entry_64.S 47.7 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8
 *
L
Linus Torvalds 已提交
9 10
 * entry.S contains the system-call and fault low-level handling routines.
 *
11 12
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
13
 * A note on terminology:
14 15
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
16 17
 *
 * Some macro usage:
18 19 20
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
21 22 23 24 25
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
26
#include "calling.h"
27
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
28 29 30 31
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
32
#include <asm/page_types.h>
33
#include <asm/irqflags.h>
34
#include <asm/paravirt.h>
35
#include <asm/percpu.h>
36
#include <asm/asm.h>
37
#include <asm/smap.h>
38
#include <asm/pgtable_types.h>
39
#include <asm/export.h>
40
#include <asm/frame.h>
41
#include <linux/err.h>
L
Linus Torvalds 已提交
42

43 44
.code64
.section .entry.text, "ax"
45

46
#ifdef CONFIG_PARAVIRT
47
ENTRY(native_usergs_sysret64)
48
	UNWIND_HINT_EMPTY
49 50
	swapgs
	sysretq
51
END(native_usergs_sysret64)
52 53
#endif /* CONFIG_PARAVIRT */

54
.macro TRACE_IRQS_IRETQ
55
#ifdef CONFIG_TRACE_IRQFLAGS
56 57
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
58 59 60 61 62
	TRACE_IRQS_ON
1:
#endif
.endm

63 64 65 66 67 68 69 70 71 72 73 74 75 76
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
77
	call	debug_stack_set_zero
78
	TRACE_IRQS_OFF
79
	call	debug_stack_reset
80 81 82
.endm

.macro TRACE_IRQS_ON_DEBUG
83
	call	debug_stack_set_zero
84
	TRACE_IRQS_ON
85
	call	debug_stack_reset
86 87
.endm

88
.macro TRACE_IRQS_IRETQ_DEBUG
89 90
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
91 92 93 94 95
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
96 97 98
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
99 100
#endif

L
Linus Torvalds 已提交
101
/*
102
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
103
 *
104 105 106 107 108 109 110 111 112 113
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
114
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
115 116 117 118 119 120
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
121
 * rax  system call number
122 123
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
124 125
 * rdi  arg0
 * rsi  arg1
126
 * rdx  arg2
127
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
128 129
 * r8   arg4
 * r9   arg5
130
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
131
 *
L
Linus Torvalds 已提交
132 133
 * Only called from user space.
 *
134
 * When user can change pt_regs->foo always force IRET. That is because
135 136
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
137
 */
L
Linus Torvalds 已提交
138

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	.pushsection .entry_trampoline, "ax"

/*
 * The code in here gets remapped into cpu_entry_area's trampoline.  This means
 * that the assembler and linker have the wrong idea as to where this code
 * lives (and, in fact, it's mapped more than once, so it's not even at a
 * fixed address).  So we can't reference any symbols outside the entry
 * trampoline and expect it to work.
 *
 * Instead, we carefully abuse %rip-relative addressing.
 * _entry_trampoline(%rip) refers to the start of the remapped) entry
 * trampoline.  We can thus find cpu_entry_area with this macro:
 */

#define CPU_ENTRY_AREA \
	_entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)

/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
157
#define RSP_SCRATCH	CPU_ENTRY_AREA_tss + TSS_STRUCT_SYSENTER_stack + \
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
			SIZEOF_SYSENTER_stack - 8 + CPU_ENTRY_AREA

ENTRY(entry_SYSCALL_64_trampoline)
	UNWIND_HINT_EMPTY
	swapgs

	/* Stash the user RSP. */
	movq	%rsp, RSP_SCRATCH

	/* Load the top of the task stack into RSP */
	movq	CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp

	/* Start building the simulated IRET frame. */
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	RSP_SCRATCH			/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */

	/*
	 * x86 lacks a near absolute jump, and we can't jump to the real
	 * entry text with a relative jump.  We could push the target
	 * address and then use retq, but this destroys the pipeline on
	 * many CPUs (wasting over 20 cycles on Sandy Bridge).  Instead,
	 * spill RDI and restore it in a second-stage trampoline.
	 */
	pushq	%rdi
	movq	$entry_SYSCALL_64_stage2, %rdi
	jmp	*%rdi
END(entry_SYSCALL_64_trampoline)

	.popsection

ENTRY(entry_SYSCALL_64_stage2)
	UNWIND_HINT_EMPTY
	popq	%rdi
	jmp	entry_SYSCALL_64_after_hwframe
END(entry_SYSCALL_64_stage2)

197
ENTRY(entry_SYSCALL_64)
198
	UNWIND_HINT_EMPTY
199 200 201 202 203
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
204

