82571.c 54.5 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2012 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/*
 * 82571EB Gigabit Ethernet Controller
31
 * 82571EB Gigabit Ethernet Controller (Copper)
32
 * 82571EB Gigabit Ethernet Controller (Fiber)
33 34 35
 * 82571EB Dual Port Gigabit Mezzanine Adapter
 * 82571EB Quad Port Gigabit Mezzanine Adapter
 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 37 38 39 40 41
 * 82572EI Gigabit Ethernet Controller (Copper)
 * 82572EI Gigabit Ethernet Controller (Fiber)
 * 82572EI Gigabit Ethernet Controller
 * 82573V Gigabit Ethernet Controller (Copper)
 * 82573E Gigabit Ethernet Controller (Copper)
 * 82573L Gigabit Ethernet Controller
42
 * 82574L Gigabit Network Connection
43
 * 82583V Gigabit Network Connection
44 45 46 47 48 49 50 51 52 53 54
 */

#include "e1000.h"

#define ID_LED_RESERVED_F746 0xF746
#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
			      (ID_LED_OFF1_ON2  <<  8) | \
			      (ID_LED_DEF1_DEF2 <<  4) | \
			      (ID_LED_DEF1_DEF2))

#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55
#define AN_RETRY_COUNT          5 /* Autoneg Retry Count value */
56 57 58 59
#define E1000_BASE1000T_STATUS          10
#define E1000_IDLE_ERROR_COUNT_MASK     0xFF
#define E1000_RECEIVE_ERROR_COUNTER     21
#define E1000_RECEIVE_ERROR_MAX         0xFFFF
60

61 62
#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */

63 64 65
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
66
static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
67 68 69 70 71 72
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
				      u16 words, u16 *data);
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
static s32 e1000_setup_link_82571(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
73
static void e1000_clear_vfta_82571(struct e1000_hw *hw);
74 75
static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
static s32 e1000_led_on_82574(struct e1000_hw *hw);
76
static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
77
static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
78 79 80
static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
81 82
static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
83 84 85 86 87 88 89 90 91 92

/**
 *  e1000_init_phy_params_82571 - Init PHY func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;

93
	if (hw->phy.media_type != e1000_media_type_copper) {
94 95 96 97 98 99 100 101
		phy->type = e1000_phy_none;
		return 0;
	}

	phy->addr			 = 1;
	phy->autoneg_mask		 = AUTONEG_ADVERTISE_SPEED_DEFAULT;
	phy->reset_delay_us		 = 100;

102 103 104
	phy->ops.power_up		 = e1000_power_up_phy_copper;
	phy->ops.power_down		 = e1000_power_down_phy_copper_82571;

105 106 107 108 109 110 111 112
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		phy->type		 = e1000_phy_igp_2;
		break;
	case e1000_82573:
		phy->type		 = e1000_phy_m88;
		break;
113
	case e1000_82574:
114
	case e1000_82583:
115
		phy->type		 = e1000_phy_bm;
116 117
		phy->ops.acquire = e1000_get_hw_semaphore_82574;
		phy->ops.release = e1000_put_hw_semaphore_82574;
118 119
		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
120
		break;
121 122 123 124 125 126 127
	default:
		return -E1000_ERR_PHY;
		break;
	}

	/* This can only be done after all function pointers are setup. */
	ret_val = e1000_get_phy_id_82571(hw);
128 129 130 131
	if (ret_val) {
		e_dbg("Error getting PHY ID\n");
		return ret_val;
	}
132 133 134 135 136 137

	/* Verify phy id */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		if (phy->id != IGP01E1000_I_PHY_ID)
138
			ret_val = -E1000_ERR_PHY;
139 140 141
		break;
	case e1000_82573:
		if (phy->id != M88E1111_I_PHY_ID)
142
			ret_val = -E1000_ERR_PHY;
143
		break;
144
	case e1000_82574:
145
	case e1000_82583:
146
		if (phy->id != BME1000_E_PHY_ID_R2)
147
			ret_val = -E1000_ERR_PHY;
148
		break;
149
	default:
150
		ret_val = -E1000_ERR_PHY;
151 152 153
		break;
	}

154 155 156 157
	if (ret_val)
		e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);

	return ret_val;
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
}

/**
 *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = er32(EECD);
	u16 size;

	nvm->opcode_bits = 8;
	nvm->delay_usec = 1;
	switch (nvm->override) {
	case e1000_nvm_override_spi_large:
		nvm->page_size = 32;
		nvm->address_bits = 16;
		break;
	case e1000_nvm_override_spi_small:
		nvm->page_size = 8;
		nvm->address_bits = 8;
		break;
	default:
		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
		break;
	}

	switch (hw->mac.type) {
	case e1000_82573:
189
	case e1000_82574:
190
	case e1000_82583:
191 192 193
		if (((eecd >> 15) & 0x3) == 0x3) {
			nvm->type = e1000_nvm_flash_hw;
			nvm->word_size = 2048;
194 195
			/*
			 * Autonomous Flash update bit must be cleared due
196 197 198 199 200 201 202 203
			 * to Flash update issue.
			 */
			eecd &= ~E1000_EECD_AUPDEN;
			ew32(EECD, eecd);
			break;
		}
		/* Fall Through */
	default:
204
		nvm->type = e1000_nvm_eeprom_spi;
205 206
		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
				  E1000_EECD_SIZE_EX_SHIFT);
207 208
		/*
		 * Added to a constant, "size" becomes the left-shift value
209 210 211
		 * for setting word_size.
		 */
		size += NVM_WORD_SIZE_BASE_SHIFT;
212 213 214 215

		/* EEPROM access above 16k is unsupported */
		if (size > 14)
			size = 14;
216 217 218 219
		nvm->word_size	= 1 << size;
		break;
	}

220 221 222 223 224 225 226 227 228 229 230
	/* Function Pointers */
	switch (hw->mac.type) {
	case e1000_82574:
	case e1000_82583:
		nvm->ops.acquire = e1000_get_hw_semaphore_82574;
		nvm->ops.release = e1000_put_hw_semaphore_82574;
		break;
	default:
		break;
	}

231 232 233 234 235 236 237
	return 0;
}

/**
 *  e1000_init_mac_params_82571 - Init MAC func ptrs.
 *  @hw: pointer to the HW structure
 **/
238
static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
239 240
{
	struct e1000_mac_info *mac = &hw->mac;
241 242 243
	u32 swsm = 0;
	u32 swsm2 = 0;
	bool force_clear_smbi = false;
244

