piggin 已提交
1311
		new_i_size = pos + copied;
1312 1313
		if (new_i_size > EXT4_I(inode)->i_disksize)
			EXT4_I(inode)->i_disksize = new_i_size;
N
Nick Piggin 已提交
1314 1315 1316 1317
		copied = ext4_generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
		if (copied < 0)
			ret = copied;
1318
	}
1319
	ret2 = ext4_journal_stop(handle);
1320 1321
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1322 1323 1324 1325
	unlock_page(page);
	page_cache_release(page);

	return ret ? ret : copied;
1326 1327
}

N
Nick Piggin 已提交
1328 1329 1330 1331
static int ext4_writeback_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1332
{
1333
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1334
	struct inode *inode = file->f_mapping->host;
1335 1336 1337
	int ret = 0, ret2;
	loff_t new_i_size;

N
Nick Piggin 已提交
1338
	new_i_size = pos + copied;
1339 1340
	if (new_i_size > EXT4_I(inode)->i_disksize)
		EXT4_I(inode)->i_disksize = new_i_size;
1341

N
Nick Piggin 已提交
1342 1343 1344 1345
	copied = ext4_generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	if (copied < 0)
		ret = copied;
1346

1347
	ret2 = ext4_journal_stop(handle);
1348 1349
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1350 1351 1352 1353
	unlock_page(page);
	page_cache_release(page);

	return ret ? ret : copied;
1354 1355
}

N
Nick Piggin 已提交
1356 1357 1358 1359
static int ext4_journalled_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1360
{
1361
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1362
	struct inode *inode = mapping->host;
1363 1364
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1365
	unsigned from, to;
1366

N
Nick Piggin 已提交
1367 1368 1369 1370 1371 1372 1373 1374
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1375 1376

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1377
				to, &partial, write_end_fn);
1378 1379
	if (!partial)
		SetPageUptodate(page);
N
Nick Piggin 已提交
1380 1381
	if (pos+copied > inode->i_size)
		i_size_write(inode, pos+copied);
1382 1383 1384 1385
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	if (inode->i_size > EXT4_I(inode)->i_disksize) {
		EXT4_I(inode)->i_disksize = inode->i_size;
		ret2 = ext4_mark_inode_dirty(handle, inode);
1386 1387 1388
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1389

1390
	ret2 = ext4_journal_stop(handle);
1391 1392
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1393 1394 1395 1396
	unlock_page(page);
	page_cache_release(page);

	return ret ? ret : copied;
1397 1398 1399 1400 1401 1402 1403
}

/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
1404
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
1405 1406 1407 1408 1409 1410 1411 1412
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
1413
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1414 1415 1416 1417 1418
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

1419
	if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
1431
		 * NB. EXT4_STATE_JDATA is not set on files other than
1432 1433 1434 1435 1436 1437
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

1438 1439
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
1440 1441 1442
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
1443 1444 1445 1446 1447

		if (err)
			return 0;
	}

1448
	return generic_block_bmap(mapping,block,ext4_get_block);
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
}

static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

1463
static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1464 1465
{
	if (buffer_mapped(bh))
1466
		return ext4_journal_dirty_data(handle, bh);
1467 1468 1469 1470 1471 1472
	return 0;
}

/*
 * Note that we always start a transaction even if we're not journalling
 * data.  This is to preserve ordering: any hole instantiation within
1473
 * __block_write_full_page -> ext4_get_block() should be journalled
1474 1475 1476 1477 1478 1479 1480
 * along with the data so we don't crash and then get metadata which
 * refers to old data.
 *
 * In all journalling modes block_write_full_page() will start the I/O.
 *
 * Problem:
 *
1481 1482
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
1483 1484 1485
 *
 * Similar for:
 *
1486
 *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1487
 *
1488
 * Same applies to ext4_get_block().  We will deadlock on various things like
1489
 * lock_journal and i_data_sem
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
 *
 * Setting PF_MEMALLOC here doesn't work - too many internal memory
 * allocations fail.
 *
 * 16May01: If we're reentered then journal_current_handle() will be
 *	    non-zero. We simply *return*.
 *
 * 1 July 2001: @@@ FIXME:
 *   In journalled data mode, a data buffer may be metadata against the
 *   current transaction.  But the same file is part of a shared mapping
 *   and someone does a writepage() on it.
 *
 *   We will move the buffer onto the async_data list, but *after* it has
 *   been dirtied. So there's a small window where we have dirty data on
 *   BJ_Metadata.
 *
 *   Note that this only applies to the last partial page in the file.  The
 *   bit which block_write_full_page() uses prepare/commit for.  (That's
 *   broken code anyway: it's wrong for msync()).
 *
 *   It's a rare case: affects the final partial page, for journalled data
 *   where the file is subject to bith write() and writepage() in the same
 *   transction.  To fix it we'll need a custom block_write_full_page().
 *   We'll probably need that anyway for journalling writepage() output.
 *
 * We don't honour synchronous mounts for writepage().  That would be
 * disastrous.  Any write() or metadata operation will sync the fs for
 * us.
 *
 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
 * we don't need to open a transaction here.
 */
1522
static int ext4_ordered_writepage(struct page *page,
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