205
	swapgs
206 207
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
208

209 210
	TRACE_IRQS_OFF

211
	/* Construct struct pt_regs on stack */
212 213 214 215 216
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
217
GLOBAL(entry_SYSCALL_64_after_hwframe)
218 219 220 221 222 223 224 225 226 227 228
	pushq	%rax				/* pt_regs->orig_ax */
	pushq	%rdi				/* pt_regs->di */
	pushq	%rsi				/* pt_regs->si */
	pushq	%rdx				/* pt_regs->dx */
	pushq	%rcx				/* pt_regs->cx */
	pushq	$-ENOSYS			/* pt_regs->ax */
	pushq	%r8				/* pt_regs->r8 */
	pushq	%r9				/* pt_regs->r9 */
	pushq	%r10				/* pt_regs->r10 */
	pushq	%r11				/* pt_regs->r11 */
	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */
229
	UNWIND_HINT_REGS extra=0
230

231 232 233 234
	/*
	 * If we need to do entry work or if we guess we'll need to do
	 * exit work, go straight to the slow path.
	 */
235 236
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
237 238
	jnz	entry_SYSCALL64_slow_path

239
entry_SYSCALL_64_fastpath:
240 241 242 243 244 245 246
	/*
	 * Easy case: enable interrupts and issue the syscall.  If the syscall
	 * needs pt_regs, we'll call a stub that disables interrupts again
	 * and jumps to the slow path.
	 */
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
247
#if __SYSCALL_MASK == ~0
248
	cmpq	$__NR_syscall_max, %rax
249
#else
250 251
	andl	$__SYSCALL_MASK, %eax
	cmpl	$__NR_syscall_max, %eax
252
#endif
253 254
	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
	movq	%r10, %rcx
255 256 257

	/*
	 * This call instruction is handled specially in stub_ptregs_64.
258 259
	 * It might end up jumping to the slow path.  If it jumps, RAX
	 * and all argument registers are clobbered.
260
	 */
261
	call	*sys_call_table(, %rax, 8)
262 263
.Lentry_SYSCALL_64_after_fastpath_call:

264
	movq	%rax, RAX(%rsp)
265
1:
266 267

	/*
268 269 270
	 * If we get here, then we know that pt_regs is clean for SYSRET64.
	 * If we see that no exit work is required (which we are required
	 * to check with IRQs off), then we can go straight to SYSRET64.
271
	 */
272
	DISABLE_INTERRUPTS(CLBR_ANY)
273
	TRACE_IRQS_OFF
274 275
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
276
	jnz	1f
277

278 279
	LOCKDEP_SYS_EXIT
	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
280 281
	movq	RIP(%rsp), %rcx
	movq	EFLAGS(%rsp), %r11
282
	addq	$6*8, %rsp	/* skip extra regs -- they were preserved */
283
	UNWIND_HINT_EMPTY
284
	jmp	.Lpop_c_regs_except_rcx_r11_and_sysret
L
Linus Torvalds 已提交
285

286 287 288 289 290 291
1:
	/*
	 * The fast path looked good when we started, but something changed
	 * along the way and we need to switch to the slow path.  Calling
	 * raise(3) will trigger this, for example.  IRQs are off.
	 */
292
	TRACE_IRQS_ON
293
	ENABLE_INTERRUPTS(CLBR_ANY)
294
	SAVE_EXTRA_REGS
295
	movq	%rsp, %rdi
296 297
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	jmp	return_from_SYSCALL_64
298

299 300
entry_SYSCALL64_slow_path:
	/* IRQs are off. */
301
	SAVE_EXTRA_REGS
302
	movq	%rsp, %rdi
303 304 305
	call	do_syscall_64		/* returns with IRQs disabled */

return_from_SYSCALL_64:
306
	TRACE_IRQS_IRETQ		/* we're about to change IF */
307 308 309

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
310 311
	 * a completely clean 64-bit userspace context.  If we're not,
	 * go to the slow exit path.
312
	 */
313 314
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
315 316 317

	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
	jne	swapgs_restore_regs_and_return_to_usermode
318 319 320 321

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
322
	 * the kernel, since userspace controls RSP.
323
	 *
324
	 * If width of "canonical tail" ever becomes variable, this will need
325
	 * to be updated to remain correct on both old and new CPUs.
326
	 *
327 328
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
329
	 */
330 331
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
332

333 334
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
335
	jne	swapgs_restore_regs_and_return_to_usermode
336

337
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
338
	jne	swapgs_restore_regs_and_return_to_usermode
339

340 341
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
342
	jne	swapgs_restore_regs_and_return_to_usermode
343 344

	/*
345 346 347 348 349 350 351 352 353
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
354
	 *
355
	 *           movq	$stuck_here, %rcx
356 357 358 359 360 361
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
362
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
363
	jnz	swapgs_restore_regs_and_return_to_usermode
364 365 366