245
	/* Set media type and media-dependent function pointers */
246
	switch (hw->adapter->pdev->device) {
247 248 249
	case E1000_DEV_ID_82571EB_FIBER:
	case E1000_DEV_ID_82572EI_FIBER:
	case E1000_DEV_ID_82571EB_QUAD_FIBER:
250
		hw->phy.media_type = e1000_media_type_fiber;
251 252 253 254 255
		mac->ops.setup_physical_interface =
		    e1000_setup_fiber_serdes_link_82571;
		mac->ops.check_for_link = e1000e_check_for_fiber_link;
		mac->ops.get_link_up_info =
		    e1000e_get_speed_and_duplex_fiber_serdes;
256 257
		break;
	case E1000_DEV_ID_82571EB_SERDES:
258 259
	case E1000_DEV_ID_82571EB_SERDES_DUAL:
	case E1000_DEV_ID_82571EB_SERDES_QUAD:
260
	case E1000_DEV_ID_82572EI_SERDES:
261
		hw->phy.media_type = e1000_media_type_internal_serdes;
262 263 264 265 266
		mac->ops.setup_physical_interface =
		    e1000_setup_fiber_serdes_link_82571;
		mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
		mac->ops.get_link_up_info =
		    e1000e_get_speed_and_duplex_fiber_serdes;
267 268
		break;
	default:
269
		hw->phy.media_type = e1000_media_type_copper;
270 271 272 273
		mac->ops.setup_physical_interface =
		    e1000_setup_copper_link_82571;
		mac->ops.check_for_link = e1000e_check_for_copper_link;
		mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
274 275 276 277 278 279 280
		break;
	}

	/* Set mta register count */
	mac->mta_reg_count = 128;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_RAR_ENTRIES;
281 282
	/* Adaptive IFS supported */
	mac->adaptive_ifs = true;
283

284
	/* MAC-specific function pointers */
285
	switch (hw->mac.type) {
286
	case e1000_82573:
287 288 289 290
		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
		mac->ops.led_on = e1000e_led_on_generic;
		mac->ops.blink_led = e1000e_blink_led_generic;
291 292 293 294 295 296 297 298 299 300

		/* FWSM register */
		mac->has_fwsm = true;
		/*
		 * ARC supported; valid only if manageability features are
		 * enabled.
		 */
		mac->arc_subsystem_valid =
			(er32(FWSM) & E1000_FWSM_MODE_MASK)
			? true : false;
301
		break;
302
	case e1000_82574:
303
	case e1000_82583:
304 305 306
		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
		mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
		mac->ops.led_on = e1000_led_on_82574;
307 308
		break;
	default:
309 310 311
		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
		mac->ops.led_on = e1000e_led_on_generic;
		mac->ops.blink_led = e1000e_blink_led_generic;
312 313 314

		/* FWSM register */
		mac->has_fwsm = true;
315 316 317
		break;
	}

318 319
	/*
	 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
320
	 * first NVM or PHY access. This should be done for single-port
321 322 323 324 325 326 327 328 329 330 331
	 * devices, and for one port only on dual-port devices so that
	 * for those devices we can still use the SMBI lock to synchronize
	 * inter-port accesses to the PHY & NVM.
	 */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		swsm2 = er32(SWSM2);

		if (!(swsm2 & E1000_SWSM2_LOCK)) {
			/* Only do this for the first interface on this card */
332
			ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
333
			force_clear_smbi = true;
334
		} else {
335
			force_clear_smbi = false;
336
		}
337 338 339 340 341 342 343 344 345 346 347 348 349 350
		break;
	default:
		force_clear_smbi = true;
		break;
	}

	if (force_clear_smbi) {
		/* Make sure SWSM.SMBI is clear */
		swsm = er32(SWSM);
		if (swsm & E1000_SWSM_SMBI) {
			/* This bit should not be set on a first interface, and
			 * indicates that the bootagent or EFI code has
			 * improperly left this bit enabled
			 */
351
			e_dbg("Please update your 82571 Bootagent\n");
352 353 354 355 356
		}
		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
	}

	/*
J
Joe Perches 已提交
357
	 * Initialize device specific counter of SMBI acquisition
358 359 360 361
	 * timeouts.
	 */
	 hw->dev_spec.e82571.smb_counter = 0;

362 363 364
	return 0;
}

J
Jeff Kirsher 已提交
365
static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
366 367 368 369 370 371 372
{
	struct e1000_hw *hw = &adapter->hw;
	static int global_quad_port_a; /* global port a indication */
	struct pci_dev *pdev = adapter->pdev;
	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
	s32 rc;

373
	rc = e1000_init_mac_params_82571(hw);
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
	if (rc)
		return rc;

	rc = e1000_init_nvm_params_82571(hw);
	if (rc)
		return rc;

	rc = e1000_init_phy_params_82571(hw);
	if (rc)
		return rc;

	/* tag quad port adapters first, it's used below */
	switch (pdev->device) {
	case E1000_DEV_ID_82571EB_QUAD_COPPER:
	case E1000_DEV_ID_82571EB_QUAD_FIBER:
	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
390
	case E1000_DEV_ID_82571PT_QUAD_COPPER:
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
		adapter->flags |= FLAG_IS_QUAD_PORT;
		/* mark the first port */
		if (global_quad_port_a == 0)
			adapter->flags |= FLAG_IS_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		global_quad_port_a++;
		if (global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
	default:
		break;
	}

	switch (adapter->hw.mac.type) {
	case e1000_82571:
		/* these dual ports don't have WoL on port B at all */
		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
		    (is_port_b))
			adapter->flags &= ~FLAG_HAS_WOL;
		/* quad ports only support WoL on port A */
		if (adapter->flags & FLAG_IS_QUAD_PORT &&
R
Roel Kluin 已提交
414
		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
415
			adapter->flags &= ~FLAG_HAS_WOL;
416 417 418
		/* Does not support WoL on any port */
		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
			adapter->flags &= ~FLAG_HAS_WOL;
419 420 421
		break;
	case e1000_82573:
		if (pdev->device == E1000_DEV_ID_82573L) {
422 423
			adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
			adapter->max_hw_frame_size = DEFAULT_JUMBO;
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
		}
		break;
	default:
		break;
	}

	return 0;
}

/**
 *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
 *  @hw: pointer to the HW structure
 *
 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 *  revision in the hardware structure.
 **/
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
443 444
	s32 ret_val;
	u16 phy_id = 0;
445 446 447 448

	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
449 450
		/*
		 * The 82571 firmware may still be configuring the PHY.
451 452
		 * In this case, we cannot access the PHY until the
		 * configuration is done.  So we explicitly set the
453 454
		 * PHY ID.
		 */
455 456 457 458 459
		phy->id = IGP01E1000_I_PHY_ID;
		break;
	case e1000_82573:
		return e1000e_get_phy_id(hw);
		break;
460
	case e1000_82574:
461
	case e1000_82583:
462 463 464 465 466 467 468 469 470 471 472 473 474
		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
		if (ret_val)
			return ret_val;

		phy->id = (u32)(phy_id << 16);
		udelay(20);
		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
		if (ret_val)
			return ret_val;

		phy->id |= (u32)(phy_id);
		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
		break;
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	default:
		return -E1000_ERR_PHY;
		break;
	}

	return 0;
}

/**
 *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore to access the PHY or NVM
 **/
static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
{
	u32 swsm;
492 493
	s32 sw_timeout = hw->nvm.word_size + 1;
	s32 fw_timeout = hw->nvm.word_size + 1;
494 495
	s32 i = 0;

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
	/*
	 * If we have timedout 3 times on trying to acquire
	 * the inter-port SMBI semaphore, there is old code
	 * operating on the other port, and it is not
	 * releasing SMBI. Modify the number of times that
	 * we try for the semaphore to interwork with this
	 * older code.
	 */
	if (hw->dev_spec.e82571.smb_counter > 2)
		sw_timeout = 1;

