entry_64.S 48.6 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8
 *
L
Linus Torvalds 已提交
9 10
 * entry.S contains the system-call and fault low-level handling routines.
 *
11 12
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
13
 * A note on terminology:
14 15
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
16 17
 *
 * Some macro usage:
18 19 20
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
21 22 23 24 25
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
40
#include <linux/err.h>
L
Linus Torvalds 已提交
41

42 43
#include "calling.h"

44 45
.code64
.section .entry.text, "ax"
46

47
#ifdef CONFIG_PARAVIRT
48
ENTRY(native_usergs_sysret64)
49
	UNWIND_HINT_EMPTY
50 51
	swapgs
	sysretq
52
END(native_usergs_sysret64)
53 54
#endif /* CONFIG_PARAVIRT */

55
.macro TRACE_IRQS_IRETQ
56
#ifdef CONFIG_TRACE_IRQFLAGS
57 58
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
59 60 61 62 63
	TRACE_IRQS_ON
1:
#endif
.endm

64 65 66 67 68 69 70 71 72 73 74 75 76 77
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
78
	call	debug_stack_set_zero
79
	TRACE_IRQS_OFF
80
	call	debug_stack_reset
81 82 83
.endm

.macro TRACE_IRQS_ON_DEBUG
84
	call	debug_stack_set_zero
85
	TRACE_IRQS_ON
86
	call	debug_stack_reset
87 88
.endm

89
.macro TRACE_IRQS_IRETQ_DEBUG
90 91
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
92 93 94 95 96
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
97 98 99
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
100 101
#endif

L
Linus Torvalds 已提交
102
/*
103
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
104
 *
105 106 107 108 109 110 111 112 113 114
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
115
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
116 117 118 119 120 121
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
122
 * rax  system call number
123 124
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
125 126
 * rdi  arg0
 * rsi  arg1
127
 * rdx  arg2
128
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
129 130
 * r8   arg4
 * r9   arg5
131
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
132
 *
L
Linus Torvalds 已提交
133 134
 * Only called from user space.
 *
135
 * When user can change pt_regs->foo always force IRET. That is because
136 137
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
138
 */
L
Linus Torvalds 已提交
139

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
	.pushsection .entry_trampoline, "ax"

/*
 * The code in here gets remapped into cpu_entry_area's trampoline.  This means
 * that the assembler and linker have the wrong idea as to where this code
 * lives (and, in fact, it's mapped more than once, so it's not even at a
 * fixed address).  So we can't reference any symbols outside the entry
 * trampoline and expect it to work.
 *
 * Instead, we carefully abuse %rip-relative addressing.
 * _entry_trampoline(%rip) refers to the start of the remapped) entry
 * trampoline.  We can thus find cpu_entry_area with this macro:
 */

#define CPU_ENTRY_AREA \
	_entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)

/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
158 159
#define RSP_SCRATCH	CPU_ENTRY_AREA_entry_stack + \
			SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
160 161 162 163 164 165 166 167

ENTRY(entry_SYSCALL_64_trampoline)
	UNWIND_HINT_EMPTY
	swapgs

	/* Stash the user RSP. */
	movq	%rsp, RSP_SCRATCH

168 169 170
	/* Note: using %rsp as a scratch reg. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
	/* Load the top of the task stack into RSP */
	movq	CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp

	/* Start building the simulated IRET frame. */
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	RSP_SCRATCH			/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */

	/*
	 * x86 lacks a near absolute jump, and we can't jump to the real
	 * entry text with a relative jump.  We could push the target
	 * address and then use retq, but this destroys the pipeline on
	 * many CPUs (wasting over 20 cycles on Sandy Bridge).  Instead,
	 * spill RDI and restore it in a second-stage trampoline.
	 */
	pushq	%rdi
	movq	$entry_SYSCALL_64_stage2, %rdi
	jmp	*%rdi
END(entry_SYSCALL_64_trampoline)

	.popsection

ENTRY(entry_SYSCALL_64_stage2)
	UNWIND_HINT_EMPTY
	popq	%rdi
	jmp	entry_SYSCALL_64_after_hwframe
END(entry_SYSCALL_64_stage2)

201
ENTRY(entry_SYSCALL_64)
202
	UNWIND_HINT_EMPTY
203 204 205 206 207
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
208

209
	swapgs
210 211 212 213
	/*
	 * This path is not taken when PAGE_TABLE_ISOLATION is disabled so it
	 * is not required to switch CR3.
	 */
214 215
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
216