	/* nothing to check for RSP */

367
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
368
	jne	swapgs_restore_regs_and_return_to_usermode
369 370

	/*
371 372
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
373 374
	 */
syscall_return_via_sysret:
375
	/* rcx and r11 are already restored (see code above) */
376
	UNWIND_HINT_EMPTY
377
	POP_EXTRA_REGS
378
.Lpop_c_regs_except_rcx_r11_and_sysret:
379 380 381 382 383 384 385 386
	popq	%rsi	/* skip r11 */
	popq	%r10
	popq	%r9
	popq	%r8
	popq	%rax
	popq	%rsi	/* skip rcx */
	popq	%rdx
	popq	%rsi
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

	/*
	 * Now all regs are restored except RSP and RDI.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
	movq	PER_CPU_VAR(cpu_tss + TSS_sp0), %rsp

	pushq	RSP-RDI(%rdi)	/* RSP */
	pushq	(%rdi)		/* RDI */

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */

403
	popq	%rdi
404
	popq	%rsp
405
	USERGS_SYSRET64
406
END(entry_SYSCALL_64)
407

408 409 410
ENTRY(stub_ptregs_64)
	/*
	 * Syscalls marked as needing ptregs land here.
411 412 413
	 * If we are on the fast path, we need to save the extra regs,
	 * which we achieve by trying again on the slow path.  If we are on
	 * the slow path, the extra regs are already saved.
414 415
	 *
	 * RAX stores a pointer to the C function implementing the syscall.
416
	 * IRQs are on.
417 418 419 420
	 */
	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
	jne	1f

421 422 423 424
	/*
	 * Called from fast path -- disable IRQs again, pop return address
	 * and jump to slow path
	 */
425
	DISABLE_INTERRUPTS(CLBR_ANY)
426
	TRACE_IRQS_OFF
427
	popq	%rax
428
	UNWIND_HINT_REGS extra=0
429
	jmp	entry_SYSCALL64_slow_path
430 431

1:
432
	jmp	*%rax				/* Called from C */
433 434 435 436
END(stub_ptregs_64)

.macro ptregs_stub func
ENTRY(ptregs_\func)
437
	UNWIND_HINT_FUNC
438 439 440 441 442 443 444 445 446 447
	leaq	\func(%rip), %rax
	jmp	stub_ptregs_64
END(ptregs_\func)
.endm

/* Instantiate ptregs_stub for each ptregs-using syscall */
#define __SYSCALL_64_QUAL_(sym)
#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
#include <asm/syscalls_64.h>
448

449 450 451 452 453
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
454
	UNWIND_HINT_FUNC
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

#ifdef CONFIG_CC_STACKPROTECTOR
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

486 487 488
/*
 * A newly forked process directly context switches into this address.
 *
489
 * rax: prev task we switched from
490 491
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
492 493
 */
ENTRY(ret_from_fork)
494
	UNWIND_HINT_EMPTY
495
	movq	%rax, %rdi
496
	call	schedule_tail			/* rdi: 'prev' task parameter */
497

498 499
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
500

501
2:
502
	UNWIND_HINT_REGS
503
	movq	%rsp, %rdi
504 505
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
506
	jmp	swapgs_restore_regs_and_return_to_usermode
507 508 509 510 511 512 513 514 515 516 517 518

1:
	/* kernel thread */
	movq	%r12, %rdi
	call	*%rbx
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
519 520
END(ret_from_fork)

521
/*
522 523
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
524
 */
525
	.align 8
526
ENTRY(irq_entries_start)
527 528
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
529
	UNWIND_HINT_IRET_REGS
530
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
531 532
	jmp	common_interrupt
	.align	8
533
	vector=vector+1
534
    .endr
535 536
END(irq_entries_start)

537 538
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
539 540 541
	pushq %rax
	SAVE_FLAGS(CLBR_RAX)
	testl $X86_EFLAGS_IF, %eax
542 543 544
	jz .Lokay_\@
	ud2
.Lokay_\@:
545
	popq %rax
546 547 548 549 550 551 552 553 554 555
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
556
.macro ENTER_IRQ_STACK regs=1 old_rsp
557 558
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	movq	%rsp, \old_rsp
559 560 561 562 563

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

564
	incl	PER_CPU_VAR(irq_count)
565
	jnz	.Lirq_stack_push_old_rsp_\@
566 567 568 569 570 571 572 573 574

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
	movq	PER_CPU_VAR(irq_stack_ptr), %rsp

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
591
	 */
592 593 594 595 596
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
597

598
.Lirq_stack_push_old_rsp_\@:
599
	pushq	\old_rsp
600 601 602 603

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
604 605 606 607 608
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
609
.macro LEAVE_IRQ_STACK regs=1
610 611 612 613
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