	/* Get the SW semaphore */
	while (i < sw_timeout) {
		swsm = er32(SWSM);
		if (!(swsm & E1000_SWSM_SMBI))
			break;

		udelay(50);
		i++;
	}

	if (i == sw_timeout) {
518
		e_dbg("Driver can't access device - SMBI bit is set.\n");
519 520
		hw->dev_spec.e82571.smb_counter++;
	}
521
	/* Get the FW semaphore. */
522
	for (i = 0; i < fw_timeout; i++) {
523 524 525 526 527 528 529 530 531 532
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);

		/* Semaphore acquired if bit latched */
		if (er32(SWSM) & E1000_SWSM_SWESMBI)
			break;

		udelay(50);
	}

533
	if (i == fw_timeout) {
534
		/* Release semaphores */
535
		e1000_put_hw_semaphore_82571(hw);
536
		e_dbg("Driver can't access the NVM\n");
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
		return -E1000_ERR_NVM;
	}

	return 0;
}

/**
 *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Release hardware semaphore used to access the PHY or NVM
 **/
static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
{
	u32 swsm;

	swsm = er32(SWSM);
554
	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
555 556
	ew32(SWSM, swsm);
}
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
/**
 *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore during reset.
 *
 **/
static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
{
	u32 extcnf_ctrl;
	s32 i = 0;

	extcnf_ctrl = er32(EXTCNF_CTRL);
	extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
	do {
		ew32(EXTCNF_CTRL, extcnf_ctrl);
		extcnf_ctrl = er32(EXTCNF_CTRL);

		if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
			break;

		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;

580
		usleep_range(2000, 4000);
581 582 583 584 585 586 587
		i++;
	} while (i < MDIO_OWNERSHIP_TIMEOUT);

	if (i == MDIO_OWNERSHIP_TIMEOUT) {
		/* Release semaphores */
		e1000_put_hw_semaphore_82573(hw);
		e_dbg("Driver can't access the PHY\n");
588
		return -E1000_ERR_PHY;
589 590
	}

591
	return 0;
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
}

/**
 *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Release hardware semaphore used during reset.
 *
 **/
static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
{
	u32 extcnf_ctrl;

	extcnf_ctrl = er32(EXTCNF_CTRL);
	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
	ew32(EXTCNF_CTRL, extcnf_ctrl);
}

static DEFINE_MUTEX(swflag_mutex);

/**
 *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore to access the PHY or NVM.
 *
 **/
static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
{
	s32 ret_val;

	mutex_lock(&swflag_mutex);
	ret_val = e1000_get_hw_semaphore_82573(hw);
	if (ret_val)
		mutex_unlock(&swflag_mutex);
	return ret_val;
}

/**
 *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Release hardware semaphore used to access the PHY or NVM
 *
 **/
static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
{
	e1000_put_hw_semaphore_82573(hw);
	mutex_unlock(&swflag_mutex);
}
642

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
/**
 *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU D0 state according to the active flag.
 *  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
{
	u16 data = er32(POEMB);

	if (active)
		data |= E1000_PHY_CTRL_D0A_LPLU;
	else
		data &= ~E1000_PHY_CTRL_D0A_LPLU;

	ew32(POEMB, data);
	return 0;
}

/**
 *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
 *  @hw: pointer to the HW structure
 *  @active: boolean used to enable/disable lplu
 *
 *  The low power link up (lplu) state is set to the power management level D3
 *  when active is true, else clear lplu for D3. LPLU
 *  is used during Dx states where the power conservation is most important.
 *  During driver activity, SmartSpeed should be enabled so performance is
 *  maintained.
 **/
static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
{
	u16 data = er32(POEMB);

	if (!active) {
		data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
	} else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
		data |= E1000_PHY_CTRL_NOND0A_LPLU;
	}

	ew32(POEMB, data);
	return 0;
}

695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
/**
 *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
 *  @hw: pointer to the HW structure
 *
 *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
 *  Then for non-82573 hardware, set the EEPROM access request bit and wait
 *  for EEPROM access grant bit.  If the access grant bit is not set, release
 *  hardware semaphore.
 **/
static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
{
	s32 ret_val;

	ret_val = e1000_get_hw_semaphore_82571(hw);
	if (ret_val)
		return ret_val;

712 713 714 715
	switch (hw->mac.type) {
	case e1000_82573:
		break;
	default:
716
		ret_val = e1000e_acquire_nvm(hw);
717 718
		break;
	}
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747

	if (ret_val)
		e1000_put_hw_semaphore_82571(hw);

	return ret_val;
}

/**
 *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
 *  @hw: pointer to the HW structure
 *
 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
 **/
static void e1000_release_nvm_82571(struct e1000_hw *hw)
{
	e1000e_release_nvm(hw);
	e1000_put_hw_semaphore_82571(hw);
}

/**
 *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
 *  @hw: pointer to the HW structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
 *
 *  If e1000e_update_nvm_checksum is not called after this function, the
748
 *  EEPROM will most likely contain an invalid checksum.
749 750 751 752 753 754 755 756
 **/
static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
				 u16 *data)
{
	s32 ret_val;

	switch (hw->mac.type) {
	case e1000_82573:
757
	case e1000_82574:
758
	case e1000_82583:
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
		break;
	case e1000_82571:
	case e1000_82572:
		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
		break;
	default:
		ret_val = -E1000_ERR_NVM;
		break;
	}

	return ret_val;
}

/**
 *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 *  value to the EEPROM.
 **/
static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
{
	u32 eecd;
	s32 ret_val;
	u16 i;

	ret_val = e1000e_update_nvm_checksum_generic(hw);
	if (ret_val)
		return ret_val;

791 792 793 794
	/*
	 * If our nvm is an EEPROM, then we're done
	 * otherwise, commit the checksum to the flash NVM.
	 */
795
	if (hw->nvm.type != e1000_nvm_flash_hw)
B
Bruce Allan 已提交
796
		return 0;
797 798 799

	/* Check for pending operations. */
	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
800
		usleep_range(1000, 2000);
801 802 803 804 805 806 807 808 809
		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
			break;
	}

	if (i == E1000_FLASH_UPDATES)
		return -E1000_ERR_NVM;

	/* Reset the firmware if using STM opcode. */
	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
810 811
		/*
		 * The enabling of and the actual reset must be done
812 813 814 815 816 817 818 819 820 821 822 823
		 * in two write cycles.
		 */
		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
		e1e_flush();
		ew32(HICR, E1000_HICR_FW_RESET);
	}

	/* Commit the write to flash */
	eecd = er32(EECD) | E1000_EECD_FLUPD;
	ew32(EECD, eecd);

	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
824
		usleep_range(1000, 2000);
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
			break;
	}

	if (i == E1000_FLASH_UPDATES)
		return -E1000_ERR_NVM;

	return 0;
}

/**
 *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 **/
static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
{
	if (hw->nvm.type == e1000_nvm_flash_hw)
		e1000_fix_nvm_checksum_82571(hw);

	return e1000e_validate_nvm_checksum_generic(hw);
}

/**
 *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
 *  @hw: pointer to the HW structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  After checking for invalid values, poll the EEPROM to ensure the previous
 *  command has completed before trying to write the next word.  After write
 *  poll for completion.
 *
 *  If e1000e_update_nvm_checksum is not called after this function, the
862
 *  EEPROM will most likely contain an invalid checksum.
863 864 865 866 867
 **/
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
				      u16 words, u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
868
	u32 i, eewr = 0;
869 870
	s32 ret_val = 0;