217 218
	TRACE_IRQS_OFF

219
	/* Construct struct pt_regs on stack */
220 221 222 223 224
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
225
GLOBAL(entry_SYSCALL_64_after_hwframe)
226 227 228 229 230 231 232 233 234 235 236
	pushq	%rax				/* pt_regs->orig_ax */
	pushq	%rdi				/* pt_regs->di */
	pushq	%rsi				/* pt_regs->si */
	pushq	%rdx				/* pt_regs->dx */
	pushq	%rcx				/* pt_regs->cx */
	pushq	$-ENOSYS			/* pt_regs->ax */
	pushq	%r8				/* pt_regs->r8 */
	pushq	%r9				/* pt_regs->r9 */
	pushq	%r10				/* pt_regs->r10 */
	pushq	%r11				/* pt_regs->r11 */
	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */
237
	UNWIND_HINT_REGS extra=0
238

239 240 241 242
	/*
	 * If we need to do entry work or if we guess we'll need to do
	 * exit work, go straight to the slow path.
	 */
243 244
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
245 246
	jnz	entry_SYSCALL64_slow_path

247
entry_SYSCALL_64_fastpath:
248 249 250 251 252 253 254
	/*
	 * Easy case: enable interrupts and issue the syscall.  If the syscall
	 * needs pt_regs, we'll call a stub that disables interrupts again
	 * and jumps to the slow path.
	 */
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
255
#if __SYSCALL_MASK == ~0
256
	cmpq	$__NR_syscall_max, %rax
257
#else
258 259
	andl	$__SYSCALL_MASK, %eax
	cmpl	$__NR_syscall_max, %eax
260
#endif
261 262
	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
	movq	%r10, %rcx
263 264 265

	/*
	 * This call instruction is handled specially in stub_ptregs_64.
266 267
	 * It might end up jumping to the slow path.  If it jumps, RAX
	 * and all argument registers are clobbered.
268
	 */
269
	call	*sys_call_table(, %rax, 8)
270 271
.Lentry_SYSCALL_64_after_fastpath_call:

272
	movq	%rax, RAX(%rsp)
273
1:
274 275

	/*
276 277 278
	 * If we get here, then we know that pt_regs is clean for SYSRET64.
	 * If we see that no exit work is required (which we are required
	 * to check with IRQs off), then we can go straight to SYSRET64.
279
	 */
280
	DISABLE_INTERRUPTS(CLBR_ANY)
281
	TRACE_IRQS_OFF
282 283
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
284
	jnz	1f
285

286 287
	LOCKDEP_SYS_EXIT
	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
288 289
	movq	RIP(%rsp), %rcx
	movq	EFLAGS(%rsp), %r11
290
	addq	$6*8, %rsp	/* skip extra regs -- they were preserved */
291
	UNWIND_HINT_EMPTY
292
	jmp	.Lpop_c_regs_except_rcx_r11_and_sysret
L
Linus Torvalds 已提交
293

294 295 296 297 298 299
1:
	/*
	 * The fast path looked good when we started, but something changed
	 * along the way and we need to switch to the slow path.  Calling
	 * raise(3) will trigger this, for example.  IRQs are off.
	 */
300
	TRACE_IRQS_ON
301
	ENABLE_INTERRUPTS(CLBR_ANY)
302
	SAVE_EXTRA_REGS
303
	movq	%rsp, %rdi
304 305
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	jmp	return_from_SYSCALL_64
306

307 308
entry_SYSCALL64_slow_path:
	/* IRQs are off. */
309
	SAVE_EXTRA_REGS
310
	movq	%rsp, %rdi
311 312 313
	call	do_syscall_64		/* returns with IRQs disabled */

return_from_SYSCALL_64:
314
	TRACE_IRQS_IRETQ		/* we're about to change IF */
315 316 317

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
318 319
	 * a completely clean 64-bit userspace context.  If we're not,
	 * go to the slow exit path.
320
	 */
321 322
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
323 324 325

	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
	jne	swapgs_restore_regs_and_return_to_usermode
326 327 328 329

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
330
	 * the kernel, since userspace controls RSP.
331
	 *
332
	 * If width of "canonical tail" ever becomes variable, this will need
333
	 * to be updated to remain correct on both old and new CPUs.
334
	 *
335 336
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
337
	 */
338 339
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
340

341 342
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
343
	jne	swapgs_restore_regs_and_return_to_usermode
344

345
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
346
	jne	swapgs_restore_regs_and_return_to_usermode
347

348 349
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
350
	jne	swapgs_restore_regs_and_return_to_usermode
351 352

	/*
353 354 355 356 357 358 359 360 361
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
362
	 *
363
	 *           movq	$stuck_here, %rcx
364 365 366 367 368 369
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
370
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
371
	jnz	swapgs_restore_regs_and_return_to_usermode
372 373 374

	/* nothing to check for RSP */

375
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
376
	jne	swapgs_restore_regs_and_return_to_usermode
377 378