	J_ASSERT(PageLocked(page));

	/*
	 * We give up here if we're reentered, because it might be for a
	 * different filesystem.
	 */
1537
	if (ext4_journal_current_handle())
1538 1539
		goto out_fail;

1540
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554

	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out_fail;
	}

	if (!page_has_buffers(page)) {
		create_empty_buffers(page, inode->i_sb->s_blocksize,
				(1 << BH_Dirty)|(1 << BH_Uptodate));
	}
	page_bufs = page_buffers(page);
	walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, bget_one);

1555
	ret = block_write_full_page(page, ext4_get_block, wbc);
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570

	/*
	 * The page can become unlocked at any point now, and
	 * truncate can then come in and change things.  So we
	 * can't touch *page from now on.  But *page_bufs is
	 * safe due to elevated refcount.
	 */

	/*
	 * And attach them to the current transaction.  But only if
	 * block_write_full_page() succeeded.  Otherwise they are unmapped,
	 * and generally junk.
	 */
	if (ret == 0) {
		err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1571
					NULL, jbd2_journal_dirty_data_fn);
1572 1573 1574 1575 1576
		if (!ret)
			ret = err;
	}
	walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, bput_one);
1577
	err = ext4_journal_stop(handle);
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	if (!ret)
		ret = err;
	return ret;

out_fail:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return ret;
}

1588
static int ext4_writeback_writepage(struct page *page,
1589 1590 1591 1592 1593 1594 1595
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1596
	if (ext4_journal_current_handle())
1597 1598
		goto out_fail;

1599
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1600 1601 1602 1603 1604
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out_fail;
	}

1605 1606
	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
		ret = nobh_writepage(page, ext4_get_block, wbc);
1607
	else
1608
		ret = block_write_full_page(page, ext4_get_block, wbc);
1609

1610
	err = ext4_journal_stop(handle);
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
	if (!ret)
		ret = err;
	return ret;

out_fail:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return ret;
}

1621
static int ext4_journalled_writepage(struct page *page,
1622 1623 1624 1625 1626 1627 1628
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1629
	if (ext4_journal_current_handle())
1630 1631
		goto no_write;

1632
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto no_write;
	}

	if (!page_has_buffers(page) || PageChecked(page)) {
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1645
					ext4_get_block);
1646
		if (ret != 0) {
1647
			ext4_journal_stop(handle);
1648 1649 1650 1651 1652 1653
			goto out_unlock;
		}
		ret = walk_page_buffers(handle, page_buffers(page), 0,
			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);

		err = walk_page_buffers(handle, page_buffers(page), 0,
N
Nick Piggin 已提交
1654
				PAGE_CACHE_SIZE, NULL, write_end_fn);
1655 1656
		if (ret == 0)
			ret = err;
1657
		EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1658 1659 1660 1661 1662 1663 1664
		unlock_page(page);
	} else {
		/*
		 * It may be a page full of checkpoint-mode buffers.  We don't
		 * really know unless we go poke around in the buffer_heads.
		 * But block_write_full_page will do the right thing.
		 */
1665
		ret = block_write_full_page(page, ext4_get_block, wbc);
1666
	}
1667
	err = ext4_journal_stop(handle);
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	if (!ret)
		ret = err;
out:
	return ret;

no_write:
	redirty_page_for_writepage(wbc, page);
out_unlock:
	unlock_page(page);
	goto out;
}

1680
static int ext4_readpage(struct file *file, struct page *page)
1681
{
1682
	return mpage_readpage(page, ext4_get_block);
1683 1684 1685
}

static int
1686
ext4_readpages(struct file *file, struct address_space *mapping,
1687 1688
		struct list_head *pages, unsigned nr_pages)
{
1689
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1690 1691
}

1692
static void ext4_invalidatepage(struct page *page, unsigned long offset)
1693
{
1694
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1695 1696 1697 1698 1699 1700 1701

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

1702
	jbd2_journal_invalidatepage(journal, page, offset);
1703 1704
}

1705
static int ext4_releasepage(struct page *page, gfp_t wait)
1706
{
1707
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1708 1709 1710 1711