871 872 873 874
	/*
	 * A check for invalid values:  offset too large, too many words,
	 * and not enough words.
	 */
875 876
	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
	    (words == 0)) {
877
		e_dbg("nvm parameter(s) out of bounds\n");
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
		return -E1000_ERR_NVM;
	}

	for (i = 0; i < words; i++) {
		eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
		       ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
		       E1000_NVM_RW_REG_START;

		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
		if (ret_val)
			break;

		ew32(EEWR, eewr);

		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
		if (ret_val)
			break;
	}

	return ret_val;
}

/**
 *  e1000_get_cfg_done_82571 - Poll for configuration done
 *  @hw: pointer to the HW structure
 *
 *  Reads the management control register for the config done bit to be set.
 **/
static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
{
	s32 timeout = PHY_CFG_TIMEOUT;

	while (timeout) {
		if (er32(EEMNGCTL) &
		    E1000_NVM_CFG_DONE_PORT_0)
			break;
914
		usleep_range(1000, 2000);
915 916 917
		timeout--;
	}
	if (!timeout) {
918
		e_dbg("MNG configuration cycle has not completed.\n");
919 920 921 922 923 924 925 926 927
		return -E1000_ERR_RESET;
	}

	return 0;
}

/**
 *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
928
 *  @active: true to enable LPLU, false to disable
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
 *
 *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
 *  this function also disables smart speed and vice versa.  LPLU will not be
 *  activated unless the device autonegotiation advertisement meets standards
 *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
 *  pointer entry point only called by PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
	if (ret_val)
		return ret_val;

	if (active) {
		data |= IGP02E1000_PM_D0_LPLU;
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
		if (ret_val)
			return ret_val;

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
		if (ret_val)
			return ret_val;
	} else {
		data &= ~IGP02E1000_PM_D0_LPLU;
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
961 962
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
963 964
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
965 966
		 * SmartSpeed, so performance is maintained.
		 */
967 968
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
969
					   &data);
970 971 972 973 974
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
975
					   data);
976 977 978 979
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
980
					   &data);
981 982 983 984 985
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
986
					   data);
987 988 989 990 991 992 993 994 995 996 997 998
			if (ret_val)
				return ret_val;
		}
	}

	return 0;
}

/**
 *  e1000_reset_hw_82571 - Reset hardware
 *  @hw: pointer to the HW structure
 *
999
 *  This resets the hardware into a known state.
1000 1001 1002
 **/
static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
{
1003
	u32 ctrl, ctrl_ext;
1004 1005
	s32 ret_val;

1006 1007
	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1008 1009 1010 1011
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000e_disable_pcie_master(hw);
	if (ret_val)
1012
		e_dbg("PCI-E Master disable polling has failed.\n");
1013

1014
	e_dbg("Masking off all interrupts\n");
1015 1016 1017 1018 1019 1020
	ew32(IMC, 0xffffffff);

	ew32(RCTL, 0);
	ew32(TCTL, E1000_TCTL_PSP);
	e1e_flush();

1021
	usleep_range(10000, 20000);
1022

1023 1024 1025 1026
	/*
	 * Must acquire the MDIO ownership before MAC reset.
	 * Ownership defaults to firmware after a reset.
	 */
1027 1028
	switch (hw->mac.type) {
	case e1000_82573:
1029 1030
		ret_val = e1000_get_hw_semaphore_82573(hw);
		break;
1031 1032
	case e1000_82574:
	case e1000_82583:
1033
		ret_val = e1000_get_hw_semaphore_82574(hw);
1034 1035 1036
		break;
	default:
		break;
1037
	}
1038 1039
	if (ret_val)
		e_dbg("Cannot acquire MDIO ownership\n");
1040 1041 1042

	ctrl = er32(CTRL);

1043
	e_dbg("Issuing a global reset to MAC\n");
1044 1045
	ew32(CTRL, ctrl | E1000_CTRL_RST);

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	/* Must release MDIO ownership and mutex after MAC reset. */
	switch (hw->mac.type) {
	case e1000_82574:
	case e1000_82583:
		e1000_put_hw_semaphore_82574(hw);
		break;
	default:
		break;
	}

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	if (hw->nvm.type == e1000_nvm_flash_hw) {
		udelay(10);
		ctrl_ext = er32(CTRL_EXT);
		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
		ew32(CTRL_EXT, ctrl_ext);
		e1e_flush();
	}

	ret_val = e1000e_get_auto_rd_done(hw);
	if (ret_val)
		/* We don't want to continue accessing MAC registers. */
		return ret_val;

1069 1070
	/*
	 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1071 1072 1073
	 * Need to wait for Phy configuration completion before accessing
	 * NVM and Phy.
	 */
1074 1075 1076 1077 1078

	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
1079
		msleep(25);
1080 1081 1082 1083
		break;
	default:
		break;
	}
1084 1085 1086

	/* Clear any pending interrupt events. */
	ew32(IMC, 0xffffffff);
1087
	er32(ICR);
1088

1089 1090 1091 1092 1093
	if (hw->mac.type == e1000_82571) {
		/* Install any alternate MAC address into RAR0 */
		ret_val = e1000_check_alt_mac_addr_generic(hw);
		if (ret_val)
			return ret_val;
1094

1095 1096
		e1000e_set_laa_state_82571(hw, true);
	}
1097

1098 1099 1100 1101
	/* Reinitialize the 82571 serdes link state machine */
	if (hw->phy.media_type == e1000_media_type_internal_serdes)
		hw->mac.serdes_link_state = e1000_serdes_link_down;

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	return 0;
}

/**
 *  e1000_init_hw_82571 - Initialize hardware
 *  @hw: pointer to the HW structure
 *
 *  This inits the hardware readying it for operation.
 **/
static s32 e1000_init_hw_82571(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 reg_data;
	s32 ret_val;
1116
	u16 i, rar_count = mac->rar_entry_count;
1117 1118 1119 1120

	e1000_initialize_hw_bits_82571(hw);

	/* Initialize identification LED */
1121
	ret_val = mac->ops.id_led_init(hw);
1122
	if (ret_val)
1123
		e_dbg("Error initializing identification LED\n");
1124
		/* This is not fatal and we should not stop init due to this */
1125 1126

	/* Disabling VLAN filtering */
1127
	e_dbg("Initializing the IEEE VLAN\n");
1128
	mac->ops.clear_vfta(hw);
1129 1130

	/* Setup the receive address. */
1131 1132
	/*
	 * If, however, a locally administered address was assigned to the
1133 1134 1135 1136 1137 1138 1139 1140
	 * 82571, we must reserve a RAR for it to work around an issue where
	 * resetting one port will reload the MAC on the other port.
	 */
	if (e1000e_get_laa_state_82571(hw))
		rar_count--;
	e1000e_init_rx_addrs(hw, rar_count);

	/* Zero out the Multicast HASH table */
1141
	e_dbg("Zeroing the MTA\n");
1142 1143 1144 1145
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

	/* Setup link and flow control */
1146
	ret_val = mac->ops.setup_link(hw);
1147 1148