	/*
379 380
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
381 382
	 */
syscall_return_via_sysret:
383
	/* rcx and r11 are already restored (see code above) */
384
	UNWIND_HINT_EMPTY
385
	POP_EXTRA_REGS
386
.Lpop_c_regs_except_rcx_r11_and_sysret:
387 388 389 390 391 392 393 394
	popq	%rsi	/* skip r11 */
	popq	%r10
	popq	%r9
	popq	%r8
	popq	%rax
	popq	%rsi	/* skip rcx */
	popq	%rdx
	popq	%rsi
395 396 397 398 399 400

	/*
	 * Now all regs are restored except RSP and RDI.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
401
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
402 403 404 405 406 407 408 409

	pushq	RSP-RDI(%rdi)	/* RSP */
	pushq	(%rdi)		/* RDI */

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
410
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
411

412
	popq	%rdi
413
	popq	%rsp
414
	USERGS_SYSRET64
415
END(entry_SYSCALL_64)
416

417 418 419
ENTRY(stub_ptregs_64)
	/*
	 * Syscalls marked as needing ptregs land here.
420 421 422
	 * If we are on the fast path, we need to save the extra regs,
	 * which we achieve by trying again on the slow path.  If we are on
	 * the slow path, the extra regs are already saved.
423 424
	 *
	 * RAX stores a pointer to the C function implementing the syscall.
425
	 * IRQs are on.
426 427 428 429
	 */
	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
	jne	1f

430 431 432 433
	/*
	 * Called from fast path -- disable IRQs again, pop return address
	 * and jump to slow path
	 */
434
	DISABLE_INTERRUPTS(CLBR_ANY)
435
	TRACE_IRQS_OFF
436
	popq	%rax
437
	UNWIND_HINT_REGS extra=0
438
	jmp	entry_SYSCALL64_slow_path
439 440

1:
441
	jmp	*%rax				/* Called from C */
442 443 444 445
END(stub_ptregs_64)

.macro ptregs_stub func
ENTRY(ptregs_\func)
446
	UNWIND_HINT_FUNC
447 448 449 450 451 452 453 454 455 456
	leaq	\func(%rip), %rax
	jmp	stub_ptregs_64
END(ptregs_\func)
.endm

/* Instantiate ptregs_stub for each ptregs-using syscall */
#define __SYSCALL_64_QUAL_(sym)
#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
#include <asm/syscalls_64.h>
457

458 459 460 461 462
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
463
	UNWIND_HINT_FUNC
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

#ifdef CONFIG_CC_STACKPROTECTOR
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

495 496 497
/*
 * A newly forked process directly context switches into this address.
 *
498
 * rax: prev task we switched from
499 500
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
501 502
 */
ENTRY(ret_from_fork)
503
	UNWIND_HINT_EMPTY
504
	movq	%rax, %rdi
505
	call	schedule_tail			/* rdi: 'prev' task parameter */
506

507 508
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
509

510
2:
511
	UNWIND_HINT_REGS
512
	movq	%rsp, %rdi
513 514
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
515
	jmp	swapgs_restore_regs_and_return_to_usermode
516 517 518 519 520 521 522 523 524 525 526 527

1:
	/* kernel thread */
	movq	%r12, %rdi
	call	*%rbx
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
528 529
END(ret_from_fork)

530
/*
531 532
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
533
 */
534
	.align 8
535
ENTRY(irq_entries_start)
536 537
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
538
	UNWIND_HINT_IRET_REGS
539
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
540 541
	jmp	common_interrupt
	.align	8
542
	vector=vector+1
543
    .endr
544 545
END(irq_entries_start)

546 547
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
548 549 550
	pushq %rax
	SAVE_FLAGS(CLBR_RAX)
	testl $X86_EFLAGS_IF, %eax
551 552 553
	jz .Lokay_\@
	ud2
.Lokay_\@:
554
	popq %rax
555 556 557 558 559 560 561 562 563 564
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
565
.macro ENTER_IRQ_STACK regs=1 old_rsp
566 567
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	movq	%rsp, \old_rsp
568 569 570 571 572

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

573
	incl	PER_CPU_VAR(irq_count)
574
	jnz	.Lirq_stack_push_old_rsp_\@
575 576 577 578 579 580 581 582 583

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
	movq	PER_CPU_VAR(irq_stack_ptr), %rsp

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
600
	 */
601 602 603 604 605
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
606

607
.Lirq_stack_push_old_rsp_\@:
608
	pushq	\old_rsp
609 610 611 612

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
613 614 615 616 617
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
618
.macro LEAVE_IRQ_STACK regs=1
619 620 621 622
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

623 624 625 626
	.if \regs
	UNWIND_HINT_REGS
	.endif

627 628 629 630 631 632 633 634
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

635
/*
L
Linus Torvalds 已提交
636 637 638
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
639 640 641
 *
 * Entry runs with interrupts off.
 */
L
Linus Torvalds 已提交
642