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
1712
	return jbd2_journal_try_to_free_buffers(journal, page, wait);
1713 1714 1715 1716 1717 1718 1719 1720
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
1721 1722
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
1723
 */
1724
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1725 1726 1727 1728 1729
			const struct iovec *iov, loff_t offset,
			unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
1730
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
1731
	handle_t *handle;
1732 1733 1734 1735 1736 1737 1738 1739
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
1740 1741 1742 1743 1744 1745
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
1746
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
1747 1748 1749 1750
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
1751 1752
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
1753
			ext4_journal_stop(handle);
1754 1755 1756 1757 1758
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
1759
				 ext4_get_block, NULL);
1760

J
Jan Kara 已提交
1761
	if (orphan) {
1762 1763
		int err;

J
Jan Kara 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
1774
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
1775
		if (ret > 0) {
1776 1777 1778 1779 1780 1781 1782 1783
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
1784
				 * ext4_mark_inode_dirty() to userspace.  So
1785 1786
				 * ignore it.
				 */
1787
				ext4_mark_inode_dirty(handle, inode);
1788 1789
			}
		}
1790
		err = ext4_journal_stop(handle);
1791 1792 1793 1794 1795 1796 1797 1798
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
1799
 * Pages can be marked dirty completely asynchronously from ext4's journalling
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
1811
static int ext4_journalled_set_page_dirty(struct page *page)
1812 1813 1814 1815 1816
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

1817 1818 1819 1820
static const struct address_space_operations ext4_ordered_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_ordered_writepage,
1821
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
1822 1823
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_ordered_write_end,
1824 1825 1826 1827
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
	.direct_IO	= ext4_direct_IO,
1828 1829 1830
	.migratepage	= buffer_migrate_page,
};

1831 1832 1833 1834
static const struct address_space_operations ext4_writeback_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_writeback_writepage,
1835
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
1836 1837
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_writeback_write_end,
1838 1839 1840 1841
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
	.direct_IO	= ext4_direct_IO,
1842 1843 1844
	.migratepage	= buffer_migrate_page,
};

1845 1846 1847 1848
static const struct address_space_operations ext4_journalled_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_journalled_writepage,
1849
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
1850 1851
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_journalled_write_end,
1852 1853 1854 1855
	.set_page_dirty	= ext4_journalled_set_page_dirty,
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
1856 1857
};

1858
void ext4_set_aops(struct inode *inode)
1859
{
1860 1861 1862 1863
	if (ext4_should_order_data(inode))
		inode->i_mapping->a_ops = &ext4_ordered_aops;
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
1864
	else
1865
		inode->i_mapping->a_ops = &ext4_journalled_aops;
1866 1867 1868
}

/*
1869
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1870 1871 1872 1873
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
A
Alex Tomas 已提交
1874
int ext4_block_truncate_page(handle_t *handle, struct page *page,
1875 1876
		struct address_space *mapping, loff_t from)
{
1877
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1878
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
1879 1880
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1894
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
1895
		zero_user(page, offset, length);
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
1920
		ext4_get_block(inode, iblock, bh, 0);
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

1941
	if (ext4_should_journal_data(inode)) {
1942
		BUFFER_TRACE(bh, "get write access");
1943
		err = ext4_journal_get_write_access(handle, bh);
1944 1945 1946 1947
		if (err)
			goto unlock;
	}

1948
	zero_user(page, offset, length);
1949 1950 1951 1952

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
1953 1954
	if (ext4_should_journal_data(inode)) {
		err = ext4_journal_dirty_metadata(handle, bh);
1955
	} else {
1956 1957
		if (ext4_should_order_data(inode))
			err = ext4_journal_dirty_data(handle, bh);
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
1981
 *	ext4_find_shared - find the indirect blocks for partial truncation.
1982 1983
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
1984
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
1985 1986 1987
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
1988
 *	This is a helper function used by ext4_truncate().
1989 1990 1991 1992 1993 1994 1995
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
1996
 *	past the truncation point is possible until ext4_truncate()
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

2015
static Indirect *ext4_find_shared(struct inode *inode, int depth,
A
Aneesh Kumar K.V 已提交
2016
			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
2017 2018 2019 2020 2021 2022 2023 2024
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
2025
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
2048
		/* Nope, don't do this in ext4.  Must leave the tree intact */
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

	while(partial > p) {
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
2071 2072
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
		struct buffer_head *bh, ext4_fsblk_t block_to_free,
2073 2074 2075 2076 2077
		unsigned long count, __le32 *first, __le32 *last)
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
2078 2079
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			ext4_journal_dirty_metadata(handle, bh);
2080
		}
2081 2082
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
2083 2084
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
2085
			ext4_journal_get_write_access(handle, bh);
2086 2087 2088 2089 2090
		}
	}