	/* Set the transmit descriptor write-back policy */
1149
	reg_data = er32(TXDCTL(0));
1150 1151 1152
	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
		   E1000_TXDCTL_FULL_TX_DESC_WB |
		   E1000_TXDCTL_COUNT_DESC;
1153
	ew32(TXDCTL(0), reg_data);
1154 1155

	/* ...for both queues. */
1156 1157
	switch (mac->type) {
	case e1000_82573:
1158 1159
		e1000e_enable_tx_pkt_filtering(hw);
		/* fall through */
1160 1161 1162 1163 1164 1165 1166
	case e1000_82574:
	case e1000_82583:
		reg_data = er32(GCR);
		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
		ew32(GCR, reg_data);
		break;
	default:
1167
		reg_data = er32(TXDCTL(1));
1168 1169 1170
		reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
			   E1000_TXDCTL_FULL_TX_DESC_WB |
			   E1000_TXDCTL_COUNT_DESC;
1171
		ew32(TXDCTL(1), reg_data);
1172
		break;
1173 1174
	}

1175 1176
	/*
	 * Clear all of the statistics registers (clear on read).  It is
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_82571(hw);

	return ret_val;
}

/**
 *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
 *  @hw: pointer to the HW structure
 *
 *  Initializes required hardware-dependent bits needed for normal operation.
 **/
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
{
	u32 reg;

	/* Transmit Descriptor Control 0 */
1197
	reg = er32(TXDCTL(0));
1198
	reg |= (1 << 22);
1199
	ew32(TXDCTL(0), reg);
1200 1201

	/* Transmit Descriptor Control 1 */
1202
	reg = er32(TXDCTL(1));
1203
	reg |= (1 << 22);
1204
	ew32(TXDCTL(1), reg);
1205 1206

	/* Transmit Arbitration Control 0 */
1207
	reg = er32(TARC(0));
1208 1209 1210 1211 1212 1213
	reg &= ~(0xF << 27); /* 30:27 */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
		break;
1214 1215 1216 1217
	case e1000_82574:
	case e1000_82583:
		reg |= (1 << 26);
		break;
1218 1219 1220
	default:
		break;
	}
1221
	ew32(TARC(0), reg);
1222 1223

	/* Transmit Arbitration Control 1 */
1224
	reg = er32(TARC(1));
1225 1226 1227 1228 1229 1230 1231 1232 1233
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		reg &= ~((1 << 29) | (1 << 30));
		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
		if (er32(TCTL) & E1000_TCTL_MULR)
			reg &= ~(1 << 28);
		else
			reg |= (1 << 28);
1234
		ew32(TARC(1), reg);
1235 1236 1237 1238 1239 1240
		break;
	default:
		break;
	}

	/* Device Control */
1241 1242 1243 1244
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
1245 1246 1247
		reg = er32(CTRL);
		reg &= ~(1 << 29);
		ew32(CTRL, reg);
1248 1249 1250
		break;
	default:
		break;
1251 1252 1253
	}

	/* Extended Device Control */
1254 1255 1256 1257
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
1258 1259 1260 1261
		reg = er32(CTRL_EXT);
		reg &= ~(1 << 23);
		reg |= (1 << 22);
		ew32(CTRL_EXT, reg);
1262 1263 1264
		break;
	default:
		break;
1265
	}
1266

1267 1268 1269 1270 1271
	if (hw->mac.type == e1000_82571) {
		reg = er32(PBA_ECC);
		reg |= E1000_PBA_ECC_CORR_EN;
		ew32(PBA_ECC, reg);
	}
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	/*
	 * Workaround for hardware errata.
	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
	 */

        if ((hw->mac.type == e1000_82571) ||
           (hw->mac.type == e1000_82572)) {
                reg = er32(CTRL_EXT);
                reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
                ew32(CTRL_EXT, reg);
        }

1284

J
Jesse Brandeburg 已提交
1285
	/* PCI-Ex Control Registers */
1286 1287 1288
	switch (hw->mac.type) {
	case e1000_82574:
	case e1000_82583:
1289 1290 1291
		reg = er32(GCR);
		reg |= (1 << 22);
		ew32(GCR, reg);
J
Jesse Brandeburg 已提交
1292

1293 1294 1295 1296 1297
		/*
		 * Workaround for hardware errata.
		 * apply workaround for hardware errata documented in errata
		 * docs Fixes issue where some error prone or unreliable PCIe
		 * completions are occurring, particularly with ASPM enabled.
1298
		 * Without fix, issue can cause Tx timeouts.
1299
		 */
J
Jesse Brandeburg 已提交
1300 1301 1302
		reg = er32(GCR2);
		reg |= 1;
		ew32(GCR2, reg);
1303 1304 1305
		break;
	default:
		break;
1306
	}
1307 1308 1309
}

/**
1310
 *  e1000_clear_vfta_82571 - Clear VLAN filter table
1311 1312 1313 1314 1315
 *  @hw: pointer to the HW structure
 *
 *  Clears the register array which contains the VLAN filter table by
 *  setting all the values to 0.
 **/
1316
static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1317 1318 1319 1320 1321 1322
{
	u32 offset;
	u32 vfta_value = 0;
	u32 vfta_offset = 0;
	u32 vfta_bit_in_reg = 0;

1323 1324 1325 1326
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
1327
		if (hw->mng_cookie.vlan_id != 0) {
1328 1329
			/*
			 * The VFTA is a 4096b bit-field, each identifying
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
			 * a single VLAN ID.  The following operations
			 * determine which 32b entry (i.e. offset) into the
			 * array we want to set the VLAN ID (i.e. bit) of
			 * the manageability unit.
			 */
			vfta_offset = (hw->mng_cookie.vlan_id >>
				       E1000_VFTA_ENTRY_SHIFT) &
				      E1000_VFTA_ENTRY_MASK;
			vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
					       E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
		}
1341 1342 1343
		break;
	default:
		break;
1344 1345
	}
	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1346 1347
		/*
		 * If the offset we want to clear is the same offset of the
1348 1349 1350 1351 1352 1353 1354 1355 1356
		 * manageability VLAN ID, then clear all bits except that of
		 * the manageability unit.
		 */
		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
		e1e_flush();
	}
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
/**
 *  e1000_check_mng_mode_82574 - Check manageability is enabled
 *  @hw: pointer to the HW structure
 *
 *  Reads the NVM Initialization Control Word 2 and returns true
 *  (>0) if any manageability is enabled, else false (0).
 **/
static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
{
	u16 data;

	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
}

/**
 *  e1000_led_on_82574 - Turn LED on
 *  @hw: pointer to the HW structure
 *
 *  Turn LED on.
 **/
static s32 e1000_led_on_82574(struct e1000_hw *hw)
{
	u32 ctrl;
	u32 i;

	ctrl = hw->mac.ledctl_mode2;
	if (!(E1000_STATUS_LU & er32(STATUS))) {
		/*
		 * If no link, then turn LED on by setting the invert bit
		 * for each LED that's "on" (0x0E) in ledctl_mode2.
		 */
		for (i = 0; i < 4; i++)
			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
			    E1000_LEDCTL_MODE_LED_ON)
				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
	}
	ew32(LEDCTL, ctrl);

	return 0;
}

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
/**
 *  e1000_check_phy_82574 - check 82574 phy hung state
 *  @hw: pointer to the HW structure
 *
 *  Returns whether phy is hung or not
 **/
bool e1000_check_phy_82574(struct e1000_hw *hw)
{
	u16 status_1kbt = 0;
	u16 receive_errors = 0;
	s32 ret_val = 0;