643
/* 0(%rsp): ~(interrupt number) */
L
Linus Torvalds 已提交
644
	.macro interrupt func
645
	cld
646 647 648 649 650 651 652

	testb	$3, CS-ORIG_RAX(%rsp)
	jz	1f
	SWAPGS
	call	switch_to_thread_stack
1:

653 654 655
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
656
	ENCODE_FRAME_POINTER
657

658
	testb	$3, CS(%rsp)
659
	jz	1f
660 661

	/*
662 663
	 * IRQ from user mode.
	 *
664 665 666 667 668 669 670 671 672
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

673
	CALL_enter_from_user_mode
674

675
1:
676
	ENTER_IRQ_STACK old_rsp=%rdi
677 678 679
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

680
	call	\func	/* rdi points to pt_regs */
L
Linus Torvalds 已提交
681 682
	.endm

683 684 685 686
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
687 688
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
689
	ASM_CLAC
690
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
L
Linus Torvalds 已提交
691
	interrupt do_IRQ
692
	/* 0(%rsp): old RSP */
693
ret_from_intr:
694
	DISABLE_INTERRUPTS(CLBR_ANY)
695
	TRACE_IRQS_OFF
696

697
	LEAVE_IRQ_STACK
698

699
	testb	$3, CS(%rsp)
700
	jz	retint_kernel
701

702 703 704 705
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
706
	TRACE_IRQS_IRETQ
707

708
GLOBAL(swapgs_restore_regs_and_return_to_usermode)
709 710
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates user mode. */
711
	testb	$3, CS(%rsp)
712 713 714 715
	jnz	1f
	ud2
1:
#endif
716
	POP_EXTRA_REGS
717 718 719 720 721 722 723 724 725 726 727 728 729 730
	popq	%r11
	popq	%r10
	popq	%r9
	popq	%r8
	popq	%rax
	popq	%rcx
	popq	%rdx
	popq	%rsi

	/*
	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
731
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747

	/* Copy the IRET frame to the trampoline stack. */
	pushq	6*8(%rdi)	/* SS */
	pushq	5*8(%rdi)	/* RSP */
	pushq	4*8(%rdi)	/* EFLAGS */
	pushq	3*8(%rdi)	/* CS */
	pushq	2*8(%rdi)	/* RIP */

	/* Push user RDI on the trampoline stack. */
	pushq	(%rdi)

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */

748
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
749

750 751 752
	/* Restore RDI. */
	popq	%rdi
	SWAPGS
753 754
	INTERRUPT_RETURN

755

756
/* Returning to kernel space */
757
retint_kernel:
758 759 760
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
761
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
762
	jnc	1f
763
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
764
	jnz	1f
765
	call	preempt_schedule_irq
766
	jmp	0b
767
1:
768
#endif
769 770 771 772
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
773

774 775 776
GLOBAL(restore_regs_and_return_to_kernel)
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates kernel mode. */
777
	testb	$3, CS(%rsp)
778 779 780 781
	jz	1f
	ud2
1:
#endif
782 783 784
	POP_EXTRA_REGS
	POP_C_REGS
	addq	$8, %rsp	/* skip regs->orig_ax */
785 786 787
	INTERRUPT_RETURN

ENTRY(native_iret)
788
	UNWIND_HINT_IRET_REGS
789 790 791 792
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
793
#ifdef CONFIG_X86_ESPFIX64
794 795
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
796
#endif
797

798
.global native_irq_return_iret
799
native_irq_return_iret:
A
Andy Lutomirski 已提交
800 801 802 803 804 805
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
806
	iretq
I
Ingo Molnar 已提交
807

808
#ifdef CONFIG_X86_ESPFIX64
809
native_irq_return_ldt:
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
832 833 834
	SWAPGS					/* to kernel GS */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */

835
	movq	PER_CPU_VAR(espfix_waddr), %rdi
836 837
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
838
	movq	%rax, (1*8)(%rdi)
839
	movq	(2*8)(%rsp), %rax		/* user CS */
840
	movq	%rax, (2*8)(%rdi)
841
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
842
	movq	%rax, (3*8)(%rdi)
843
	movq	(5*8)(%rsp), %rax		/* user SS */
844
	movq	%rax, (5*8)(%rdi)
845
	movq	(4*8)(%rsp), %rax		/* user RSP */
846
	movq	%rax, (4*8)(%rdi)
847 848 849 850 851 852 853 854 855 856 857 858
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
859
	orq	PER_CPU_VAR(espfix_stack), %rax
860

861
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
862 863 864
	SWAPGS					/* to user GS */
	popq	%rdi				/* Restore user RDI */

865
	movq	%rax, %rsp
866
	UNWIND_HINT_IRET_REGS offset=8
867 868 869 870 871 872 873 874 875 876 877 878

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
879
	jmp	native_irq_return_iret
880
#endif
881
END(common_interrupt)
882