	/*
	 * Any buffers which are on the journal will be in memory. We find
2091
	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2092
	 * on them.  We've already detached each block from the file, so
2093
	 * bforget() in jbd2_journal_forget() should be safe.
2094
	 *
2095
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2096 2097 2098 2099
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
2100
			struct buffer_head *tbh;
2101 2102

			*p = 0;
A
Aneesh Kumar K.V 已提交
2103 2104
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
2105 2106 2107
		}
	}

2108
	ext4_free_blocks(handle, inode, block_to_free, count, 0);
2109 2110 2111
}

/**
2112
 * ext4_free_data - free a list of data blocks
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
2130
static void ext4_free_data(handle_t *handle, struct inode *inode,
2131 2132 2133
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
2134
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2135 2136 2137 2138
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
2139
	ext4_fsblk_t nr;		    /* Current block # */
2140 2141 2142 2143 2144 2145
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
2146
		err = ext4_journal_get_write_access(handle, this_bh);
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
2164
				ext4_clear_blocks(handle, inode, this_bh,
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
2175
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2176 2177 2178
				  count, block_to_free_p, p);

	if (this_bh) {
2179 2180
		BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
		ext4_journal_dirty_metadata(handle, this_bh);
2181 2182 2183 2184
	}
}

/**
2185
 *	ext4_free_branches - free an array of branches
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
2197
static void ext4_free_branches(handle_t *handle, struct inode *inode,
2198 2199 2200
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
2201
	ext4_fsblk_t nr;
2202 2203 2204 2205 2206 2207 2208
	__le32 *p;

	if (is_handle_aborted(handle))
		return;

	if (depth--) {
		struct buffer_head *bh;
2209
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
2224
				ext4_error(inode->i_sb, "ext4_free_branches",
2225
					   "Read failure, inode=%lu, block=%llu",
2226 2227 2228 2229 2230 2231
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
2232
			ext4_free_branches(handle, inode, bh,
2233 2234 2235 2236 2237 2238 2239 2240
					   (__le32*)bh->b_data,
					   (__le32*)bh->b_data + addr_per_block,
					   depth);

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
2241
			 * jbd2_journal_revoke().
2242 2243 2244
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
2245
			 * transaction then jbd2_journal_forget() will simply
2246
			 * brelse() it.  That means that if the underlying
2247
			 * block is reallocated in ext4_get_block(),
2248 2249 2250 2251 2252 2253 2254 2255
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
2256
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
			if (is_handle_aborted(handle))
				return;
			if (try_to_extend_transaction(handle, inode)) {
2277 2278
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
2279 2280
			}

2281
			ext4_free_blocks(handle, inode, nr, 1, 1);
2282 2283 2284 2285 2286 2287 2288

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
2289
				if (!ext4_journal_get_write_access(handle,
2290 2291 2292
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
2293 2294
					"call ext4_journal_dirty_metadata");
					ext4_journal_dirty_metadata(handle,
2295 2296 2297 2298 2299 2300 2301
								    parent_bh);
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
2302
		ext4_free_data(handle, inode, parent_bh, first, last);
2303 2304 2305 2306
	}
}

/*
2307
 * ext4_truncate()
2308
 *
2309 2310
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
2327
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
2328
 * that this inode's truncate did not complete and it will again call
2329 2330
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
2331
 * that's fine - as long as they are linked from the inode, the post-crash
2332
 * ext4_truncate() run will find them and release them.
2333
 */
2334
void ext4_truncate(struct inode *inode)
2335 2336
{
	handle_t *handle;
2337
	struct ext4_inode_info *ei = EXT4_I(inode);
2338
	__le32 *i_data = ei->i_data;
2339
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2340
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
2341
	ext4_lblk_t offsets[4];
2342 2343 2344 2345
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
2346
	ext4_lblk_t last_block;
2347 2348 2349 2350 2351 2352
	unsigned blocksize = inode->i_sb->s_blocksize;
	struct page *page;

	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
	    S_ISLNK(inode->i_mode)))
		return;
2353
	if (ext4_inode_is_fast_symlink(inode))
2354 2355 2356 2357 2358 2359
		return;
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return;

	/*
	 * We have to lock the EOF page here, because lock_page() nests
2360
	 * outside jbd2_journal_start().
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
	 */
	if ((inode->i_size & (blocksize - 1)) == 0) {
		/* Block boundary? Nothing to do */
		page = NULL;
	} else {
		page = grab_cache_page(mapping,
				inode->i_size >> PAGE_CACHE_SHIFT);
		if (!page)
			return;
	}

A
Aneesh Kumar K.V 已提交
2372 2373 2374 2375
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		ext4_ext_truncate(inode, page);
		return;
	}
A
Alex Tomas 已提交
2376