	/*
	 * Read PHY Receive Error counter first, if its is max - all F's then
	 * read the Base1000T status register If both are max then PHY is hung.
	 */
	ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
	if (ret_val)
1417
		return false;
1418 1419 1420
	if (receive_errors == E1000_RECEIVE_ERROR_MAX)  {
		ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
		if (ret_val)
1421
			return false;
1422 1423
		if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
		    E1000_IDLE_ERROR_COUNT_MASK)
1424
			return true;
1425
	}
1426 1427

	return false;
1428 1429
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
/**
 *  e1000_setup_link_82571 - Setup flow control and link settings
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
static s32 e1000_setup_link_82571(struct e1000_hw *hw)
{
1442 1443
	/*
	 * 82573 does not have a word in the NVM to determine
1444 1445 1446
	 * the default flow control setting, so we explicitly
	 * set it to full.
	 */
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		if (hw->fc.requested_mode == e1000_fc_default)
			hw->fc.requested_mode = e1000_fc_full;
		break;
	default:
		break;
	}
1457

1458
	return e1000e_setup_link_generic(hw);
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
}

/**
 *  e1000_setup_copper_link_82571 - Configure copper link settings
 *  @hw: pointer to the HW structure
 *
 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
 *  for link, once link is established calls to configure collision distance
 *  and flow control are called.
 **/
static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ew32(CTRL, ctrl);

	switch (hw->phy.type) {
	case e1000_phy_m88:
1481
	case e1000_phy_bm:
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
		ret_val = e1000e_copper_link_setup_m88(hw);
		break;
	case e1000_phy_igp_2:
		ret_val = e1000e_copper_link_setup_igp(hw);
		break;
	default:
		return -E1000_ERR_PHY;
		break;
	}

	if (ret_val)
		return ret_val;

1495
	return e1000e_setup_copper_link(hw);
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
}

/**
 *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
 *  @hw: pointer to the HW structure
 *
 *  Configures collision distance and flow control for fiber and serdes links.
 *  Upon successful setup, poll for link.
 **/
static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
{
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
1510 1511
		/*
		 * If SerDes loopback mode is entered, there is no form
1512 1513
		 * of reset to take the adapter out of that mode.  So we
		 * have to explicitly take the adapter out of loopback
1514
		 * mode.  This prevents drivers from twiddling their thumbs
1515 1516
		 * if another tool failed to take it out of loopback mode.
		 */
1517
		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1518 1519 1520 1521 1522 1523 1524 1525
		break;
	default:
		break;
	}

	return e1000e_setup_fiber_serdes_link(hw);
}

1526 1527 1528 1529
/**
 *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
 *  @hw: pointer to the HW structure
 *
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
 *  Reports the link state as up or down.
 *
 *  If autonegotiation is supported by the link partner, the link state is
 *  determined by the result of autonegotiation. This is the most likely case.
 *  If autonegotiation is not supported by the link partner, and the link
 *  has a valid signal, force the link up.
 *
 *  The link state is represented internally here by 4 states:
 *
 *  1) down
 *  2) autoneg_progress
D
Daniel Mack 已提交
1541
 *  3) autoneg_complete (the link successfully autonegotiated)
1542 1543
 *  4) forced_up (the link has been forced up, it did not autonegotiate)
 *
1544
 **/
1545
static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1546 1547 1548 1549 1550
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 rxcw;
	u32 ctrl;
	u32 status;
1551 1552
	u32 txcw;
	u32 i;
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
	s32 ret_val = 0;

	ctrl = er32(CTRL);
	status = er32(STATUS);
	rxcw = er32(RXCW);

	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {

		/* Receiver is synchronized with no invalid bits.  */
		switch (mac->serdes_link_state) {
		case e1000_serdes_link_autoneg_complete:
			if (!(status & E1000_STATUS_LU)) {
				/*
				 * We have lost link, retry autoneg before
				 * reporting link failure
				 */
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_progress;
1571
				mac->serdes_has_link = false;
1572
				e_dbg("AN_UP     -> AN_PROG\n");
1573 1574
			} else {
				mac->serdes_has_link = true;
1575
			}
1576
			break;
1577 1578 1579 1580 1581 1582 1583

		case e1000_serdes_link_forced_up:
			/*
			 * If we are receiving /C/ ordered sets, re-enable
			 * auto-negotiation in the TXCW register and disable
			 * forced link in the Device Control register in an
			 * attempt to auto-negotiate with our link partner.
1584 1585
			 * If the partner code word is null, stop forcing
			 * and restart auto negotiation.
1586
			 */
1587
			if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW))  {
1588 1589
				/* Enable autoneg, and unforce link up */
				ew32(TXCW, mac->txcw);
1590
				ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1591 1592
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_progress;
1593
				mac->serdes_has_link = false;
1594
				e_dbg("FORCED_UP -> AN_PROG\n");
1595 1596
			} else {
				mac->serdes_has_link = true;
1597 1598 1599 1600
			}
			break;

		case e1000_serdes_link_autoneg_progress:
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
			if (rxcw & E1000_RXCW_C) {
				/*
				 * We received /C/ ordered sets, meaning the
				 * link partner has autonegotiated, and we can
				 * trust the Link Up (LU) status bit.
				 */
				if (status & E1000_STATUS_LU) {
					mac->serdes_link_state =
					    e1000_serdes_link_autoneg_complete;
					e_dbg("AN_PROG   -> AN_UP\n");
					mac->serdes_has_link = true;
				} else {
					/* Autoneg completed, but failed. */
					mac->serdes_link_state =
					    e1000_serdes_link_down;
					e_dbg("AN_PROG   -> DOWN\n");
				}
1618 1619
			} else {
				/*
1620 1621 1622
				 * The link partner did not autoneg.
				 * Force link up and full duplex, and change
				 * state to forced.
1623
				 */
1624
				ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1625 1626 1627 1628
				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
				ew32(CTRL, ctrl);

				/* Configure Flow Control after link up. */
1629
				ret_val = e1000e_config_fc_after_link_up(hw);
1630
				if (ret_val) {
1631
					e_dbg("Error config flow control\n");
1632 1633 1634 1635
					break;
				}
				mac->serdes_link_state =
				    e1000_serdes_link_forced_up;
1636
				mac->serdes_has_link = true;
1637
				e_dbg("AN_PROG   -> FORCED_UP\n");
1638 1639 1640 1641 1642
			}
			break;