614 615 616 617
	.if \regs
	UNWIND_HINT_REGS
	.endif

618 619 620 621 622 623 624 625
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

626
/*
L
Linus Torvalds 已提交
627 628 629
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
630 631 632
 *
 * Entry runs with interrupts off.
 */
L
Linus Torvalds 已提交
633

634
/* 0(%rsp): ~(interrupt number) */
L
Linus Torvalds 已提交
635
	.macro interrupt func
636
	cld
637 638 639 640 641 642 643

	testb	$3, CS-ORIG_RAX(%rsp)
	jz	1f
	SWAPGS
	call	switch_to_thread_stack
1:

644 645 646
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
647
	ENCODE_FRAME_POINTER
648

649
	testb	$3, CS(%rsp)
650
	jz	1f
651 652

	/*
653 654
	 * IRQ from user mode.
	 *
655 656 657 658 659 660 661 662 663
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

664
	CALL_enter_from_user_mode
665

666
1:
667
	ENTER_IRQ_STACK old_rsp=%rdi
668 669 670
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

671
	call	\func	/* rdi points to pt_regs */
L
Linus Torvalds 已提交
672 673
	.endm

674 675 676 677
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
678 679
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
680
	ASM_CLAC
681
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
L
Linus Torvalds 已提交
682
	interrupt do_IRQ
683
	/* 0(%rsp): old RSP */
684
ret_from_intr:
685
	DISABLE_INTERRUPTS(CLBR_ANY)
686
	TRACE_IRQS_OFF
687

688
	LEAVE_IRQ_STACK
689

690
	testb	$3, CS(%rsp)
691
	jz	retint_kernel
692

693 694 695 696
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
697
	TRACE_IRQS_IRETQ
698

699
GLOBAL(swapgs_restore_regs_and_return_to_usermode)
700 701
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates user mode. */
702
	testb	$3, CS(%rsp)
703 704 705 706
	jnz	1f
	ud2
1:
#endif
707
	POP_EXTRA_REGS
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
	popq	%r11
	popq	%r10
	popq	%r9
	popq	%r8
	popq	%rax
	popq	%rcx
	popq	%rdx
	popq	%rsi

	/*
	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
	movq	PER_CPU_VAR(cpu_tss + TSS_sp0), %rsp

	/* Copy the IRET frame to the trampoline stack. */
	pushq	6*8(%rdi)	/* SS */
	pushq	5*8(%rdi)	/* RSP */
	pushq	4*8(%rdi)	/* EFLAGS */
	pushq	3*8(%rdi)	/* CS */
	pushq	2*8(%rdi)	/* RIP */

	/* Push user RDI on the trampoline stack. */
	pushq	(%rdi)

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */

	/* Restore RDI. */
	popq	%rdi
	SWAPGS
742 743
	INTERRUPT_RETURN

744

745
/* Returning to kernel space */
746
retint_kernel:
747 748 749
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
750
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
751
	jnc	1f
752
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
753
	jnz	1f
754
	call	preempt_schedule_irq
755
	jmp	0b
756
1:
757
#endif
758 759 760 761
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
762

763 764 765
GLOBAL(restore_regs_and_return_to_kernel)
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates kernel mode. */
766
	testb	$3, CS(%rsp)
767 768 769 770
	jz	1f
	ud2
1:
#endif
771 772 773
	POP_EXTRA_REGS
	POP_C_REGS
	addq	$8, %rsp	/* skip regs->orig_ax */
774 775 776
	INTERRUPT_RETURN

ENTRY(native_iret)
777
	UNWIND_HINT_IRET_REGS
778 779 780 781
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
782
#ifdef CONFIG_X86_ESPFIX64
783 784
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
785
#endif
786

787
.global native_irq_return_iret
788
native_irq_return_iret:
A
Andy Lutomirski 已提交
789 790 791 792 793 794
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
795
	iretq
I
Ingo Molnar 已提交
796

797
#ifdef CONFIG_X86_ESPFIX64
798
native_irq_return_ldt:
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
821
	SWAPGS
822
	movq	PER_CPU_VAR(espfix_waddr), %rdi
823 824
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
825
	movq	%rax, (1*8)(%rdi)
826
	movq	(2*8)(%rsp), %rax		/* user CS */
827
	movq	%rax, (2*8)(%rdi)
828
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
829
	movq	%rax, (3*8)(%rdi)
830
	movq	(5*8)(%rsp), %rax		/* user SS */
831
	movq	%rax, (5*8)(%rdi)
832
	movq	(4*8)(%rsp), %rax		/* user RSP */
833
	movq	%rax, (4*8)(%rdi)
834 835 836 837 838 839 840 841 842 843 844 845 846
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
	popq	%rdi				/* Restore user RDI */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
847
	orq	PER_CPU_VAR(espfix_stack), %rax
848
	SWAPGS
849
	movq	%rax, %rsp
850
	UNWIND_HINT_IRET_REGS offset=8
851 852 853 854 855 856 857 858 859 860 861 862