L
Linus Torvalds 已提交
883 884
/*
 * APIC interrupts.
885
 */
886
.macro apicinterrupt3 num sym do_sym
887
ENTRY(\sym)
888
	UNWIND_HINT_IRET_REGS
889
	ASM_CLAC
890
	pushq	$~(\num)
891
.Lcommon_\sym:
892
	interrupt \do_sym
893
	jmp	ret_from_intr
894 895
END(\sym)
.endm
L
Linus Torvalds 已提交
896

897
/* Make sure APIC interrupt handlers end up in the irqentry section: */
898 899
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
900

901
.macro apicinterrupt num sym do_sym
902
PUSH_SECTION_IRQENTRY
903
apicinterrupt3 \num \sym \do_sym
904
POP_SECTION_IRQENTRY
905 906
.endm

907
#ifdef CONFIG_SMP
908 909
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
910
#endif
L
Linus Torvalds 已提交
911

N
Nick Piggin 已提交
912
#ifdef CONFIG_X86_UV
913
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
914
#endif
915 916 917

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
918

919
#ifdef CONFIG_HAVE_KVM
920 921
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
922
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
923 924
#endif

925
#ifdef CONFIG_X86_MCE_THRESHOLD
926
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
927 928
#endif

929
#ifdef CONFIG_X86_MCE_AMD
930
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
931 932
#endif

933
#ifdef CONFIG_X86_THERMAL_VECTOR
934
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
935
#endif
936

937
#ifdef CONFIG_SMP
938 939 940
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
941
#endif
L
Linus Torvalds 已提交
942

943 944
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
945

946
#ifdef CONFIG_IRQ_WORK
947
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
948 949
#endif

L
Linus Torvalds 已提交
950 951
/*
 * Exception entry points.
952
 */
953
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
954

955 956 957 958 959 960 961 962 963
/*
 * Switch to the thread stack.  This is called with the IRET frame and
 * orig_ax on the stack.  (That is, RDI..R12 are not on the stack and
 * space has not been allocated for them.)
 */
ENTRY(switch_to_thread_stack)
	UNWIND_HINT_FUNC

	pushq	%rdi
964 965
	/* Need to switch before accessing the thread stack. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
	movq	%rsp, %rdi
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
	UNWIND_HINT sp_offset=16 sp_reg=ORC_REG_DI

	pushq	7*8(%rdi)		/* regs->ss */
	pushq	6*8(%rdi)		/* regs->rsp */
	pushq	5*8(%rdi)		/* regs->eflags */
	pushq	4*8(%rdi)		/* regs->cs */
	pushq	3*8(%rdi)		/* regs->ip */
	pushq	2*8(%rdi)		/* regs->orig_ax */
	pushq	8(%rdi)			/* return address */
	UNWIND_HINT_FUNC

	movq	(%rdi), %rdi
	ret
END(switch_to_thread_stack)

983
.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
984
ENTRY(\sym)
985
	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
986

987 988 989 990 991
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

992
	ASM_CLAC
993

994
	.if \has_error_code == 0
995
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
996 997
	.endif

998
	ALLOC_PT_GPREGS_ON_STACK
999

1000
	.if \paranoid < 2
1001
	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
1002
	jnz	.Lfrom_usermode_switch_stack_\@
1003
	.endif
1004 1005

	.if \paranoid
1006
	call	paranoid_entry
1007
	.else
1008
	call	error_entry
1009
	.endif
1010
	UNWIND_HINT_REGS
1011
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
1012 1013

	.if \paranoid
1014
	.if \shift_ist != -1
1015
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
1016
	.else
1017
	TRACE_IRQS_OFF
1018
	.endif
1019
	.endif
1020

1021
	movq	%rsp, %rdi			/* pt_regs pointer */
1022 1023

	.if \has_error_code
1024 1025
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
1026
	.else
1027
	xorl	%esi, %esi			/* no error code */
1028 1029
	.endif

1030
	.if \shift_ist != -1
1031
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
1032 1033
	.endif

1034
	call	\do_sym
1035

1036
	.if \shift_ist != -1
1037
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
1038 1039
	.endif

1040
	/* these procedures expect "no swapgs" flag in ebx */
1041
	.if \paranoid
1042
	jmp	paranoid_exit
1043
	.else
1044
	jmp	error_exit
1045 1046
	.endif

1047
	.if \paranoid < 2
1048
	/*
1049
	 * Entry from userspace.  Switch stacks and treat it
1050 1051 1052
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
1053
.Lfrom_usermode_switch_stack_\@:
1054
	call	error_entry
1055

1056
	movq	%rsp, %rdi			/* pt_regs pointer */
1057 1058

	.if \has_error_code
1059 1060
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
1061
	.else
1062
	xorl	%esi, %esi			/* no error code */
1063 1064
	.endif