		case e1000_serdes_link_down:
		default:
1643 1644
			/*
			 * The link was down but the receiver has now gained
1645
			 * valid sync, so lets see if we can bring the link
1646 1647
			 * up.
			 */
1648
			ew32(TXCW, mac->txcw);
1649
			ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1650 1651
			mac->serdes_link_state =
			    e1000_serdes_link_autoneg_progress;
1652
			mac->serdes_has_link = false;
1653
			e_dbg("DOWN      -> AN_PROG\n");
1654 1655 1656 1657 1658 1659
			break;
		}
	} else {
		if (!(rxcw & E1000_RXCW_SYNCH)) {
			mac->serdes_has_link = false;
			mac->serdes_link_state = e1000_serdes_link_down;
1660
			e_dbg("ANYSTATE  -> DOWN\n");
1661 1662
		} else {
			/*
1663 1664 1665
			 * Check several times, if Sync and Config
			 * both are consistently 1 then simply ignore
			 * the Invalid bit and restart Autoneg
1666
			 */
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
			for (i = 0; i < AN_RETRY_COUNT; i++) {
				udelay(10);
				rxcw = er32(RXCW);
				if ((rxcw & E1000_RXCW_IV) &&
				    !((rxcw & E1000_RXCW_SYNCH) &&
				      (rxcw & E1000_RXCW_C))) {
					mac->serdes_has_link = false;
					mac->serdes_link_state =
					    e1000_serdes_link_down;
					e_dbg("ANYSTATE  -> DOWN\n");
					break;
				}
			}

			if (i == AN_RETRY_COUNT) {
				txcw = er32(TXCW);
				txcw |= E1000_TXCW_ANE;
				ew32(TXCW, txcw);
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_progress;
1687
				mac->serdes_has_link = false;
1688
				e_dbg("ANYSTATE  -> AN_PROG\n");
1689 1690 1691 1692 1693 1694 1695
			}
		}
	}

	return ret_val;
}

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
/**
 *  e1000_valid_led_default_82571 - Verify a valid default LED config
 *  @hw: pointer to the HW structure
 *  @data: pointer to the NVM (EEPROM)
 *
 *  Read the EEPROM for the current default LED configuration.  If the
 *  LED configuration is not valid, set to a valid LED configuration.
 **/
static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
1710
		e_dbg("NVM Read Error\n");
1711 1712 1713
		return ret_val;
	}

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		if (*data == ID_LED_RESERVED_F746)
			*data = ID_LED_DEFAULT_82573;
		break;
	default:
		if (*data == ID_LED_RESERVED_0000 ||
		    *data == ID_LED_RESERVED_FFFF)
			*data = ID_LED_DEFAULT;
		break;
	}
1727 1728 1729 1730 1731 1732 1733 1734

	return 0;
}

/**
 *  e1000e_get_laa_state_82571 - Get locally administered address state
 *  @hw: pointer to the HW structure
 *
1735
 *  Retrieve and return the current locally administered address state.
1736 1737 1738 1739
 **/
bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
{
	if (hw->mac.type != e1000_82571)
1740
		return false;
1741 1742 1743 1744 1745 1746 1747 1748 1749

	return hw->dev_spec.e82571.laa_is_present;
}

/**
 *  e1000e_set_laa_state_82571 - Set locally administered address state
 *  @hw: pointer to the HW structure
 *  @state: enable/disable locally administered address
 *
B
Bruce Allan 已提交
1750
 *  Enable/Disable the current locally administered address state.
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
 **/
void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
{
	if (hw->mac.type != e1000_82571)
		return;

	hw->dev_spec.e82571.laa_is_present = state;

	/* If workaround is activated... */
	if (state)
1761 1762
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
		 * between the time RAR[0] gets clobbered and the time it
		 * gets fixed, the actual LAA is in one of the RARs and no
		 * incoming packets directed to this port are dropped.
		 * Eventually the LAA will be in RAR[0] and RAR[14].
		 */
		e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
}

/**
 *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Verifies that the EEPROM has completed the update.  After updating the
 *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
 *  the checksum fix is not implemented, we need to set the bit and update
 *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
 *  we need to return bad checksum.
 **/
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	s32 ret_val;
	u16 data;

	if (nvm->type != e1000_nvm_flash_hw)
		return 0;

1790 1791
	/*
	 * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1792 1793 1794 1795 1796 1797 1798
	 * 10h-12h.  Checksum may need to be fixed.
	 */
	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
	if (ret_val)
		return ret_val;

	if (!(data & 0x10)) {
1799 1800
		/*
		 * Read 0x23 and check bit 15.  This bit is a 1
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
		 * when the checksum has already been fixed.  If
		 * the checksum is still wrong and this bit is a
		 * 1, we need to return bad checksum.  Otherwise,
		 * we need to set this bit to a 1 and update the
		 * checksum.
		 */
		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
		if (ret_val)
			return ret_val;

		if (!(data & 0x8000)) {
			data |= 0x8000;
			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
			if (ret_val)
				return ret_val;
			ret_val = e1000e_update_nvm_checksum(hw);
		}
	}

	return 0;
}

1823 1824 1825 1826 1827 1828
/**
 *  e1000_read_mac_addr_82571 - Read device MAC address
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
{
1829
	if (hw->mac.type == e1000_82571) {
1830 1831
		s32 ret_val = 0;

1832 1833 1834 1835 1836 1837 1838
		/*
		 * If there's an alternate MAC address place it in RAR0
		 * so that it will override the Si installed default perm
		 * address.
		 */
		ret_val = e1000_check_alt_mac_addr_generic(hw);
		if (ret_val)
1839
			return ret_val;
1840
	}
1841

1842
	return e1000_read_mac_addr_generic(hw);
1843 1844
}

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
/**
 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, remove the link.
 **/
static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	struct e1000_mac_info *mac = &hw->mac;

1857
	if (!phy->ops.check_reset_block)
1858 1859 1860 1861 1862 1863 1864
		return;

	/* If the management interface is not enabled, then power down */
	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
		e1000_power_down_phy_copper(hw);
}

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
/**
 *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
 *  @hw: pointer to the HW structure
 *
 *  Clears the hardware counters by reading the counter registers.
 **/
static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
{
	e1000e_clear_hw_cntrs_base(hw);

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	er32(PRC64);
	er32(PRC127);
	er32(PRC255);
	er32(PRC511);
	er32(PRC1023);
	er32(PRC1522);
	er32(PTC64);
	er32(PTC127);
	er32(PTC255);
	er32(PTC511);
	er32(PTC1023);
	er32(PTC1522);

	er32(ALGNERRC);
	er32(RXERRC);
	er32(TNCRS);
	er32(CEXTERR);
	er32(TSCTC);
	er32(TSCTFC);

	er32(MGTPRC);
	er32(MGTPDC);
	er32(MGTPTC);

	er32(IAC);
	er32(ICRXOC);

	er32(ICRXPTC);
	er32(ICRXATC);
	er32(ICTXPTC);
	er32(ICTXATC);
	er32(ICTXQEC);
	er32(ICTXQMTC);
	er32(ICRXDMTC);
1909 1910
}

J
Jeff Kirsher 已提交
1911
static const struct e1000_mac_operations e82571_mac_ops = {
1912
	/* .check_mng_mode: mac type dependent */
1913
	/* .check_for_link: media type dependent */
1914
	.id_led_init		= e1000e_id_led_init_generic,
1915 1916 1917
	.cleanup_led		= e1000e_cleanup_led_generic,
	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
	.get_bus_info		= e1000e_get_bus_info_pcie,
1918
	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1919
	/* .get_link_up_info: media type dependent */
1920
	/* .led_on: mac type dependent */
1921
	.led_off		= e1000e_led_off_generic,
1922
	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1923 1924
	.write_vfta		= e1000_write_vfta_generic,
	.clear_vfta		= e1000_clear_vfta_82571,
1925 1926 1927 1928
	.reset_hw		= e1000_reset_hw_82571,
	.init_hw		= e1000_init_hw_82571,
	.setup_link		= e1000_setup_link_82571,
	/* .setup_physical_interface: media type dependent */
1929
	.setup_led		= e1000e_setup_led_generic,
1930
	.read_mac_addr		= e1000_read_mac_addr_82571,
1931 1932
};