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
	handle = start_transaction(inode);
	if (IS_ERR(handle)) {
		if (page) {
			clear_highpage(page);
			flush_dcache_page(page);
			unlock_page(page);
			page_cache_release(page);
		}
		return;		/* AKPM: return what? */
	}

	last_block = (inode->i_size + blocksize-1)
2389
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2390 2391

	if (page)
2392
		ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2393

2394
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
2407
	if (ext4_orphan_add(handle, inode))
2408 2409 2410 2411 2412 2413 2414
		goto out_stop;

	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
2415
	 * ext4 *really* writes onto the disk inode.
2416 2417 2418 2419
	 */
	ei->i_disksize = inode->i_size;

	/*
2420
	 * From here we block out all ext4_get_block() callers who want to
2421 2422
	 * modify the block allocation tree.
	 */
2423
	down_write(&ei->i_data_sem);
2424 2425

	if (n == 1) {		/* direct blocks */
2426 2427
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
2428 2429 2430
		goto do_indirects;
	}

2431
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2432 2433 2434 2435
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
2436
			ext4_free_branches(handle, inode, NULL,
2437 2438 2439 2440 2441 2442 2443 2444 2445
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
2446
			ext4_free_branches(handle, inode, partial->bh,
2447 2448 2449 2450 2451 2452
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
2453
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse (partial->bh);
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
2464
		nr = i_data[EXT4_IND_BLOCK];
2465
		if (nr) {
2466 2467
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
2468
		}
2469 2470
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
2471
		if (nr) {
2472 2473
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
2474
		}
2475 2476
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
2477
		if (nr) {
2478 2479
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
2480
		}
2481
	case EXT4_TIND_BLOCK:
2482 2483 2484
		;
	}

2485
	ext4_discard_reservation(inode);
2486

2487
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
2488
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2489
	ext4_mark_inode_dirty(handle, inode);
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
		handle->h_sync = 1;
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
2502
	 * ext4_delete_inode(), and we allow that function to clean up the
2503 2504 2505
	 * orphan info for us.
	 */
	if (inode->i_nlink)
2506
		ext4_orphan_del(handle, inode);
2507

2508
	ext4_journal_stop(handle);
2509 2510
}

2511 2512
static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
		unsigned long ino, struct ext4_iloc *iloc)
2513
{
2514 2515
	unsigned long desc, group_desc;
	ext4_group_t block_group;
2516
	unsigned long offset;
2517
	ext4_fsblk_t block;
2518
	struct buffer_head *bh;
2519
	struct ext4_group_desc * gdp;
2520

2521
	if (!ext4_valid_inum(sb, ino)) {
2522 2523 2524 2525 2526 2527 2528 2529
		/*
		 * This error is already checked for in namei.c unless we are
		 * looking at an NFS filehandle, in which case no error
		 * report is needed
		 */
		return 0;
	}

2530 2531 2532
	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
	if (block_group >= EXT4_SB(sb)->s_groups_count) {
		ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2533 2534 2535
		return 0;
	}
	smp_rmb();
2536 2537 2538
	group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
	desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
	bh = EXT4_SB(sb)->s_group_desc[group_desc];
2539
	if (!bh) {
2540
		ext4_error (sb, "ext4_get_inode_block",
2541 2542 2543 2544
			    "Descriptor not loaded");
		return 0;
	}

2545 2546
	gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
		desc * EXT4_DESC_SIZE(sb));
2547 2548 2549
	/*
	 * Figure out the offset within the block group inode table
	 */
2550 2551
	offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
		EXT4_INODE_SIZE(sb);
2552 2553
	block = ext4_inode_table(sb, gdp) +
		(offset >> EXT4_BLOCK_SIZE_BITS(sb));
2554 2555

	iloc->block_group = block_group;
2556
	iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2557 2558 2559 2560
	return block;
}

/*
2561
 * ext4_get_inode_loc returns with an extra refcount against the inode's
2562 2563 2564 2565
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
2566 2567
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
2568
{
2569
	ext4_fsblk_t block;
2570 2571
	struct buffer_head *bh;

2572
	block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2573 2574 2575 2576 2577
	if (!block)
		return -EIO;

	bh = sb_getblk(inode->i_sb, block);
	if (!bh) {
2578
		ext4_error (inode->i_sb, "ext4_get_inode_loc",
2579
				"unable to read inode block - "
2580
				"inode=%lu, block=%llu",
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
				 inode->i_ino, block);
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
2599
			struct ext4_group_desc *desc;
2600 2601
			int inodes_per_buffer;
			int inode_offset, i;
2602
			ext4_group_t block_group;
2603 2604 2605
			int start;

			block_group = (inode->i_ino - 1) /
2606
					EXT4_INODES_PER_GROUP(inode->i_sb);
2607
			inodes_per_buffer = bh->b_size /
2608
				EXT4_INODE_SIZE(inode->i_sb);
2609
			inode_offset = ((inode->i_ino - 1) %
2610
					EXT4_INODES_PER_GROUP(inode->i_sb));
2611 2612 2613
			start = inode_offset & ~(inodes_per_buffer - 1);