1065
	call	\do_sym
1066

1067
	jmp	error_exit			/* %ebx: no swapgs flag */
1068
	.endif
1069
END(\sym)
1070
.endm
1071

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
1091
ENTRY(native_load_gs_index)
1092
	FRAME_BEGIN
1093
	pushfq
1094
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1095
	SWAPGS
1096
.Lgs_change:
1097
	movl	%edi, %gs
1098
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1099
	SWAPGS
1100
	popfq
1101
	FRAME_END
1102
	ret
1103
ENDPROC(native_load_gs_index)
1104
EXPORT_SYMBOL(native_load_gs_index)
1105

1106
	_ASM_EXTABLE(.Lgs_change, bad_gs)
1107
	.section .fixup, "ax"
L
Linus Torvalds 已提交
1108
	/* running with kernelgs */
1109
bad_gs:
1110
	SWAPGS					/* switch back to user gs */
1111 1112 1113 1114 1115 1116
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1117 1118 1119
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
1120
	.previous
1121

1122
/* Call softirq on interrupt stack. Interrupts are off. */
1123
ENTRY(do_softirq_own_stack)
1124 1125
	pushq	%rbp
	mov	%rsp, %rbp
1126
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1127
	call	__do_softirq
1128
	LEAVE_IRQ_STACK regs=0
1129
	leaveq
1130
	ret
1131
ENDPROC(do_softirq_own_stack)
1132

1133
#ifdef CONFIG_XEN
1134
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1135 1136

/*
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
1149 1150
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

1151 1152 1153 1154
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
1155
	UNWIND_HINT_FUNC
1156
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1157
	UNWIND_HINT_REGS
1158 1159

	ENTER_IRQ_STACK old_rsp=%r10
1160
	call	xen_evtchn_do_upcall
1161 1162
	LEAVE_IRQ_STACK

1163
#ifndef CONFIG_PREEMPT
1164
	call	xen_maybe_preempt_hcall
1165
#endif
1166
	jmp	error_exit
1167
END(xen_do_hypervisor_callback)
1168 1169

/*
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1182
ENTRY(xen_failsafe_callback)
1183
	UNWIND_HINT_EMPTY
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1196
	/* All segments match their saved values => Category 2 (Bad IRET). */
1197 1198 1199 1200
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1201
	UNWIND_HINT_IRET_REGS offset=8
1202
	jmp	general_protection
1203
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1204 1205 1206
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1207
	UNWIND_HINT_IRET_REGS
1208
	pushq	$-1 /* orig_ax = -1 => not a system call */
1209 1210 1211
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
1212
	ENCODE_FRAME_POINTER
1213
	jmp	error_exit
1214 1215
END(xen_failsafe_callback)

1216
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1217 1218
	xen_hvm_callback_vector xen_evtchn_do_upcall

1219
#endif /* CONFIG_XEN */
1220

1221
#if IS_ENABLED(CONFIG_HYPERV)
1222
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1223 1224 1225
	hyperv_callback_vector hyperv_vector_handler
#endif /* CONFIG_HYPERV */

1226 1227 1228 1229
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

1230
#ifdef CONFIG_XEN
1231
idtentry xennmi			do_nmi			has_error_code=0
1232 1233
idtentry xendebug		do_debug		has_error_code=0
idtentry xenint3		do_int3			has_error_code=0
1234
#endif
1235 1236

idtentry general_protection	do_general_protection	has_error_code=1
1237
idtentry page_fault		do_page_fault		has_error_code=1
1238

G
Gleb Natapov 已提交
1239
#ifdef CONFIG_KVM_GUEST
1240
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1241
#endif
1242

1243
#ifdef CONFIG_X86_MCE
1244
idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
1245 1246
#endif

1247 1248 1249 1250 1251 1252
/*
 * Save all registers in pt_regs, and switch gs if needed.
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1253
	UNWIND_HINT_FUNC
1254 1255 1256
	cld
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1257
	ENCODE_FRAME_POINTER 8
1258 1259
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1260
	rdmsr
1261 1262
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1263
	SWAPGS
1264
	xorl	%ebx, %ebx
1265 1266 1267 1268 1269

1:
	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14

	ret
1270
END(paranoid_entry)
1271

1272 1273 1274 1275 1276 1277 1278 1279 1280
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1281 1282
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1283
 */
1284
ENTRY(paranoid_exit)
1285
	UNWIND_HINT_REGS
1286
	DISABLE_INTERRUPTS(CLBR_ANY)
1287
	TRACE_IRQS_OFF_DEBUG
1288
	testl	%ebx, %ebx			/* swapgs needed? */
1289
	jnz	.Lparanoid_exit_no_swapgs
1290
	TRACE_IRQS_IRETQ
1291
	RESTORE_CR3	save_reg=%r14
1292
	SWAPGS_UNSAFE_STACK
1293 1294
	jmp	.Lparanoid_exit_restore
.Lparanoid_exit_no_swapgs:
1295
	TRACE_IRQS_IRETQ_DEBUG
1296 1297
.Lparanoid_exit_restore:
	jmp restore_regs_and_return_to_kernel
1298 1299 1300
END(paranoid_exit)