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
863
	jmp	native_irq_return_iret
864
#endif
865
END(common_interrupt)
866

L
Linus Torvalds 已提交
867 868
/*
 * APIC interrupts.
869
 */
870
.macro apicinterrupt3 num sym do_sym
871
ENTRY(\sym)
872
	UNWIND_HINT_IRET_REGS
873
	ASM_CLAC
874
	pushq	$~(\num)
875
.Lcommon_\sym:
876
	interrupt \do_sym
877
	jmp	ret_from_intr
878 879
END(\sym)
.endm
L
Linus Torvalds 已提交
880

881
/* Make sure APIC interrupt handlers end up in the irqentry section: */
882 883
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
884

885
.macro apicinterrupt num sym do_sym
886
PUSH_SECTION_IRQENTRY
887
apicinterrupt3 \num \sym \do_sym
888
POP_SECTION_IRQENTRY
889 890
.endm

891
#ifdef CONFIG_SMP
892 893
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
894
#endif
L
Linus Torvalds 已提交
895

N
Nick Piggin 已提交
896
#ifdef CONFIG_X86_UV
897
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
898
#endif
899 900 901

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
902

903
#ifdef CONFIG_HAVE_KVM
904 905
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
906
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
907 908
#endif

909
#ifdef CONFIG_X86_MCE_THRESHOLD
910
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
911 912
#endif

913
#ifdef CONFIG_X86_MCE_AMD
914
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
915 916
#endif

917
#ifdef CONFIG_X86_THERMAL_VECTOR
918
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
919
#endif
920

921
#ifdef CONFIG_SMP
922 923 924
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
925
#endif
L
Linus Torvalds 已提交
926

927 928
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
929

930
#ifdef CONFIG_IRQ_WORK
931
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
932 933
#endif

L
Linus Torvalds 已提交
934 935
/*
 * Exception entry points.
936
 */
937
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
938

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
/*
 * Switch to the thread stack.  This is called with the IRET frame and
 * orig_ax on the stack.  (That is, RDI..R12 are not on the stack and
 * space has not been allocated for them.)
 */
ENTRY(switch_to_thread_stack)
	UNWIND_HINT_FUNC

	pushq	%rdi
	movq	%rsp, %rdi
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
	UNWIND_HINT sp_offset=16 sp_reg=ORC_REG_DI

	pushq	7*8(%rdi)		/* regs->ss */
	pushq	6*8(%rdi)		/* regs->rsp */
	pushq	5*8(%rdi)		/* regs->eflags */
	pushq	4*8(%rdi)		/* regs->cs */
	pushq	3*8(%rdi)		/* regs->ip */
	pushq	2*8(%rdi)		/* regs->orig_ax */
	pushq	8(%rdi)			/* return address */
	UNWIND_HINT_FUNC

	movq	(%rdi), %rdi
	ret
END(switch_to_thread_stack)

965
.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
966
ENTRY(\sym)
967
	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
968

969 970 971 972 973
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

974
	ASM_CLAC
975

976
	.if \has_error_code == 0
977
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
978 979
	.endif

980
	ALLOC_PT_GPREGS_ON_STACK
981

982
	.if \paranoid < 2
983
	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
984
	jnz	.Lfrom_usermode_switch_stack_\@
985
	.endif
986 987

	.if \paranoid
988
	call	paranoid_entry
989
	.else
990
	call	error_entry
991
	.endif
992
	UNWIND_HINT_REGS
993
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
994 995

	.if \paranoid
996
	.if \shift_ist != -1
997
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
998
	.else
999
	TRACE_IRQS_OFF
1000
	.endif
1001
	.endif
1002

1003
	movq	%rsp, %rdi			/* pt_regs pointer */
1004 1005

	.if \has_error_code
1006 1007
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
1008
	.else
1009
	xorl	%esi, %esi			/* no error code */
1010 1011
	.endif

1012
	.if \shift_ist != -1
1013
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
1014 1015
	.endif

1016
	call	\do_sym
1017

1018
	.if \shift_ist != -1
1019
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
1020 1021
	.endif

1022
	/* these procedures expect "no swapgs" flag in ebx */
1023
	.if \paranoid
1024
	jmp	paranoid_exit
1025
	.else
1026
	jmp	error_exit
1027 1028
	.endif

1029
	.if \paranoid < 2
1030
	/*
1031
	 * Entry from userspace.  Switch stacks and treat it
1032 1033 1034
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
1035
.Lfrom_usermode_switch_stack_\@:
1036
	call	error_entry
1037