			/* Is the inode bitmap in cache? */
2614
			desc = ext4_get_group_desc(inode->i_sb,
2615 2616 2617 2618 2619
						block_group, NULL);
			if (!desc)
				goto make_io;

			bitmap_bh = sb_getblk(inode->i_sb,
2620
				ext4_inode_bitmap(inode->i_sb, desc));
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
			for (i = start; i < start + inodes_per_buffer; i++) {
				if (i == inode_offset)
					continue;
2636
				if (ext4_test_bit(i, bitmap_bh->b_data))
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
					break;
			}
			brelse(bitmap_bh);
			if (i == start + inodes_per_buffer) {
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
2660
			ext4_error(inode->i_sb, "ext4_get_inode_loc",
2661
					"unable to read inode block - "
2662
					"inode=%lu, block=%llu",
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
					inode->i_ino, block);
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

2673
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2674 2675
{
	/* We have all inode data except xattrs in memory here. */
2676 2677
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2678 2679
}

2680
void ext4_set_inode_flags(struct inode *inode)
2681
{
2682
	unsigned int flags = EXT4_I(inode)->i_flags;
2683 2684

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2685
	if (flags & EXT4_SYNC_FL)
2686
		inode->i_flags |= S_SYNC;
2687
	if (flags & EXT4_APPEND_FL)
2688
		inode->i_flags |= S_APPEND;
2689
	if (flags & EXT4_IMMUTABLE_FL)
2690
		inode->i_flags |= S_IMMUTABLE;
2691
	if (flags & EXT4_NOATIME_FL)
2692
		inode->i_flags |= S_NOATIME;
2693
	if (flags & EXT4_DIRSYNC_FL)
2694 2695 2696
		inode->i_flags |= S_DIRSYNC;
}

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
2715 2716 2717 2718
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
					struct ext4_inode_info *ei)
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
2719 2720
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
2721 2722 2723 2724 2725 2726

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
2727 2728 2729 2730 2731 2732
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
2733 2734 2735 2736
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
2737

2738
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
2739
{
2740 2741
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
2742
	struct ext4_inode_info *ei;
2743
	struct buffer_head *bh;
2744 2745
	struct inode *inode;
	long ret;
2746 2747
	int block;

2748 2749 2750 2751 2752 2753 2754
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
2755 2756 2757
#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
	ei->i_acl = EXT4_ACL_NOT_CACHED;
	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2758 2759 2760
#endif
	ei->i_block_alloc_info = NULL;

2761 2762
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
2763 2764
		goto bad_inode;
	bh = iloc.bh;
2765
	raw_inode = ext4_raw_inode(&iloc);
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
	if(!(test_opt (inode->i_sb, NO_UID32))) {
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
2785
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2786 2787
			/* this inode is deleted */
			brelse (bh);
2788
			ret = -ESTALE;
2789 2790 2791 2792 2793 2794 2795 2796
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2797
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2798
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2799
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2800
	    cpu_to_le32(EXT4_OS_HURD)) {
B
Badari Pulavarty 已提交
2801 2802
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2803
	}
2804
	inode->i_size = ext4_isize(raw_inode);
2805 2806 2807 2808 2809 2810 2811
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
2812
	for (block = 0; block < EXT4_N_BLOCKS; block++)
2813 2814 2815
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

2816
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2817
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2818
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2819 2820
		    EXT4_INODE_SIZE(inode->i_sb)) {
			brelse (bh);
2821
			ret = -EIO;
2822
			goto bad_inode;
2823
		}
2824 2825
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
2826 2827
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
2828 2829
		} else {
			__le32 *magic = (void *)raw_inode +
2830
					EXT4_GOOD_OLD_INODE_SIZE +
2831
					ei->i_extra_isize;
2832 2833
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
				 ei->i_state |= EXT4_STATE_XATTR;
2834 2835 2836 2837
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
2838 2839 2840 2841 2842
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

2843 2844 2845 2846 2847 2848 2849
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