/*
1301
 * Save all registers in pt_regs, and switch gs if needed.
1302
 * Return: EBX=0: came from user mode; EBX=1: otherwise
1303 1304
 */
ENTRY(error_entry)
1305
	UNWIND_HINT_FUNC
1306
	cld
1307 1308
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1309
	ENCODE_FRAME_POINTER 8
1310
	xorl	%ebx, %ebx
1311
	testb	$3, CS+8(%rsp)
1312
	jz	.Lerror_kernelspace
1313

1314 1315 1316 1317
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1318
	SWAPGS
1319 1320
	/* We have user CR3.  Change to kernel CR3. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1321

1322
.Lerror_entry_from_usermode_after_swapgs:
1323 1324 1325 1326 1327 1328 1329 1330
	/* Put us onto the real thread stack. */
	popq	%r12				/* save return addr in %12 */
	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
	ENCODE_FRAME_POINTER
	pushq	%r12

1331 1332 1333 1334 1335 1336
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1337
	CALL_enter_from_user_mode
1338
	ret
1339

1340
.Lerror_entry_done:
1341 1342 1343
	TRACE_IRQS_OFF
	ret

1344 1345 1346 1347 1348 1349
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1350
.Lerror_kernelspace:
1351 1352 1353
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1354
	je	.Lerror_bad_iret
1355 1356
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1357
	je	.Lbstep_iret
1358
	cmpq	$.Lgs_change, RIP+8(%rsp)
1359
	jne	.Lerror_entry_done
1360 1361

	/*
1362
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1363
	 * gsbase and proceed.  We'll fix up the exception and land in
1364
	 * .Lgs_change's error handler with kernel gsbase.
1365
	 */
1366
	SWAPGS
1367
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1368
	jmp .Lerror_entry_done
1369

1370
.Lbstep_iret:
1371
	/* Fix truncated RIP */
1372
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1373 1374
	/* fall through */

1375
.Lerror_bad_iret:
1376
	/*
1377 1378
	 * We came from an IRET to user mode, so we have user
	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1379
	 */
A
Andy Lutomirski 已提交
1380
	SWAPGS
1381
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1382 1383 1384 1385 1386 1387

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1388 1389 1390
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1391
	decl	%ebx
1392
	jmp	.Lerror_entry_from_usermode_after_swapgs
1393 1394 1395
END(error_entry)


1396
/*
1397
 * On entry, EBX is a "return to kernel mode" flag:
1398 1399 1400
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1401
ENTRY(error_exit)
1402
	UNWIND_HINT_REGS
1403
	DISABLE_INTERRUPTS(CLBR_ANY)
1404
	TRACE_IRQS_OFF
1405
	testl	%ebx, %ebx
1406 1407
	jnz	retint_kernel
	jmp	retint_user
1408 1409
END(error_exit)

1410 1411 1412
/*
 * Runs on exception stack.  Xen PV does not go through this path at all,
 * so we can use real assembly here.
1413 1414 1415 1416
 *
 * Registers:
 *	%r14: Used to save/restore the CR3 of the interrupted context
 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1417
 */
1418
ENTRY(nmi)
1419
	UNWIND_HINT_IRET_REGS
1420

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1438 1439 1440
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1441 1442
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1443
	 *    o Modify the "iret" location to jump to the repeat_nmi
1444 1445 1446 1447 1448 1449 1450 1451
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1452 1453 1454 1455 1456
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1457 1458
	 */

1459 1460
	ASM_CLAC

1461
	/* Use %rdx as our temp variable throughout */
1462
	pushq	%rdx
1463

1464 1465 1466 1467 1468 1469 1470 1471 1472
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1473 1474 1475
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1476 1477
	 */

1478
	swapgs
1479
	cld
1480
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1481 1482
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1483
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1484 1485 1486 1487 1488
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1489
	UNWIND_HINT_IRET_REGS
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	pushq   $-1		/* pt_regs->orig_ax */
	pushq   %rdi		/* pt_regs->di */
	pushq   %rsi		/* pt_regs->si */
	pushq   (%rdx)		/* pt_regs->dx */
	pushq   %rcx		/* pt_regs->cx */
	pushq   %rax		/* pt_regs->ax */
	pushq   %r8		/* pt_regs->r8 */
	pushq   %r9		/* pt_regs->r9 */
	pushq   %r10		/* pt_regs->r10 */
	pushq   %r11		/* pt_regs->r11 */
	pushq	%rbx		/* pt_regs->rbx */
	pushq	%rbp		/* pt_regs->rbp */
	pushq	%r12		/* pt_regs->r12 */
	pushq	%r13		/* pt_regs->r13 */
	pushq	%r14		/* pt_regs->r14 */
	pushq	%r15		/* pt_regs->r15 */
1506
	UNWIND_HINT_REGS
1507
	ENCODE_FRAME_POINTER
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1519
	/*
1520
	 * Return back to user mode.  We must *not* do the normal exit
1521
	 * work, because we don't want to enable interrupts.
1522
	 */
1523
	jmp	swapgs_restore_regs_and_return_to_usermode
1524