1038
	movq	%rsp, %rdi			/* pt_regs pointer */
1039 1040

	.if \has_error_code
1041 1042
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
1043
	.else
1044
	xorl	%esi, %esi			/* no error code */
1045 1046
	.endif

1047
	call	\do_sym
1048

1049
	jmp	error_exit			/* %ebx: no swapgs flag */
1050
	.endif
1051
END(\sym)
1052
.endm
1053

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
1073
ENTRY(native_load_gs_index)
1074
	FRAME_BEGIN
1075
	pushfq
1076
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1077
	SWAPGS
1078
.Lgs_change:
1079
	movl	%edi, %gs
1080
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1081
	SWAPGS
1082
	popfq
1083
	FRAME_END
1084
	ret
1085
ENDPROC(native_load_gs_index)
1086
EXPORT_SYMBOL(native_load_gs_index)
1087

1088
	_ASM_EXTABLE(.Lgs_change, bad_gs)
1089
	.section .fixup, "ax"
L
Linus Torvalds 已提交
1090
	/* running with kernelgs */
1091
bad_gs:
1092
	SWAPGS					/* switch back to user gs */
1093 1094 1095 1096 1097 1098
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1099 1100 1101
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
1102
	.previous
1103

1104
/* Call softirq on interrupt stack. Interrupts are off. */
1105
ENTRY(do_softirq_own_stack)
1106 1107
	pushq	%rbp
	mov	%rsp, %rbp
1108
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1109
	call	__do_softirq
1110
	LEAVE_IRQ_STACK regs=0
1111
	leaveq
1112
	ret
1113
ENDPROC(do_softirq_own_stack)
1114

1115
#ifdef CONFIG_XEN
1116
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1117 1118

/*
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
1131 1132
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

1133 1134 1135 1136
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
1137
	UNWIND_HINT_FUNC
1138
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1139
	UNWIND_HINT_REGS
1140 1141

	ENTER_IRQ_STACK old_rsp=%r10
1142
	call	xen_evtchn_do_upcall
1143 1144
	LEAVE_IRQ_STACK

1145
#ifndef CONFIG_PREEMPT
1146
	call	xen_maybe_preempt_hcall
1147
#endif
1148
	jmp	error_exit
1149
END(xen_do_hypervisor_callback)
1150 1151

/*
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1164
ENTRY(xen_failsafe_callback)
1165
	UNWIND_HINT_EMPTY
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1178
	/* All segments match their saved values => Category 2 (Bad IRET). */
1179 1180 1181 1182
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1183
	UNWIND_HINT_IRET_REGS offset=8
1184
	jmp	general_protection
1185
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1186 1187 1188
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1189
	UNWIND_HINT_IRET_REGS
1190
	pushq	$-1 /* orig_ax = -1 => not a system call */
1191 1192 1193
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
1194
	ENCODE_FRAME_POINTER
1195
	jmp	error_exit
1196 1197
END(xen_failsafe_callback)

1198
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1199 1200
	xen_hvm_callback_vector xen_evtchn_do_upcall

1201
#endif /* CONFIG_XEN */
1202

1203
#if IS_ENABLED(CONFIG_HYPERV)
1204
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1205 1206 1207
	hyperv_callback_vector hyperv_vector_handler
#endif /* CONFIG_HYPERV */

1208 1209 1210 1211
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

1212
#ifdef CONFIG_XEN
1213
idtentry xennmi			do_nmi			has_error_code=0
1214 1215
idtentry xendebug		do_debug		has_error_code=0
idtentry xenint3		do_int3			has_error_code=0
1216
#endif
1217 1218

idtentry general_protection	do_general_protection	has_error_code=1
1219
idtentry page_fault		do_page_fault		has_error_code=1
1220

G
Gleb Natapov 已提交
1221
#ifdef CONFIG_KVM_GUEST
1222
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1223
#endif
1224

1225
#ifdef CONFIG_X86_MCE
1226
idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
1227 1228
#endif

1229 1230 1231 1232 1233 1234
/*
 * Save all registers in pt_regs, and switch gs if needed.
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1235
	UNWIND_HINT_FUNC
1236 1237 1238
	cld
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1239
	ENCODE_FRAME_POINTER 8
1240 1241
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1242
	rdmsr
1243 1244
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1245
	SWAPGS
1246
	xorl	%ebx, %ebx
1247
1:	ret
1248
END(paranoid_entry)
1249