2850
	if (S_ISREG(inode->i_mode)) {
2851 2852 2853
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
2854
	} else if (S_ISDIR(inode->i_mode)) {
2855 2856
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
2857
	} else if (S_ISLNK(inode->i_mode)) {
2858 2859
		if (ext4_inode_is_fast_symlink(inode))
			inode->i_op = &ext4_fast_symlink_inode_operations;
2860
		else {
2861 2862
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
2863 2864
		}
	} else {
2865
		inode->i_op = &ext4_special_inode_operations;
2866 2867 2868 2869 2870 2871 2872 2873
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
	}
	brelse (iloc.bh);
2874
	ext4_set_inode_flags(inode);
2875 2876
	unlock_new_inode(inode);
	return inode;
2877 2878

bad_inode:
2879 2880
	iget_failed(inode);
	return ERR_PTR(ret);
2881 2882
}

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;
	int err = 0;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
2897
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2898
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
2899
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
	} else if (i_blocks <= 0xffffffffffffULL) {
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
		err = ext4_update_rocompat_feature(handle, sb,
					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
		if (err)
			goto  err_out;
		/* i_block is stored in the split  48 bit fields */
A
Aneesh Kumar K.V 已提交
2910
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2911
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
2912
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2913
	} else {
A
Aneesh Kumar K.V 已提交
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
		/*
		 * i_blocks should be represented in a 48 bit variable
		 * as multiple of  file system block size
		 */
		err = ext4_update_rocompat_feature(handle, sb,
					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
		if (err)
			goto  err_out;
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2927 2928 2929 2930 2931
	}
err_out:
	return err;
}

2932 2933 2934 2935 2936 2937 2938
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
2939
static int ext4_do_update_inode(handle_t *handle,
2940
				struct inode *inode,
2941
				struct ext4_iloc *iloc)
2942
{
2943 2944
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
2945 2946 2947 2948 2949
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
2950 2951
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2952

2953
	ext4_get_inode_flags(ei);
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
	if(!(test_opt(inode->i_sb, NO_UID32))) {
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
		if(!ei->i_dtime) {
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
2980 2981 2982 2983 2984 2985

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

2986 2987
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
2988
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2989 2990
	/* clear the migrate flag in the raw_inode */
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
2991 2992
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
2993 2994
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
2995
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
3012
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3013 3014 3015 3016
			sb->s_dirt = 1;
			handle->h_sync = 1;
			err = ext4_journal_dirty_metadata(handle,
					EXT4_SB(sb)->s_sbh);
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
3031
	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
3032 3033
		raw_inode->i_block[block] = ei->i_data[block];

3034 3035 3036 3037 3038
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
3039
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3040 3041
	}

3042

3043 3044
	BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
	rc = ext4_journal_dirty_metadata(handle, bh);
3045 3046
	if (!err)
		err = rc;
3047
	ei->i_state &= ~EXT4_STATE_NEW;
3048 3049 3050

out_brelse:
	brelse (bh);
3051
	ext4_std_error(inode->i_sb, err);
3052 3053 3054 3055
	return err;
}

/*
3056
 * ext4_write_inode()
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
3073
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
3090
int ext4_write_inode(struct inode *inode, int wait)
3091 3092 3093 3094
{
	if (current->flags & PF_MEMALLOC)
		return 0;

3095
	if (ext4_journal_current_handle()) {
M
Mingming Cao 已提交
3096
		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3097 3098 3099 3100 3101 3102 3103
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

3104
	return ext4_force_commit(inode->i_sb);
3105 3106 3107
}

/*
3108
 * ext4_setattr()
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
 * Called with inode->sem down.
 */
3124
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
3140 3141
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3142 3143 3144 3145 3146 3147
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
		if (error) {
3148
			ext4_journal_stop(handle);
3149 3150 3151 3152 3153 3154 3155 3156
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
3157 3158
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
3159 3160
	}

3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

3172 3173 3174 3175
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

3176
		handle = ext4_journal_start(inode, 3);
3177 3178 3179 3180 3181
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

3182 3183 3184
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
3185 3186
		if (!error)
			error = rc;
3187
		ext4_journal_stop(handle);
3188 3189 3190 3191
	}

	rc = inode_setattr(inode, attr);

3192
	/* If inode_setattr's call to ext4_truncate failed to get a
3193 3194 3195
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
3196
		ext4_orphan_del(NULL, inode);
3197 3198

	if (!rc && (ia_valid & ATTR_MODE))
3199
		rc = ext4_acl_chmod(inode);
3200 3201

err_out:
3202
	ext4_std_error(inode->i_sb, error);
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
	if (!error)
		error = rc;
	return error;
}


/*
 * How many blocks doth make a writepage()?
 *
 * With N blocks per page, it may be:
 * N data blocks
 * 2 indirect block
 * 2 dindirect
 * 1 tindirect
 * N+5 bitmap blocks (from the above)
 * N+5 group descriptor summary blocks
 * 1 inode block
 * 1 superblock.
3221
 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3222
 *
3223
 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
 *
 * With ordered or writeback data it's the same, less the N data blocks.
 *
 * If the inode's direct blocks can hold an integral number of pages then a
 * page cannot straddle two indirect blocks, and we can only touch one indirect
 * and dindirect block, and the "5" above becomes "3".
 *
 * This still overestimates under most circumstances.  If we were to pass the
 * start and end offsets in here as well we could do block_to_path() on each
 * block and work out the exact number of indirects which are touched.  Pah.
 */