1525
.Lnmi_from_kernel:
1526
	/*
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1567
	/*
1568 1569
	 * Determine whether we're a nested NMI.
	 *
1570 1571 1572 1573 1574 1575
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1576
	 */
1577 1578 1579 1580 1581 1582 1583 1584

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1585

1586
	/*
1587
	 * Now check "NMI executing".  If it's set, then we're nested.
1588 1589
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1590
	 */
1591 1592
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1593 1594

	/*
1595 1596
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1597 1598 1599 1600 1601 1602 1603 1604
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1605
	 */
1606 1607 1608 1609 1610
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1611

1612 1613 1614 1615
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1616 1617 1618 1619 1620 1621 1622

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1623

1624 1625
nested_nmi:
	/*
1626 1627
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1628
	 */
1629
	subq	$8, %rsp
1630 1631 1632
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1633
	pushfq
1634 1635
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1636 1637

	/* Put stack back */
1638
	addq	$(6*8), %rsp
1639 1640

nested_nmi_out:
1641
	popq	%rdx
1642

1643
	/* We are returning to kernel mode, so this cannot result in a fault. */
1644
	iretq
1645 1646

first_nmi:
1647
	/* Restore rdx. */
1648
	movq	(%rsp), %rdx
1649

1650 1651
	/* Make room for "NMI executing". */
	pushq	$0
1652

1653
	/* Leave room for the "iret" frame */
1654
	subq	$(5*8), %rsp
1655

1656
	/* Copy the "original" frame to the "outermost" frame */
1657
	.rept 5
1658
	pushq	11*8(%rsp)
1659
	.endr
1660
	UNWIND_HINT_IRET_REGS
1661

1662 1663
	/* Everything up to here is safe from nested NMIs */

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
1675
	iretq			/* continues at repeat_nmi below */
1676
	UNWIND_HINT_IRET_REGS
1677 1678 1679
1:
#endif

1680
repeat_nmi:
1681 1682 1683 1684 1685 1686 1687 1688
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1689 1690 1691 1692
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1693 1694
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1695
	 */
1696
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1697

1698
	/*
1699 1700 1701
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1702
	 */
1703
	addq	$(10*8), %rsp
1704
	.rept 5
1705
	pushq	-6*8(%rsp)
1706
	.endr
1707
	subq	$(5*8), %rsp
1708
end_repeat_nmi:
1709 1710

	/*
1711 1712 1713
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1714
	 */
1715
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1716 1717
	ALLOC_PT_GPREGS_ON_STACK

1718
	/*
1719
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1720 1721 1722 1723 1724
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1725
	call	paranoid_entry
1726
	UNWIND_HINT_REGS
1727

1728
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1729 1730 1731
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1732

1733 1734
	RESTORE_CR3 save_reg=%r14

1735 1736
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1737 1738 1739
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1740 1741
	POP_EXTRA_REGS
	POP_C_REGS
1742

1743 1744 1745 1746 1747
	/*
	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
	 * at the "iret" frame.
	 */
	addq	$6*8, %rsp
1748

1749 1750 1751
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
1752 1753 1754 1755 1756
	 * the SYSCALL entry and exit paths.
	 *
	 * We arguably should just inspect RIP instead, but I (Andy) wrote
	 * this code when I had the misapprehension that Xen PV supported
	 * NMIs, and Xen PV would break that approach.
1757 1758 1759
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1760 1761

	/*
1762 1763 1764 1765
	 * iretq reads the "iret" frame and exits the NMI stack in a
	 * single instruction.  We are returning to kernel mode, so this
	 * cannot result in a fault.  Similarly, we don't need to worry
	 * about espfix64 on the way back to kernel mode.
1766
	 */
1767
	iretq
1768 1769 1770
END(nmi)

ENTRY(ignore_sysret)
1771
	UNWIND_HINT_EMPTY
1772
	mov	$-ENOSYS, %eax
1773 1774
	sysret
END(ignore_sysret)
1775 1776

ENTRY(rewind_stack_do_exit)
1777
	UNWIND_HINT_FUNC
1778 1779 1780 1781
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1782 1783
	leaq	-PTREGS_SIZE(%rax), %rsp
	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1784 1785 1786

	call	do_exit
END(rewind_stack_do_exit)