1250 1251 1252 1253 1254 1255 1256 1257 1258
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1259 1260
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1261
 */
1262
ENTRY(paranoid_exit)
1263
	UNWIND_HINT_REGS
1264
	DISABLE_INTERRUPTS(CLBR_ANY)
1265
	TRACE_IRQS_OFF_DEBUG
1266
	testl	%ebx, %ebx			/* swapgs needed? */
1267
	jnz	.Lparanoid_exit_no_swapgs
1268
	TRACE_IRQS_IRETQ
1269
	SWAPGS_UNSAFE_STACK
1270 1271
	jmp	.Lparanoid_exit_restore
.Lparanoid_exit_no_swapgs:
1272
	TRACE_IRQS_IRETQ_DEBUG
1273 1274
.Lparanoid_exit_restore:
	jmp restore_regs_and_return_to_kernel
1275 1276 1277
END(paranoid_exit)

/*
1278
 * Save all registers in pt_regs, and switch gs if needed.
1279
 * Return: EBX=0: came from user mode; EBX=1: otherwise
1280 1281
 */
ENTRY(error_entry)
1282
	UNWIND_HINT_FUNC
1283
	cld
1284 1285
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1286
	ENCODE_FRAME_POINTER 8
1287
	xorl	%ebx, %ebx
1288
	testb	$3, CS+8(%rsp)
1289
	jz	.Lerror_kernelspace
1290

1291 1292 1293 1294
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1295
	SWAPGS
1296

1297
.Lerror_entry_from_usermode_after_swapgs:
1298 1299 1300 1301 1302 1303 1304 1305
	/* Put us onto the real thread stack. */
	popq	%r12				/* save return addr in %12 */
	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
	ENCODE_FRAME_POINTER
	pushq	%r12

1306 1307 1308 1309 1310 1311
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1312
	CALL_enter_from_user_mode
1313
	ret
1314

1315
.Lerror_entry_done:
1316 1317 1318
	TRACE_IRQS_OFF
	ret

1319 1320 1321 1322 1323 1324
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1325
.Lerror_kernelspace:
1326 1327 1328
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1329
	je	.Lerror_bad_iret
1330 1331
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1332
	je	.Lbstep_iret
1333
	cmpq	$.Lgs_change, RIP+8(%rsp)
1334
	jne	.Lerror_entry_done
1335 1336

	/*
1337
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1338
	 * gsbase and proceed.  We'll fix up the exception and land in
1339
	 * .Lgs_change's error handler with kernel gsbase.
1340
	 */
1341 1342
	SWAPGS
	jmp .Lerror_entry_done
1343

1344
.Lbstep_iret:
1345
	/* Fix truncated RIP */
1346
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1347 1348
	/* fall through */

1349
.Lerror_bad_iret:
1350 1351 1352 1353
	/*
	 * We came from an IRET to user mode, so we have user gsbase.
	 * Switch to kernel gsbase:
	 */
A
Andy Lutomirski 已提交
1354
	SWAPGS
1355 1356 1357 1358 1359 1360

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1361 1362 1363
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1364
	decl	%ebx
1365
	jmp	.Lerror_entry_from_usermode_after_swapgs
1366 1367 1368
END(error_entry)


1369
/*
1370
 * On entry, EBX is a "return to kernel mode" flag:
1371 1372 1373
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1374
ENTRY(error_exit)
1375
	UNWIND_HINT_REGS
1376
	DISABLE_INTERRUPTS(CLBR_ANY)
1377
	TRACE_IRQS_OFF
1378
	testl	%ebx, %ebx
1379 1380
	jnz	retint_kernel
	jmp	retint_user
1381 1382
END(error_exit)

1383 1384 1385 1386
/*
 * Runs on exception stack.  Xen PV does not go through this path at all,
 * so we can use real assembly here.
 */
1387
ENTRY(nmi)
1388
	UNWIND_HINT_IRET_REGS
1389

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1407 1408 1409
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1410 1411
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1412
	 *    o Modify the "iret" location to jump to the repeat_nmi
1413 1414 1415 1416 1417 1418 1419 1420
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1421 1422 1423 1424 1425
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1426 1427
	 */

1428 1429
	ASM_CLAC

1430
	/* Use %rdx as our temp variable throughout */
1431
	pushq	%rdx
1432

1433 1434 1435 1436 1437 1438 1439 1440 1441
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1442 1443 1444
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1445 1446
	 */

1447
	swapgs
1448 1449 1450
	cld
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1451
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1452 1453 1454 1455 1456
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1457
	UNWIND_HINT_IRET_REGS
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	pushq   $-1		/* pt_regs->orig_ax */
	pushq   %rdi		/* pt_regs->di */
	pushq   %rsi		/* pt_regs->si */
	pushq   (%rdx)		/* pt_regs->dx */
	pushq   %rcx		/* pt_regs->cx */
	pushq   %rax		/* pt_regs->ax */
	pushq   %r8		/* pt_regs->r8 */
	pushq   %r9		/* pt_regs->r9 */
	pushq   %r10		/* pt_regs->r10 */
	pushq   %r11		/* pt_regs->r11 */
	pushq	%rbx		/* pt_regs->rbx */
	pushq	%rbp		/* pt_regs->rbp */
	pushq	%r12		/* pt_regs->r12 */
	pushq	%r13		/* pt_regs->r13 */
	pushq	%r14		/* pt_regs->r14 */
	pushq	%r15		/* pt_regs->r15 */
1474
	UNWIND_HINT_REGS
1475
	ENCODE_FRAME_POINTER
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1487
	/*
1488
	 * Return back to user mode.  We must *not* do the normal exit
1489
	 * work, because we don't want to enable interrupts.
1490
	 */
1491
	jmp	swapgs_restore_regs_and_return_to_usermode
1492