A
Alex Tomas 已提交
3236
int ext4_writepage_trans_blocks(struct inode *inode)
3237
{
3238 3239
	int bpp = ext4_journal_blocks_per_page(inode);
	int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3240 3241
	int ret;

A
Alex Tomas 已提交
3242 3243 3244
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_writepage_trans_blocks(inode, bpp);

3245
	if (ext4_should_journal_data(inode))
3246 3247 3248 3249 3250 3251 3252
		ret = 3 * (bpp + indirects) + 2;
	else
		ret = 2 * (bpp + indirects) + 2;

#ifdef CONFIG_QUOTA
	/* We know that structure was already allocated during DQUOT_INIT so
	 * we will be updating only the data blocks + inodes */
3253
	ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3254 3255 3256 3257 3258 3259
#endif

	return ret;
}

/*
3260
 * The caller must have previously called ext4_reserve_inode_write().
3261 3262
 * Give this, we know that the caller already has write access to iloc->bh.
 */
3263 3264
int ext4_mark_iloc_dirty(handle_t *handle,
		struct inode *inode, struct ext4_iloc *iloc)
3265 3266 3267
{
	int err = 0;

3268 3269 3270
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

3271 3272 3273
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

3274
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3275
	err = ext4_do_update_inode(handle, inode, iloc);
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
3286 3287
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
3288 3289 3290
{
	int err = 0;
	if (handle) {
3291
		err = ext4_get_inode_loc(inode, iloc);
3292 3293
		if (!err) {
			BUFFER_TRACE(iloc->bh, "get_write_access");
3294
			err = ext4_journal_get_write_access(handle, iloc->bh);
3295 3296 3297 3298 3299 3300
			if (err) {
				brelse(iloc->bh);
				iloc->bh = NULL;
			}
		}
	}
3301
	ext4_std_error(inode->i_sb, err);
3302 3303 3304
	return err;
}

3305 3306 3307 3308
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
3309 3310 3311 3312
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
3361
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3362
{
3363
	struct ext4_iloc iloc;
3364 3365 3366
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
3367 3368

	might_sleep();
3369
	err = ext4_reserve_inode_write(handle, inode, &iloc);
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
3386 3387
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
3388 3389 3390 3391
					ext4_warning(inode->i_sb, __FUNCTION__,
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
3392 3393
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
3394 3395 3396 3397
				}
			}
		}
	}
3398
	if (!err)
3399
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3400 3401 3402 3403
	return err;
}

/*
3404
 * ext4_dirty_inode() is called from __mark_inode_dirty()
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
3417
void ext4_dirty_inode(struct inode *inode)
3418
{
3419
	handle_t *current_handle = ext4_journal_current_handle();
3420 3421
	handle_t *handle;

3422
	handle = ext4_journal_start(inode, 2);
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
		       __FUNCTION__);
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
3433
		ext4_mark_inode_dirty(handle, inode);
3434
	}
3435
	ext4_journal_stop(handle);
3436 3437 3438 3439 3440 3441 3442 3443
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
3444
 * ext4_reserve_inode_write, this leaves behind no bh reference and
3445 3446 3447
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
3448
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3449
{
3450
	struct ext4_iloc iloc;
3451 3452 3453

	int err = 0;
	if (handle) {
3454
		err = ext4_get_inode_loc(inode, &iloc);
3455 3456
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
3457
			err = jbd2_journal_get_write_access(handle, iloc.bh);
3458
			if (!err)
3459
				err = ext4_journal_dirty_metadata(handle,
3460 3461 3462 3463
								  iloc.bh);
			brelse(iloc.bh);
		}
	}
3464
	ext4_std_error(inode->i_sb, err);
3465 3466 3467 3468
	return err;
}
#endif

3469
int ext4_change_inode_journal_flag(struct inode *inode, int val)
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

3485
	journal = EXT4_JOURNAL(inode);
3486
	if (is_journal_aborted(journal))
3487 3488
		return -EROFS;

3489 3490
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
3501
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3502
	else
3503 3504
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
3505

3506
	jbd2_journal_unlock_updates(journal);
3507 3508 3509

	/* Finally we can mark the inode as dirty. */

3510
	handle = ext4_journal_start(inode, 1);
3511 3512 3513
	if (IS_ERR(handle))
		return PTR_ERR(handle);

3514
	err = ext4_mark_inode_dirty(handle, inode);
3515
	handle->h_sync = 1;
3516 3517
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
3518 3519 3520

	return err;
}