J
Jeff Kirsher 已提交
1933
static const struct e1000_phy_operations e82_phy_ops_igp = {
1934
	.acquire		= e1000_get_hw_semaphore_82571,
1935
	.check_polarity		= e1000_check_polarity_igp,
1936
	.check_reset_block	= e1000e_check_reset_block_generic,
1937
	.commit			= NULL,
1938 1939 1940
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
	.get_cfg_done		= e1000_get_cfg_done_82571,
	.get_cable_length	= e1000e_get_cable_length_igp_2,
1941 1942 1943 1944
	.get_info		= e1000e_get_phy_info_igp,
	.read_reg		= e1000e_read_phy_reg_igp,
	.release		= e1000_put_hw_semaphore_82571,
	.reset			= e1000e_phy_hw_reset_generic,
1945 1946
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1947
	.write_reg		= e1000e_write_phy_reg_igp,
B
Bruce Allan 已提交
1948
	.cfg_on_link_up      	= NULL,
1949 1950
};

J
Jeff Kirsher 已提交
1951
static const struct e1000_phy_operations e82_phy_ops_m88 = {
1952
	.acquire		= e1000_get_hw_semaphore_82571,
1953
	.check_polarity		= e1000_check_polarity_m88,
1954
	.check_reset_block	= e1000e_check_reset_block_generic,
1955
	.commit			= e1000e_phy_sw_reset,
1956 1957 1958
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
	.get_cfg_done		= e1000e_get_cfg_done,
	.get_cable_length	= e1000e_get_cable_length_m88,
1959 1960 1961 1962
	.get_info		= e1000e_get_phy_info_m88,
	.read_reg		= e1000e_read_phy_reg_m88,
	.release		= e1000_put_hw_semaphore_82571,
	.reset			= e1000e_phy_hw_reset_generic,
1963 1964
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1965
	.write_reg		= e1000e_write_phy_reg_m88,
B
Bruce Allan 已提交
1966
	.cfg_on_link_up      	= NULL,
1967 1968
};

J
Jeff Kirsher 已提交
1969
static const struct e1000_phy_operations e82_phy_ops_bm = {
1970
	.acquire		= e1000_get_hw_semaphore_82571,
1971
	.check_polarity		= e1000_check_polarity_m88,
1972
	.check_reset_block	= e1000e_check_reset_block_generic,
1973
	.commit			= e1000e_phy_sw_reset,
1974 1975 1976
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
	.get_cfg_done		= e1000e_get_cfg_done,
	.get_cable_length	= e1000e_get_cable_length_m88,
1977 1978 1979 1980
	.get_info		= e1000e_get_phy_info_m88,
	.read_reg		= e1000e_read_phy_reg_bm2,
	.release		= e1000_put_hw_semaphore_82571,
	.reset			= e1000e_phy_hw_reset_generic,
1981 1982
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1983
	.write_reg		= e1000e_write_phy_reg_bm2,
B
Bruce Allan 已提交
1984
	.cfg_on_link_up      	= NULL,
1985 1986
};

J
Jeff Kirsher 已提交
1987
static const struct e1000_nvm_operations e82571_nvm_ops = {
1988 1989 1990 1991
	.acquire		= e1000_acquire_nvm_82571,
	.read			= e1000e_read_nvm_eerd,
	.release		= e1000_release_nvm_82571,
	.update			= e1000_update_nvm_checksum_82571,
1992
	.valid_led_default	= e1000_valid_led_default_82571,
1993 1994
	.validate		= e1000_validate_nvm_checksum_82571,
	.write			= e1000_write_nvm_82571,
1995 1996
};

J
Jeff Kirsher 已提交
1997
const struct e1000_info e1000_82571_info = {
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
	.mac			= e1000_82571,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_RESET_OVERWRITES_LAA /* errata */
				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
				  | FLAG_APME_CHECK_PORT_B,
2008 2009
	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
				  | FLAG2_DMA_BURST,
2010
	.pba			= 38,
2011
	.max_hw_frame_size	= DEFAULT_JUMBO,
J
Jeff Kirsher 已提交
2012
	.get_variants		= e1000_get_variants_82571,
2013 2014 2015 2016 2017
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_igp,
	.nvm_ops		= &e82571_nvm_ops,
};

J
Jeff Kirsher 已提交
2018
const struct e1000_info e1000_82572_info = {
2019 2020 2021 2022 2023 2024 2025
	.mac			= e1000_82572,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
2026 2027
	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
				  | FLAG2_DMA_BURST,
2028
	.pba			= 38,
2029
	.max_hw_frame_size	= DEFAULT_JUMBO,
J
Jeff Kirsher 已提交
2030
	.get_variants		= e1000_get_variants_82571,
2031 2032 2033 2034 2035
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_igp,
	.nvm_ops		= &e82571_nvm_ops,
};

J
Jeff Kirsher 已提交
2036
const struct e1000_info e1000_82573_info = {
2037 2038 2039 2040 2041 2042 2043
	.mac			= e1000_82573,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_HAS_AMT
				  | FLAG_HAS_SWSM_ON_LOAD,
2044 2045
	.flags2			= FLAG2_DISABLE_ASPM_L1
				  | FLAG2_DISABLE_ASPM_L0S,
2046
	.pba			= 20,
2047
	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
J
Jeff Kirsher 已提交
2048
	.get_variants		= e1000_get_variants_82571,
2049 2050
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_m88,
2051
	.nvm_ops		= &e82571_nvm_ops,
2052 2053
};

J
Jeff Kirsher 已提交
2054
const struct e1000_info e1000_82574_info = {
2055 2056 2057 2058 2059 2060 2061 2062 2063
	.mac			= e1000_82574,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_MSIX
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_HAS_AMT
				  | FLAG_HAS_CTRLEXT_ON_LOAD,
2064
	.flags2			  = FLAG2_CHECK_PHY_HANG
2065 2066
				  | FLAG2_DISABLE_ASPM_L0S
				  | FLAG2_NO_DISABLE_RX,
2067
	.pba			= 32,
2068
	.max_hw_frame_size	= DEFAULT_JUMBO,
2069 2070 2071 2072 2073 2074
	.get_variants		= e1000_get_variants_82571,
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_bm,
	.nvm_ops		= &e82571_nvm_ops,
};

J
Jeff Kirsher 已提交
2075
const struct e1000_info e1000_82583_info = {
2076 2077 2078 2079 2080 2081
	.mac			= e1000_82583,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_HAS_AMT
2082
				  | FLAG_HAS_JUMBO_FRAMES
2083
				  | FLAG_HAS_CTRLEXT_ON_LOAD,
2084 2085
	.flags2			= FLAG2_DISABLE_ASPM_L0S
				  | FLAG2_NO_DISABLE_RX,
2086
	.pba			= 32,
2087
	.max_hw_frame_size	= DEFAULT_JUMBO,
2088 2089 2090 2091 2092 2093
	.get_variants		= e1000_get_variants_82571,
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_bm,
	.nvm_ops		= &e82571_nvm_ops,
};