1493
.Lnmi_from_kernel:
1494
	/*
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1535
	/*
1536 1537
	 * Determine whether we're a nested NMI.
	 *
1538 1539 1540 1541 1542 1543
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1544
	 */
1545 1546 1547 1548 1549 1550 1551 1552

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1553

1554
	/*
1555
	 * Now check "NMI executing".  If it's set, then we're nested.
1556 1557
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1558
	 */
1559 1560
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1561 1562

	/*
1563 1564
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1565 1566 1567 1568 1569 1570 1571 1572
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1573
	 */
1574 1575 1576 1577 1578
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1579

1580 1581 1582 1583
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1584 1585 1586 1587 1588 1589 1590

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1591

1592 1593
nested_nmi:
	/*
1594 1595
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1596
	 */
1597
	subq	$8, %rsp
1598 1599 1600
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1601
	pushfq
1602 1603
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1604 1605

	/* Put stack back */
1606
	addq	$(6*8), %rsp
1607 1608

nested_nmi_out:
1609
	popq	%rdx
1610

1611
	/* We are returning to kernel mode, so this cannot result in a fault. */
1612
	iretq
1613 1614

first_nmi:
1615
	/* Restore rdx. */
1616
	movq	(%rsp), %rdx
1617

1618 1619
	/* Make room for "NMI executing". */
	pushq	$0
1620

1621
	/* Leave room for the "iret" frame */
1622
	subq	$(5*8), %rsp
1623

1624
	/* Copy the "original" frame to the "outermost" frame */
1625
	.rept 5
1626
	pushq	11*8(%rsp)
1627
	.endr
1628
	UNWIND_HINT_IRET_REGS
1629

1630 1631
	/* Everything up to here is safe from nested NMIs */

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
1643
	iretq			/* continues at repeat_nmi below */
1644
	UNWIND_HINT_IRET_REGS
1645 1646 1647
1:
#endif

1648
repeat_nmi:
1649 1650 1651 1652 1653 1654 1655 1656
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1657 1658 1659 1660
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1661 1662
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1663
	 */
1664
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1665

1666
	/*
1667 1668 1669
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1670
	 */
1671
	addq	$(10*8), %rsp
1672
	.rept 5
1673
	pushq	-6*8(%rsp)
1674
	.endr
1675
	subq	$(5*8), %rsp
1676
end_repeat_nmi:
1677 1678

	/*
1679 1680 1681
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1682
	 */
1683
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1684 1685
	ALLOC_PT_GPREGS_ON_STACK

1686
	/*
1687
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1688 1689 1690 1691 1692
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1693
	call	paranoid_entry
1694
	UNWIND_HINT_REGS
1695

1696
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1697 1698 1699
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1700

1701 1702
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1703 1704 1705
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1706 1707
	POP_EXTRA_REGS
	POP_C_REGS
1708

1709 1710 1711 1712 1713
	/*
	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
	 * at the "iret" frame.
	 */
	addq	$6*8, %rsp
1714

1715 1716 1717
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
1718 1719 1720 1721 1722
	 * the SYSCALL entry and exit paths.
	 *
	 * We arguably should just inspect RIP instead, but I (Andy) wrote
	 * this code when I had the misapprehension that Xen PV supported
	 * NMIs, and Xen PV would break that approach.
1723 1724 1725
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1726 1727

	/*
1728 1729 1730 1731
	 * iretq reads the "iret" frame and exits the NMI stack in a
	 * single instruction.  We are returning to kernel mode, so this
	 * cannot result in a fault.  Similarly, we don't need to worry
	 * about espfix64 on the way back to kernel mode.
1732
	 */
1733
	iretq
1734 1735 1736
END(nmi)

ENTRY(ignore_sysret)
1737
	UNWIND_HINT_EMPTY
1738
	mov	$-ENOSYS, %eax
1739 1740
	sysret
END(ignore_sysret)
1741 1742

ENTRY(rewind_stack_do_exit)
1743
	UNWIND_HINT_FUNC
1744 1745 1746 1747
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1748 1749
	leaq	-PTREGS_SIZE(%rax), %rsp
	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1750 1751 1752

	call	do_exit
END(rewind_stack_do_exit)